
CONVOLUTIONAL
NEURAL NETWORKS

erhtjhtyhy

COREY ADAMS
Computational Scientist
Physicist

12/10/23
San Juan, PR

ABOUT ME

• Computational Scientist at Argonne National
Laboratory

• Joint Appointment between the Argonne
Leadership Computing Facility and the Physics
Division.

• Research interests are AI + fundamental physics,
high performance deep learning (for science!) and
neutrinoless double beta decay.

• Please interrupt with questions along the way!

2

DISCLAIMER

• Examples in these talks skew towards my own work and applications.
• There are so many high quality applications of CNNs and GNNs in particle physics.
• I’ve done this so I can include source code links and answer technical questions so

please ask!

• I won’t talk much about some other areas of my work but feel free to ask afterwards any
time:
• Sparse IO
• CNN computational performance
• Distributed training of CNNs and GNNs
• (Other high performance computing things)

3

CONVOLUTIONAL NEURAL NETWORKS: A
HISTORY IN 5 MINUTES

IMAGENET AND ALEXNET

Article on ImageNet

In the late 2000’s (before 2010), a researcher produced a dataset based on real-world
images, with labels, called ImageNet. Synonymous with a yearly competition for the

best algorithm. Originated by Fei-Fei Li.

AlexNet is the winning entry of the Large Scale Visual Recognition Challenge and a
publication with now more than 120k citations, 10 years later.

https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world

IMAGENET AND ALEXNET

ImageNet: A large-scale hierarchical image database

• AlexNet back then:

AlexNet

https://ieeexplore.ieee.org/document/5206848
https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

IMAGENET AND ALEXNET

• AlexNet back then:
• No Torch/TF/JAX
• Written directly in CUDA.
• Not the first for convolutions, pools, ReLU, etc., but one of the first to put the pieces

together
• Took “five to six days” to train.

• Today:

IMAGENET AND ALEXNET

ImageNet drove advancement of computer
vision quickly past human error rate.

The competitive nature + massive curated
dataset + growing ease-of-GPU drove major
theoretical and practical advances in image
recognition, with convolutional neural
networks at the heart.

(Many ImageNet winners are now big-shots at
AI companies and still in the news today)

Reference

A
le

xN
et

R
es

N
et

https://www.researchgate.net/publication/332452649_A_Roadmap_for_Foundational_Research_on_Artificial_Intelligence_in_Medical_Imaging_From_the_2018_NIHRSNAACRThe_Academy_Workshop

WHAT ARE CONVOLUTIONS?

• First big demonstration by Yann LeCun in LeNet.
• 1989 prototype!
• One of the first applications of the backprop

alogirhtm.

• Today, convolutions are one of the most dominant
components of image models.
• Yes, transformers work too, see Kazu’s talk

after lunch.

WHAT ARE CONVOLUTIONS?

• Convolutions are a simple technique to transform an image,
focused on localality as a driving factor.

• In principle, a convolution could be reproduced by just
“flattening” the image and throwing it into a dense neural
network layer.

• Forcing weight reuse over a small area over the entire image
is a bias in training: the network is forced to focus on
aggregating local, and only local, features.

• Multiple convolutional layers create a “receptive field”
Source

https://github.com/vdumoulin/conv_arithmetic

CONVOLUTION MATH

• Note that CNNs have multiple “channels” analagous to RGB
channels. Convolutions look at all filters at once (by default)
and have a separate learned filter for each output channel.

• Some limiting cases:
• A 1x1 convolution over an input with k filters is

mathematically the same as the same MLP over each
pixel.

• A [m,n] filter over an [m,n] image, with no padding and
stride 1, is a fully connected neural network.Source

https://towardsdatascience.com/gentle-dive-into-math-behind-convolutional-
neural-networks-79a07dd44cf9

https://github.com/vdumoulin/conv_arithmetic
https://towardsdatascience.com/gentle-dive-into-math-behind-convolutional-neural-networks-79a07dd44cf9

CNN: CORE INGREDIENTS

• Most convolutional networks employ additional techniques: normalizations, activations,
and pooling layers.
• Activation: The nonlinearity required to make the network into a universal

approximator.
• Normalization: mapping of the data (activations, conv outputs, etc) into a standard

mean and variance.
• Shown to dramatically reduce overfitting and improve convergence of networks.

• Pooling: Any operation that reduces the spatial size of the inputs.

ACTIVATIONS

• Non-linear activation functions are essential for turning neural networks into universal
function approximators. Generally two classes:
• Saturating: the activation function reaches a maximum value as x goes to infinity

• Examples: sigmoid, tanh.
• Problem: As the input to the activation gets too large (or small) the gradient and

“upstream” updates go to 0.

ACTIVATIONS

• Non-linear activation functions are essential for turning neural networks into universal
function approximators. Generally two classes:
• Non-saturating: the activation function is unbounded in at least one direction (+/-).

• Examples: ReLU, GeLU, Softplus, ...
• These are the “standard” activations these days!
• GeLU in particular is the “latest and greatest”

All images (and
previous slide) from

wikipedia.

NORMALIZATION

• Early neural networks struggled with “internal covariant shift” - all layers updated at
once, but the inputs to any one layer were typically changing scale during training time.

• Batch Normalization, standardizing the mean and deviation of activations during training,
allowed dramatic speed-up of training.

https://arxiv.org/pdf/1903.10520.pdfhttps://arxiv.org/pdf/1502.03167.pdf

https://arxiv.org/pdf/1903.10520.pdf
https://arxiv.org/pdf/1502.03167.pdf

POOLING

• Convolutional layers leverage pooling layers as another critical inductive bias.

• To turn local features into global information, pooling aggregates local features while
reducing spatial dimension sizes.

• Max Pooling keeps only the highest values

• Average Pooling keeps all ... averaged.

• (There are also more complicated poolings.)

Image Source

https://www.researchgate.net/publication/333593451_Application_of_Transfer_Learning_Using_Convolutional_Neural_Network_Method_for_Early_Detection_of_Terry's_Nail

POOLING

• Convolutional layers leverage pooling layers as another critical inductive bias.

• To turn local features into global information, pooling aggregates local features while
reducing spatial dimension sizes.

• Convolutions with strides are also pooling!

Think of convolutional pooling as a learnable
generalization of average pooling.

Generally, convolutions are “state of the art”
downsampling.

VANISHING GRADIENTS

• Networks are trained with the backpropogation algorithm. AKA the chain rule.

• As networks get deeper, and particularly with saturating activations, the iterative
update in the “earliest” parts of the network goes to 0 - “vanishing gradients.”
• (This was actually one of the earliest challenges in training neural networks!)

• Many methods overcome this issue;
• Normalization, and non-saturating activations, loss scaling
• Gradient clipping solves the inverse problem (gradient explosion)

• One method stands out as a solution to the vanishing gradient problem: Residual
Networks

RESIDUAL NETWORKS

• More citations than AlexNet!

• This is the paper that won ImageNet the year when machine learning beat human
performance.

• https://arxiv.org/pdf/1512.03385.pdf

https://arxiv.org/pdf/1512.03385.pdf

RESIDUAL NETWORKS

• Residual networks explicitly encode layers to fit the
“residual” of the input instead of the transformation of
the input.

• At worst, if the gradient of the convolution goes to 0,
the gradient of the whole residual layer goes to 1.

• Nearly all the best convolutional neural networks are
using some form of skip / residual connection.

CONVNEXT: THE LATEST AND GREATEST?

https://arxiv.org/pdf/2201.03545.pdf

• A paper last year synthesized and systematically
updated ResNet to match the accuracy of transformers
on visual tasks.

• If you’re active on image tasks and convolutional
networks, it’s worth a read and testing some of the ideas.

• Nearly all of the ideas in the paper are from previous
publications that showed one technique is better/worse
than another in vision - the synthesis leads to dramatic
improvements.

https://arxiv.org/pdf/2201.03545.pdf

WHAT CAN YOU USE A CNN FOR?

CNN SPECIALIZATION: CLASSIFICATION

• Applying a Convolutional network for classification was the core task of imagenet.

• Somehow, after all the convolutional layers, you must turn the resulting image into a
differentiable prediction.

AlexNet used pooling, flattening, and dense
layers to shape it’s final classification

Network-in-Network used
“global average pooling”

after 1x1 bottleneck
convolutions to remove the
F.C. layers and shape the

output correctly.

CLASSIFICATION EXAMPLE: NOVA

A Convolutional Neural Network Neutrino Event Classifier

https://arxiv.org/pdf/1604.01444.pdf

CLASSIFICATION EXAMPLE: NOVA

A Convolutional Neural Network Neutrino Event Classifier

https://arxiv.org/pdf/1604.01444.pdf

CLASSIFICATION EXAMPLE: NOVA

Nova was one of the first experiments to really deploy convolutional neural
networks into an experimental neutrino project.

A Convolutional Neural Network Neutrino Event Classifier

https://arxiv.org/pdf/1604.01444.pdf

CNN SPECIALIZATION: SEGMENTATION

Instead of classifying the entire image, you can train the network to segment the image at
the individual pixel level. No distinguishing between “instances” - each pixel just has a

classification.

CNN SPECIALIZATION: SEGMENTATION

• UNet was (and still is!) a state of the
art segmentation technique.

• Loss is calculated as a classification
loss per pixel.

• Many applications in particle physics
if they aren’t instance-specific.
• Background removal
• Particle categorization

(track/shower)
• Region of Interest finding

https://arxiv.org/abs/1505.04597

SEGMENTATION CHALLENGES IN PHYSICS

• Our data is often more sparse than what has been used for development in CompSci.
• “Every pixel is background” -> 99% accuracy in cosmic and neutrino tagging!

• Finer grained metrics like “mean Intersection over Union” between truth and
prediction sets of pixels can help distinguish performance between models.

• Network can struggle to learn if the “rare” classes are also imbalanced.
• Focal Loss (https://arxiv.org/abs/1708.02002v2) can really help with this.

• Segmentation tasks are often more computationally intense than classification, object
detection.
• Reduced precision can help accelerate training and inference, AND reduce GPU

SEGMENTATION EXAMPLE: COSMICTAGGER

https://www.frontiersin.org/articles/10.3389/frai.2021.649917/full

Source code:
https://github.com/coreyjadams/CosmicTagger

https://www.frontiersin.org/articles/10.3389/frai.2021.649917/full
https://github.com/coreyjadams/CosmicTagger

SEGMENTATION EXAMPLE: COSMICTAGGER

• Modified UNet can
learn from 3 planes at
once and improve
segmentation
performance.

• Rejection power of
cosmic-pixels 5x
better than classical
techniques.

https://www.frontiersin.org/articles/10.3389/frai.2021.649917/full

Source code:
https://github.com/coreyjadams/CosmicTagger

https://www.frontiersin.org/articles/10.3389/frai.2021.649917/full
https://github.com/coreyjadams/CosmicTagger

CNN SPECIALIZATION: GENERATIVE MODELS

• You can use convolutional neural networks for generative models.

• “DCGAN” was one of the first really successfull GANs, now they are everywhere.

• We have an entire lecture on Simulation and Generative models in this school - I will
leave it there. BEWARE OF BIAS!!! (bias in == bias out ...)

https://thispersondoesnotexist.com/

CNN SPECIALIZATION: INSTANCE DETECTION

Using the encoded features of a
convolutional network, one can do
instance-aware object detection
(and subsequent segmentation)
YOLO (You Only Look Once)

https://arxiv.org/pdf/1506.02640.pdf

CNN SPECIALIZATION: INSTANCE DETECTION

Vertex Proposal
Network

https://github.com/coreyjadams/CosmicTagger/tree/v2.1

https://github.com/coreyjadams/CosmicTagger/tree/v2.1

CNN SPECIALIZATION: INSTANCE DETECTION

Output of the network is a 3-
channel image, downsampled from
original:
• Channel 0 is probability the

vertex is in that box.
• Channels 1/2 are regression

coordinates, relative location
within a particlar anchor box

� =
�
퐹�(��,��) +

�
��[(�� −��)2 + (�� −��)2]

https://github.com/coreyjadams/CosmicTagger/tree/v2.1

https://github.com/coreyjadams/CosmicTagger/tree/v2.1

CNN SPECIALIZATION: INSTANCE DETECTION

Output of the network is a 3-
channel image, downsampled from
original:
• Channel 0 is probability the

vertex is in that box.
• Channels 1/2 are regression

coordinates, relative location
within a particlar anchor box

Vertex ID with a neural network is
surprisingly easy! Want multiple
points? Gets harder ...

https://github.com/coreyjadams/CosmicTagger/tree/v2.1

https://github.com/coreyjadams/CosmicTagger/tree/v2.1

HOW TO ADAPT A CNN TO PHYSICS

DATA IS EVERYTHING

• If you spend 90% of the project making
sure the training data (sim?):
• is correctly labeled (if possible),
• represents the target data (detector

data?),
• is enough (how much is enough?),
• has a train/val/test spilt,
• is balanced,

Then you are doing it right!!

DON’T REINVENT WHEELS

Fork repos and modify what you need - and
at the same time: don’t be afraid to dig
deep in the code.

Focus on the science!
- Use GPUs to not waste your time
training models.
- Take small samples of your data set to
make sure your model and overfit and
has the capacity to learn.
- It’s really easy to use multiple GPUs
these days!

IO SHOULDN’T STAND IN YOUR WAY

Sparse IO can be particularly powerful for particle data but
the most important thing is to make sure it’s not getting in

your way!
https://arxiv.org/pdf/2209.04023.pdf

https://arxiv.org/pdf/2209.04023.pdf

ABOUT COMPUTATIONAL PERFORMANCE

• AlexNet took O(1 week) to train initially. The current record for ResNet is 224 seconds.
• You don’t have to be satisfied with long wait times to train your models!!

• GPU computing is available - free for you scientific needs! - at several national
laboratories: ALCF@ANL, OLCF@ORNL, NERSC@LBNL

• Think your code is slow/fast already? It is worth it to profile. Check out the
line_profiler package for python.

• Many models require batch sizes that are larger than can fit on a single GPU. Check out
data parallel learning (horovod, DDP, DeepSpeed, and more) to increase your batch
size without slowing down your training (much).

TORCH, TF, JAX?

• For convolutional neural networks, use whatever is easiest for you!
• Got a local guru in one of these frameworks? Use what they use.
• Does your collaboration have infrastructure to use one already? Use that?

• No constraints? Pytorch is often the simplest and easiest to use.

• JAX is the newest framework and due to it’s JIT compiler, it is probably the fastest - IF
you write your code right!

• For GNNs: pytorch_geometric is the industry standard (JAX’s Jraph might also be good)
• Much more on GNNs in my second lecture...

SPARSE CONVOLUTIONAL NETWORKS

43

Sparse Convolution looks only at non-0 input pixels

SPARSE CONVOLUTIONAL NETWORKS

44

Submanifold Sparse Convolution looks only at non-0 input pixels

SPARSE IS FASTER THAN DENSE FOR PARTICLE
DATA

45

Roughly 18x speedup in training on identical batch sizes, 58x speedup in peak single-GPU throughput.

Performance gain can depend on sparsity of your data.
Even better throughput possiblem by oversubscribing the GPU with multiple processes (but more tricky to tune).

SPARSE CONVOLUTIONS ENABLE 3D CNNS

3D CNNs have huge memory requirements:
high resolution data requires high GPU memory
during training.

Sparsity improves in 3D, though! https://arxiv.org/pdf/1912.10133.pdf
https://github.com/coreyjadams/SparseEventID

https://arxiv.org/pdf/1912.10133.pdf
https://github.com/coreyjadams/SparseEventID

WRAPPING UP CNNS

• CNNs are extremely powerful tools for image analysis.

• Valuable for classification, segmentation, instance-aware predictions.

• Not too hard to apply to physics!
• The computer scientists have done excellent work building models and architectures.
• There is plenty of room for physicists to make impacts in computer science - but

don’t hesitate to focus on the physics either it that’s your goal!

• Sparse convolutional neural networks can be perfect for sparse particle data.
• Particularly for 3D!

• Next time:
• Mostly GNNs
• Will start with a little bit of “training on sim vs. running on data”

