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The Plan

• Lecture 1
– Introduction to Machine Learning fundamentals
– Linear Models

• Lecture 2
– Neural Networks
– Deep Neural Networks
– Inductive Bias and Model Architectures

• Lecture 3
– Unsupervised Learning
– Autoencoders
– Towards generative modeling: Variation Autoencoders
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Beyond Regression and Classification
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Beyond Regression and Classification

• Not all tasks are predicting a label from features, as in 
classification and regression

• May want to model a high-dim. signal
– Data synthesis / simulation

– Density estimation

– Anomaly detection

– Denoising, super resolution

– Data compression

– …

• Often don’t have labels à Unsupervised Learning
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Unsupervised Learning 5

• Our goal is to study the data density 𝑝(𝑥)

• Even w/o labels, aim to characterize the distribution

Image credit: L. Heinrich



Probability Models 6

"Understanding 𝑝(𝑥)” – ability to do either or both of these 

Image credit: L. Heinrich



Probability Models as Sampling a Process 7

• In many cases, we don’t have a theory of the 
underlying process → Can still learn to sample

• Deep learning can be very good at this!

https://thispersondoesnotexist.com/

face	~	𝑝(face)

https://thispersondoesnotexist.com/


Learning Objective

• Unsupervised learning is more heterogeneous than 
supervised learning

• Many architectures, losses, learning strategies

• Often constructed so model converges to 𝑝(𝑥)
– Variational inference, Adversarial learning, 

Self-supervision, …

• Often framed as modeling the lower dimensional 
“meaningful degrees of freedom” that describe 
the data
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Modeling Data and Meaningful Degrees of Freedom 9

Fleuret, Deep Learning Course

https://fleuret.org/dlc/
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Modeling Data and Meaningful Degrees of Freedom 13

Fleuret, Deep Learning Course

How can we find the “meaningful degrees of 
freedom” in the data?

https://fleuret.org/dlc/


Meaningful Representations

• Dimensionality Reduction / Compression

• Can we learn to:

1. Compress the data to a latent space with smaller 
number of dimensions

2. Recover the original data from this latent space?

• Latent space must encode and retain the 
important information about the data

14



Autoencoders
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Autoencoders

• Map a space to itself through a compression 

𝑥 → 𝑧 → '𝑥

16

Data
Latent space

Reconstruction



Autoencoders

• Map a space to itself through a compression 

𝑥 → 𝑧 → '𝑥
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– Encoder: Map from data to a lower dim. latent space
• Neural network 𝑓! 𝑥  with parameters 𝜃 

– Decoder: Map from latent space back to data space
• Neural network 𝑔" 𝑧  with parameters 𝜓 

𝑓! 𝑥



Autoencoders

• Map a space to itself through a compression 

𝑥 → 𝑧 → '𝑥
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– Encoder: Map from data to a lower dim. latent space
• Neural network 𝑓! 𝑥  with parameters 𝜃 

– Decoder: Map from latent space back to data space
• Neural network 𝑔" 𝑧  with parameters 𝜓 

𝑔" 𝑧𝑓! 𝑥



Autoencoder Mappings

• Latent space is of lower dimension than data

• Model must learn a “good” parametrization 
and capture dependencies between components

19

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Autoencoder Loss

• Loss: mean reconstruction loss (MSE) between data 
and encoded-decoded data

• Min. over params. of encoder (𝜃) and decoder (𝜓).

• NOTE: if 𝑓' 𝑥 and 𝑔( 𝑧 are linear, optimal 
solution given by Principle Components Analysis
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𝐿(𝜃, 𝜓) =
1
𝑁
,
!

𝑥! − 𝑔" 𝑓# 𝑥!
$
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1
𝑁
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Deep Autoencoder 22

𝑥 𝑧 %𝑥	

• When 𝑓' and 𝑔( are multiple neural network 
layers, can learn complex mappings
– 𝑓! and 𝑔" can be Fully Connected, CNNs, RNNs, etc.

– Choice of network structure will depend on data

𝑓(") 𝑔($)𝑓(%) 𝑓($) 𝑔(%) 𝑔(")

𝑓! 𝑔"



Deep Convolutional Autoencoder 23

Fleuret, Deep Learning Course

𝑓! and 𝑔" are five
convolutional layers

https://fleuret.org/dlc/


The Latent Space

• Can look at latent space to see how the model 
arranges the data
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Interpolating in Latent Space 25

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Can We Generate Data with Decoder? 26

• Can we sample in latent space 
and decode to generate data?

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Can We Generate Data with Decoder? 27

Fleuret, Deep Learning Course

• Can we sample in latent space 
and decode to generate data?

• What distribution to sample from 
in latent space?
– Try Gaussian with mean and 

variance from data

https://fleuret.org/dlc/


Can We Generate Data with Decoder?

• Don’t know the right latent space density

28

• Can we sample in latent space 
and decode to generate data?

• What distribution to sample from 
in latent space?
– Try Gaussian with mean and 

variance from data

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Generative Models
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Generative Models Goal

A generative model is a probabilistic model 𝑞 that can 
be used as a simulator of the data. 

Goal: generate synthetic, realistic high-dimension data

𝑥~𝑞(𝑥; 𝜃)

that is as close as possible to the unknown data 
distribution 𝑝(𝑥) for which we have empirical samples.

i.e. want to recreate the raw data distribution 
(such as the distribution of natural images).
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Generative Models 31

• Generative models aim to:
– Learn a distribution 𝑝(𝑥) that explains the data
– Draw samples of plausible data points

• Explicit Models
– Can evaluate the density 𝑝(𝑥) of a data point x

• Implicit Models
– Can only sample 𝑝(𝑥), but not evaluate density



Variational Autoencoders
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Denoising Autoencoders

• Learn a mapping from corrupted data space +𝒳
back to original data space

–Mapping 𝜙' 4𝒳 = 𝒳
– 𝜙' will be a neural network with parameters 𝑤

• Loss: 

L =
1
𝑁
1
!

𝑥! − 𝜙"(𝑥! + 𝜖!)

33

Perturbation, e.g. Gaussian noise



Denoising Autoencoders Examples 34

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Denoising Autoencoders Examples 35

Fleuret, Deep Learning Course

• Autoencoder learns 
the average behavior

• What if we care about 
these variations?

• Can we add a notion of 
variation in the 
autoencoder?

https://fleuret.org/dlc/


Autoencoder 36
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Variational Autoencoder 37

*

⋆

*
x



Variational Autoencoder 38

*

⋆

Draw sample*
x



Latent Variable Models 39

• Observed random variable 𝑥 depends on unobserved 
latent random variable 𝑧

• Joint probability: 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)

• 𝑝(𝑥|𝑧) is stochastic generation process from 𝑧 → 𝑥

𝑧 𝑥



From Deterministic to Probabilistic Autoencoder 40

• Autoencoding

𝑥 → 𝑞 𝑧 𝑥 	
)*+,-.

	 𝑧	 → 𝑝(𝑥|𝑧)

– Encoder: Learn what latents can produced data:  𝑞(𝑧|𝑥)
– Decoder: Learn what data is produced by latent:  𝑝(𝑥|𝑧)

• Probabilistic relationship between data and latents

𝑥, 𝑧	~	𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑧)



Variational Autoencoder

• Close-by points must decode to similar images

41

Image credit: L. Heinrich



Encoding 42

• Typical encoder maps input 𝑥 to “average” point in latent space

𝑓 𝑥 = 𝜇(𝑥)



• A VAE Encoder has two outputs: mean & variance function 

𝑓" 𝑥 = {𝜇" 𝑥 , 𝜎" 𝑥 }

• What is the probability of a point in latent space?

𝑝" 𝑧 𝑥 = 𝑁 𝑧 𝜇" 𝑥 , 𝜎" 𝑥 )

• How do we draw a sample in latent space?

𝑧 = 𝜎" 𝑥 ∗ 𝜖 + 𝜇" 𝑥 𝜖~𝑁(0, 𝐼)

Encoding 43

Density

𝜓 are parameters of the NN

Re-parameterization trick



• A VAE Encoder has two outputs: mean & variance function 

𝑓" 𝑥 = {𝜇" 𝑥 , 𝜎" 𝑥 }

• What is the probability of a point in latent space?
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Gaussian Density

𝜓 are parameters of the NN

Re-parameterization trick

Could choose different density
Gaussian is easiest



Encoding 45

Gaussian Density

𝜓 are parameters of the NN

Re-parameterization trick

• A VAE Encoder has two outputs: mean & variance function 

𝑓" 𝑥 = {𝜇" 𝑥 , 𝜎" 𝑥 }

• What is the probability of a point in latent space?

𝑝" 𝑧 𝑥 = 𝑁 𝑧 𝜇" 𝑥 , 𝜎" 𝑥 )

• How do we draw a sample in latent space?

𝑧 = 𝜎" 𝑥 ∗ 𝜖 + 𝜇" 𝑥 𝜖~𝑁(0, 𝐼)

Could choose different density
Gaussian is easiest



46

Kingma, Welling, 1312.6114
Rezende, Mohamed, Wierstra, 1401.4082

𝜖
~𝒩 0,1
𝜖

𝑧~𝑝&(𝑧|𝑥)

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082


Decoding 47

• Same as autoencoder
𝑔# 𝑧 ≡ 𝜇# 𝑧

• Likelihood of an observation 𝑥
𝑝# 𝑥 𝑧 = 𝑁 𝑥 𝜇# 𝑧 , 𝐼)

𝜃 are parameters of the NN

Gaussian Density



Decoding 48

• Same as autoencoder
𝑔# 𝑧 ≡ 𝜇# 𝑧

• Likelihood of an observation 𝑥
𝑝# 𝑥 𝑧 = 𝑁 𝑥 𝜇# 𝑧 , 𝐼)

𝜃 are parameters of the NN

• “Reconstruction Loss”: Maximum likelihood

𝐿()*+ = 𝔼,~.(,|1) log 𝑝 𝑥 𝑧 ≈
1
𝑁

/
,(~.(,|1)

log𝑁 𝑥	 𝑔3 𝑧4 , 𝐼)



Decoding 49

• Same as autoencoder
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Decoding 50

• Same as autoencoder
𝑔# 𝑧 ≡ 𝜇# 𝑧

• Likelihood of an observation 𝑥
𝑝# 𝑥 𝑧 = 𝑁 𝑥 𝜇# 𝑧 , 𝐼)

𝜃 are parameters of the NN

• “Reconstruction Loss”: Maximum likelihood

𝐿()*+ = 𝔼,~.(,|1) log 𝑝 𝑥 𝑧 ≈
1
𝑁

/
,(~.(,|1)

log𝑁 𝑥	 𝑔3 𝑧4 , 𝐼)−
1
𝑁 /
,(~.(,|1)

𝑥 − 𝑔3 𝑧4
5
	

Same as the autoencoder loss



Variational Autoencoder Training Loss

• How do we make sure system doesn’t collapse to an 
autoencoder (i.e. VAE encoder only predicts mean)?
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Variational Autoencoder Training Loss

• Use prior 𝑝 𝑧 for the latent space distribution, 
need to ensure the encoder is consistent with prior

52

• How do we make sure system doesn’t collapse to an 
autoencoder (i.e. VAE encoder only predicts mean)?



Variational Autoencoder Training Loss 53

• Constrain difference between distributions with 
Kullback–Leibler divergence

𝐷!" 𝑞 𝑧 𝑥 𝑝 𝑧 = 𝔼# 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

= -𝑞 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

	𝑑𝑧

– 𝐷67[𝑞|𝑝] ≥ 0   and is only 0 when 𝑞 = 𝑝



Variational Autoencoder Training Loss 54

• Constrain difference between distributions with 
Kullback–Leibler divergence

𝐷!" 𝑞 𝑧 𝑥 𝑝 𝑧 = 𝔼# 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

= -𝑞 𝑧 𝑥 log
𝑞 𝑧 𝑥
𝑝 𝑧

	𝑑𝑧

– 𝐷67[𝑞|𝑝] ≥ 0   and is only 0 when 𝑞 = 𝑝

• VAE full objective

max
3,9

𝐿 𝜃, 𝜓 = max
3,9

𝔼.) 𝑧 𝑥 log 𝑝3(𝑥|𝑧) − 𝐷67[𝑞9 𝑧 𝑥 |𝑝(𝑧)]

Reconstruction Loss Regularization of Encoder



Examples 55

Higgins et al., 2017

https://fleuret.org/dlc/materials/dlc-slides-7-4-VAE.pdf


Comparing Latent Spaces 56

Autoencoder Variational Autoencoder

Data: MNIST data set of hand-written digits



Examples 57

Slide credit: G. Louppe

https://glouppe.github.io/info8010-deep-learning/?p=lecture7.md


What have we learned?

• In generative modeling, 
want to learn the lower dimensional degrees of 
freedom that describe the features of the data

• “Degrees of freedom” are modeled with a latent 
distribution (kept simple for convenience) and 
complex neural network mappings

• Need to think about probabilistic systems

• Design loss around this probabilistic model
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The Zoo of Generative Models… 59

Image credit: Lilian Weng

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Generative Models in Physics 60

• Often studied for fast approximate simulation, 
simulation-based inference, optimization, 
anomaly detection, …
– See talks by G. Kasieczka, D. Shih, B. Nevin, A. Edelen

1801.090702005.05334

https://indico.cern.ch/event/1299889/timetable/?view=standard_inline_minutes
https://indico.cern.ch/event/1299889/timetable/?view=standard_inline_minutes
https://indico.cern.ch/event/1299889/timetable/?view=standard_inline_minutes
https://indico.cern.ch/event/1299889/timetable/?view=standard_inline_minutes
https://arxiv.org/abs/1801.09070
https://arxiv.org/abs/2005.05334


Summary

• Deep neural networks are an extremely 
powerful class of models

• We can express our inductive bias about a 
system in terms of model design, and can be 
adapted to a many types of data

• Even beyond classification and regression, deep 
neural networks allow powerful unsupervised 
learning and Generative modeling!
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