
Simulation &  
Generative Models

Gregor Kasieczka

Email: gregor.kasieczka@uni-hamburg.de

Twitter/X: @GregorKasieczka 

COFI Winter School 2023

http://xkcd.com
mailto:gregor.kasieczka@uni-hamburg.de
https://twitter.com/GregorKasieczka










6



7



8

Have: input examples

(collision events,

detector readouts, …)

Want: more data 


Specifically: new data similar to 
the input, but not exact copies


How to encode in neural net?


Uses:

• Detector Simulation

• In-situ background estimation

• Surrogate models

• …


Motivation
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1. Common  
architectures* 
-> GANs, VAEs, NF today 
-> Diffusion & CNF tomorrow

2. Physics 
applications

3. Quality 
metrics

*excluding transformers

Overview



Generative Adversarial Networks



14
06

.2
66

1 
lili

an
w

en
g.

gi
th

ub
.io

Generative Adversarial Networks

Maps random noise to 
realistic examples

Provides feedback on 
quality of examples

Generative Adversarial 
Networks (GANs) 
consist of 2 networks



Generative Adversarial Networks

Training objective: 
Binary cross entropy

True examples Fake examples
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Generative Adversarial Networks

Training objective: 
Binary cross entropy

Maximise for 
discriminator
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Generative Adversarial Networks

Training objective: 
Binary cross entropy Minimise for generator
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Generative Adversarial Networks

At (Nash) equilibrium:  
Generator produces realistic examples 
Discriminator is maximally confused

Training objective: 
Binary cross entropy
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Generative Adversarial Networks

For generation: 
Sample from Generator 
Discard Discriminator

Training objective: 
Binary cross entropy
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Architecture:


• Low complexity, fast and adaptable 

Learning:


• Unstable training 


• Matching of generator/discriminator 
(vanishing gradients)


• Mode collapse


• Loss function not interpretable


Maturity:


• Well established,  
many variants and extensions


Comments on GANs
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Mode collapse



Wasserstein GAN
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• Standard GANs minimise Jensen-Shannon  
divergence of generator output and true data


• Not best measure, e.g. for non-overlapping distributions


• Replace with Wasserstein / Earth-Mover-Distance 



Wasserstein GAN
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Critic

C(x)

GAN loss:

Wasserstein GAN  
loss*:

* Some mathematics 
involved from earth 
mover distance to here

Requires bounded Lipschitz norm, 
e.g. via term in loss



Wasserstein GAN

17
04

.0
00

28

Critic

C(x)

GAN loss:

Wasserstein GAN  
loss:

Improves training stability and 
sample quality (e.g. mode collapse)



Variational Autoencoders
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Autoencoder

Two networks 
Encoder: data → latent space

Decoder: latent space → data

<latexit sha1_base64="xpWGGCB8UMNYuYhQw+sjDuO8MJc=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh5l7X6fb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHb02N2g==</latexit>

f(x)
<latexit sha1_base64="Byif/cWtH5QoRUXoVy/lKlOAX8g=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBCSS9iVoB6DXjxGMA9IQpid9CZDZmeXmVkxLPkILx4U8er3ePNvnCR70MSChqKqm+4uPxZcG9f9dtbWNza3tnM7+d29/YPDwtFxU0eJYthgkYhU26caBZfYMNwIbMcKaegLbPnj25nfekSleSQfzCTGXkiHkgecUWOl1rAUlJ7K5X6h6FbcOcgq8TJShAz1fuGrO4hYEqI0TFCtO54bm15KleFM4DTfTTTGlI3pEDuWShqi7qXzc6fk3CoDEkTKljRkrv6eSGmo9ST0bWdIzUgvezPxP6+TmOC6l3IZJwYlWywKEkFMRGa/kwFXyIyYWEKZ4vZWwkZUUWZsQnkbgrf88ippXlS8y0r1vlqs3WRx5OAUzqAEHlxBDe6gDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP+WGOsA==</latexit>

g(f(x))
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Autoencoder

Two networks 
Encoder: data → latent space

Decoder: latent space → data

Training objective: 
Minimise input/output difference

<latexit sha1_base64="obOE4SYMjo8llTEChlH5RTMyoXE=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHShSUpRd0IRTcuXFSwD2hjmUwn7dDJJMxMpCHUX3HjQhG3fog7/8Zpm4W2HrhwOOde7r3HixiVyra/jZXVtfWNzdxWfntnd2/fPDhsyjAWmDRwyELR9pAkjHLSUFQx0o4EQYHHSMsbXU/91iMRkob8XiURcQM04NSnGCkt9czCLbyE1hieQt8aWONSqfRQ6ZlFu2zPAJeJk5EiyFDvmV/dfojjgHCFGZKy49iRclMkFMWMTPLdWJII4REakI6mHAVEuuns+Ak80Uof+qHQxRWcqb8nUhRImQSe7gyQGspFbyr+53Vi5V+4KeVRrAjH80V+zKAK4TQJ2KeCYMUSTRAWVN8K8RAJhJXOK69DcBZfXibNStk5K1fvqsXaVRZHDhyBY2ABB5yDGrgBddAAGCTgGbyCN+PJeDHejY9564qRzRTAHxifPy79keg=</latexit>

L = (x� f(g(x)))2

EncoderDecoder

<latexit sha1_base64="xpWGGCB8UMNYuYhQw+sjDuO8MJc=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh5l7X6fb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHb02N2g==</latexit>

f(x)
<latexit sha1_base64="Byif/cWtH5QoRUXoVy/lKlOAX8g=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBCSS9iVoB6DXjxGMA9IQpid9CZDZmeXmVkxLPkILx4U8er3ePNvnCR70MSChqKqm+4uPxZcG9f9dtbWNza3tnM7+d29/YPDwtFxU0eJYthgkYhU26caBZfYMNwIbMcKaegLbPnj25nfekSleSQfzCTGXkiHkgecUWOl1rAUlJ7K5X6h6FbcOcgq8TJShAz1fuGrO4hYEqI0TFCtO54bm15KleFM4DTfTTTGlI3pEDuWShqi7qXzc6fk3CoDEkTKljRkrv6eSGmo9ST0bWdIzUgvezPxP6+TmOC6l3IZJwYlWywKEkFMRGa/kwFXyIyYWEKZ4vZWwkZUUWZsQnkbgrf88ippXlS8y0r1vlqs3WRx5OAUzqAEHlxBDe6gDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP+WGOsA==</latexit>

g(f(x))



Autoencoder

Two networks 
Encoder: data → latent space

Decoder: latent space → data

Training objective: 
Minimise input/output difference

<latexit sha1_base64="obOE4SYMjo8llTEChlH5RTMyoXE=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHShSUpRd0IRTcuXFSwD2hjmUwn7dDJJMxMpCHUX3HjQhG3fog7/8Zpm4W2HrhwOOde7r3HixiVyra/jZXVtfWNzdxWfntnd2/fPDhsyjAWmDRwyELR9pAkjHLSUFQx0o4EQYHHSMsbXU/91iMRkob8XiURcQM04NSnGCkt9czCLbyE1hieQt8aWONSqfRQ6ZlFu2zPAJeJk5EiyFDvmV/dfojjgHCFGZKy49iRclMkFMWMTPLdWJII4REakI6mHAVEuuns+Ak80Uof+qHQxRWcqb8nUhRImQSe7gyQGspFbyr+53Vi5V+4KeVRrAjH80V+zKAK4TQJ2KeCYMUSTRAWVN8K8RAJhJXOK69DcBZfXibNStk5K1fvqsXaVRZHDhyBY2ABB5yDGrgBddAAGCTgGbyCN+PJeDHejY9564qRzRTAHxifPy79keg=</latexit>

L = (x� f(g(x)))2

EncoderDecoder

Uses: 
Dimension reduction

Denoising 

Anomaly detection

Generation? 

<latexit sha1_base64="xpWGGCB8UMNYuYhQw+sjDuO8MJc=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh5l7X6fb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHb02N2g==</latexit>

f(x)
<latexit sha1_base64="Byif/cWtH5QoRUXoVy/lKlOAX8g=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBCSS9iVoB6DXjxGMA9IQpid9CZDZmeXmVkxLPkILx4U8er3ePNvnCR70MSChqKqm+4uPxZcG9f9dtbWNza3tnM7+d29/YPDwtFxU0eJYthgkYhU26caBZfYMNwIbMcKaegLbPnj25nfekSleSQfzCTGXkiHkgecUWOl1rAUlJ7K5X6h6FbcOcgq8TJShAz1fuGrO4hYEqI0TFCtO54bm15KleFM4DTfTTTGlI3pEDuWShqi7qXzc6fk3CoDEkTKljRkrv6eSGmo9ST0bWdIzUgvezPxP6+TmOC6l3IZJwYlWywKEkFMRGa/kwFXyIyYWEKZ4vZWwkZUUWZsQnkbgrf88ippXlS8y0r1vlqs3WRx5OAUzqAEHlxBDe6gDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP+WGOsA==</latexit>

g(f(x))
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Variational Autoencoder

Variational Autoencoder (VAE):

Split latent space


<latexit sha1_base64="JWVediLW7cbTRw6PQTQY2dhh3Sw=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxCC1JmpKgboejGZQX7gM5QMmmmDU0yQ5IR61D8FTcuFHHrf7jzb0zbWWjrgQuHc+7l3nuCmFGlHefbyi0tr6yu5dcLG5tb2zv27l5TRYnEpIEjFsl2gBRhVJCGppqRdiwJ4gEjrWB4PfFb90QqGok7PYqJz1Ff0JBipI3UtQ/C0kMZXsKSx5MT6Cna56jctYtOxZkCLhI3I0WQod61v7xehBNOhMYMKdVxnVj7KZKaYkbGBS9RJEZ4iPqkY6hAnCg/nV4/hsdG6cEwkqaEhlP190SKuFIjHphOjvRAzXsT8T+vk+jwwk+piBNNBJ4tChMGdQQnUcAelQRrNjIEYUnNrRAPkERYm8AKJgR3/uVF0jytuGeV6m21WLvK4siDQ3AESsAF56AGbkAdNAAGj+AZvII368l6sd6tj1lrzspm9sEfWJ8/pQuTcA==</latexit>

f(x) = (µ,�)
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Variational Autoencoder

Variational Autoencoder (VAE):

Split latent space

Sample before decoder


<latexit sha1_base64="JWVediLW7cbTRw6PQTQY2dhh3Sw=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxCC1JmpKgboejGZQX7gM5QMmmmDU0yQ5IR61D8FTcuFHHrf7jzb0zbWWjrgQuHc+7l3nuCmFGlHefbyi0tr6yu5dcLG5tb2zv27l5TRYnEpIEjFsl2gBRhVJCGppqRdiwJ4gEjrWB4PfFb90QqGok7PYqJz1Ff0JBipI3UtQ/C0kMZXsKSx5MT6Cna56jctYtOxZkCLhI3I0WQod61v7xehBNOhMYMKdVxnVj7KZKaYkbGBS9RJEZ4iPqkY6hAnCg/nV4/hsdG6cEwkqaEhlP190SKuFIjHphOjvRAzXsT8T+vk+jwwk+piBNNBJ4tChMGdQQnUcAelQRrNjIEYUnNrRAPkERYm8AKJgR3/uVF0jytuGeV6m21WLvK4siDQ3AESsAF56AGbkAdNAAGj+AZvII368l6sd6tj1lrzspm9sEfWJ8/pQuTcA==</latexit>

f(x) = (µ,�)

<latexit sha1_base64="hXZ6vFbW8aFAFzxS6gPkPHiC9EY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRaxXsquFPUiFL14rGA/pC0lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2Fmnh9xpo3rfjuZpeWV1bXsem5jc2t7J7+7V9dhrAitkZCHquljTTmTtGaY4bQZKYqFz2nDH15P/MYDVZqF8s6MItoRuC9ZwAg2Vrp/PEaXqF98OunmC27JnQItEi8lBUhR7ea/2r2QxIJKQzjWuuW5kekkWBlGOB3n2rGmESZD3KctSyUWVHeS6cFjdGSVHgpCZUsaNFV/TyRYaD0Svu0U2Az0vDcR//NasQkuOgmTUWyoJLNFQcyRCdHke9RjihLDR5Zgopi9FZEBVpgYm1HOhuDNv7xI6qcl76xUvi0XKldpHFk4gEMoggfnUIEbqEINCAh4hld4c5Tz4rw7H7PWjJPO7MMfOJ8/4lSPKw==</latexit>

x0 = g(z)

<latexit sha1_base64="D4pI1Q09Gva3h/ci9qGwF0WbDzE=">AAACC3icbVDLSgNBEJyNrxhfUY9ehgQhgoRdCepFCHrQYwTzgGwIvZNJMmRmdpmZFeKSuxd/xYsHRbz6A978GyePgyYWNBRV3XR3BRFn2rjut5NaWl5ZXUuvZzY2t7Z3srt7NR3GitAqCXmoGgFoypmkVcMMp41IURABp/VgcDX26/dUaRbKOzOMaEtAT7IuI2Cs1M7mHvAF9gWYvhLJNcRaM5Cjgi/iY+xr1hNw1M7m3aI7AV4k3ozk0QyVdvbL74QkFlQawkHrpudGppWAMoxwOsr4saYRkAH0aNNSCYLqVjL5ZYQPrdLB3VDZkgZP1N8TCQithyKwneOr9bw3Fv/zmrHpnrcSJqPYUEmmi7oxxybE42BwhylKDB9aAkQxeysmfVBAjI0vY0Pw5l9eJLWTondaLN2W8uXLWRxpdIByqIA8dIbK6AZVUBUR9Iie0St6c56cF+fd+Zi2ppzZzD76A+fzB/PXml8=</latexit>

z = Gaussian(µ,�)
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Variational Autoencoder

Variational Autoencoder (VAE):

Split latent space

Sample before decoder

Penalty so mean/std are close to unit Gaussian


<latexit sha1_base64="JWVediLW7cbTRw6PQTQY2dhh3Sw=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxCC1JmpKgboejGZQX7gM5QMmmmDU0yQ5IR61D8FTcuFHHrf7jzb0zbWWjrgQuHc+7l3nuCmFGlHefbyi0tr6yu5dcLG5tb2zv27l5TRYnEpIEjFsl2gBRhVJCGppqRdiwJ4gEjrWB4PfFb90QqGok7PYqJz1Ff0JBipI3UtQ/C0kMZXsKSx5MT6Cna56jctYtOxZkCLhI3I0WQod61v7xehBNOhMYMKdVxnVj7KZKaYkbGBS9RJEZ4iPqkY6hAnCg/nV4/hsdG6cEwkqaEhlP190SKuFIjHphOjvRAzXsT8T+vk+jwwk+piBNNBJ4tChMGdQQnUcAelQRrNjIEYUnNrRAPkERYm8AKJgR3/uVF0jytuGeV6m21WLvK4siDQ3AESsAF56AGbkAdNAAGj+AZvII368l6sd6tj1lrzspm9sEfWJ8/pQuTcA==</latexit>

f(x) = (µ,�)
<latexit sha1_base64="D4pI1Q09Gva3h/ci9qGwF0WbDzE=">AAACC3icbVDLSgNBEJyNrxhfUY9ehgQhgoRdCepFCHrQYwTzgGwIvZNJMmRmdpmZFeKSuxd/xYsHRbz6A978GyePgyYWNBRV3XR3BRFn2rjut5NaWl5ZXUuvZzY2t7Z3srt7NR3GitAqCXmoGgFoypmkVcMMp41IURABp/VgcDX26/dUaRbKOzOMaEtAT7IuI2Cs1M7mHvAF9gWYvhLJNcRaM5Cjgi/iY+xr1hNw1M7m3aI7AV4k3ozk0QyVdvbL74QkFlQawkHrpudGppWAMoxwOsr4saYRkAH0aNNSCYLqVjL5ZYQPrdLB3VDZkgZP1N8TCQithyKwneOr9bw3Fv/zmrHpnrcSJqPYUEmmi7oxxybE42BwhylKDB9aAkQxeysmfVBAjI0vY0Pw5l9eJLWTondaLN2W8uXLWRxpdIByqIA8dIbK6AZVUBUR9Iie0St6c56cF+fd+Zi2ppzZzD76A+fzB/PXml8=</latexit>

z = Gaussian(µ,�)
<latexit sha1_base64="hXZ6vFbW8aFAFzxS6gPkPHiC9EY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRaxXsquFPUiFL14rGA/pC0lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2Fmnh9xpo3rfjuZpeWV1bXsem5jc2t7J7+7V9dhrAitkZCHquljTTmTtGaY4bQZKYqFz2nDH15P/MYDVZqF8s6MItoRuC9ZwAg2Vrp/PEaXqF98OunmC27JnQItEi8lBUhR7ea/2r2QxIJKQzjWuuW5kekkWBlGOB3n2rGmESZD3KctSyUWVHeS6cFjdGSVHgpCZUsaNFV/TyRYaD0Svu0U2Az0vDcR//NasQkuOgmTUWyoJLNFQcyRCdHke9RjihLDR5Zgopi9FZEBVpgYm1HOhuDNv7xI6qcl76xUvi0XKldpHFk4gEMoggfnUIEbqEINCAh4hld4c5Tz4rw7H7PWjJPO7MMfOJ8/4lSPKw==</latexit>

x0 = g(z)
<latexit sha1_base64="Wu2woahU1yaPP09xdvYgY20VGpk=">AAACH3icbVDLTgIxFO3gC/GFunTTSEyGGMgMIejGhOjGhQtM5JEAkk7pDA3tzKTtGHHCn7jxV9y40Bjjjr+xwCwUPEnT03Puze09TsioVJY1MVIrq2vrG+nNzNb2zu5edv+gIYNIYFLHAQtEy0GSMOqTuqKKkVYoCOIOI01neDX1mw9ESBr4d2oUki5Hnk9dipHSUi9buYEX0HyEBeiZT/n8fQmewo6kHkdzyiN9F2CHBZ451/P6afeyOatozQCXiZ2QHEhQ62W/O/0AR5z4CjMkZdu2QtWNkVAUMzLOdCJJQoSHyCNtTX3EiezGs/3G8EQrfegGQh9fwZn6uyNGXMoRd3QlR2ogF72p+J/XjpR73o2pH0aK+Hg+yI0YVAGchgX7VBCs2EgThAXVf4V4gATCSkea0SHYiysvk0apaFeK5dtyrnqZxJEGR+AYmMAGZ6AKrkEN1AEGz+AVvIMP48V4Mz6Nr3lpykh6DsEfGJMfP9udmQ==</latexit>

L = (x� g(z))2 + �2 + µ2 � log(�)� 1
(Calculate KL-divergence  
between Gaussians)
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VAE Example
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http://towardsdatascience.com


29

Loss terms

Latent space of MNIST VAE


<latexit sha1_base64="Wu2woahU1yaPP09xdvYgY20VGpk=">AAACH3icbVDLTgIxFO3gC/GFunTTSEyGGMgMIejGhOjGhQtM5JEAkk7pDA3tzKTtGHHCn7jxV9y40Bjjjr+xwCwUPEnT03Puze09TsioVJY1MVIrq2vrG+nNzNb2zu5edv+gIYNIYFLHAQtEy0GSMOqTuqKKkVYoCOIOI01neDX1mw9ESBr4d2oUki5Hnk9dipHSUi9buYEX0HyEBeiZT/n8fQmewo6kHkdzyiN9F2CHBZ451/P6afeyOatozQCXiZ2QHEhQ62W/O/0AR5z4CjMkZdu2QtWNkVAUMzLOdCJJQoSHyCNtTX3EiezGs/3G8EQrfegGQh9fwZn6uyNGXMoRd3QlR2ogF72p+J/XjpR73o2pH0aK+Hg+yI0YVAGchgX7VBCs2EgThAXVf4V4gATCSkea0SHYiysvk0apaFeK5dtyrnqZxJEGR+AYmMAGZ6AKrkEN1AEGz+AVvIMP48V4Mz6Nr3lpykh6DsEfGJMfP9udmQ==</latexit>

L = (x� g(z))2 + �2 + µ2 � log(�)� 1
<latexit sha1_base64="Wu2woahU1yaPP09xdvYgY20VGpk=">AAACH3icbVDLTgIxFO3gC/GFunTTSEyGGMgMIejGhOjGhQtM5JEAkk7pDA3tzKTtGHHCn7jxV9y40Bjjjr+xwCwUPEnT03Puze09TsioVJY1MVIrq2vrG+nNzNb2zu5edv+gIYNIYFLHAQtEy0GSMOqTuqKKkVYoCOIOI01neDX1mw9ESBr4d2oUki5Hnk9dipHSUi9buYEX0HyEBeiZT/n8fQmewo6kHkdzyiN9F2CHBZ451/P6afeyOatozQCXiZ2QHEhQ62W/O/0AR5z4CjMkZdu2QtWNkVAUMzLOdCJJQoSHyCNtTX3EiezGs/3G8EQrfegGQh9fwZn6uyNGXMoRd3QlR2ogF72p+J/XjpR73o2pH0aK+Hg+yI0YVAGchgX7VBCs2EgThAXVf4V4gATCSkea0SHYiysvk0apaFeK5dtyrnqZxJEGR+AYmMAGZ6AKrkEN1AEGz+AVvIMP48V4Mz6Nr3lpykh6DsEfGJMfP9udmQ==</latexit>

L = (x� g(z))2 + �2 + µ2 � log(�)� 1
Both terms
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Reconstruction Regularisation

http://towardsdatascience.com
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Loss terms

How did we get here?


<latexit sha1_base64="Wu2woahU1yaPP09xdvYgY20VGpk=">AAACH3icbVDLTgIxFO3gC/GFunTTSEyGGMgMIejGhOjGhQtM5JEAkk7pDA3tzKTtGHHCn7jxV9y40Bjjjr+xwCwUPEnT03Puze09TsioVJY1MVIrq2vrG+nNzNb2zu5edv+gIYNIYFLHAQtEy0GSMOqTuqKKkVYoCOIOI01neDX1mw9ESBr4d2oUki5Hnk9dipHSUi9buYEX0HyEBeiZT/n8fQmewo6kHkdzyiN9F2CHBZ451/P6afeyOatozQCXiZ2QHEhQ62W/O/0AR5z4CjMkZdu2QtWNkVAUMzLOdCJJQoSHyCNtTX3EiezGs/3G8EQrfegGQh9fwZn6uyNGXMoRd3QlR2ogF72p+J/XjpR73o2pH0aK+Hg+yI0YVAGchgX7VBCs2EgThAXVf4V4gATCSkea0SHYiysvk0apaFeK5dtyrnqZxJEGR+AYmMAGZ6AKrkEN1AEGz+AVvIMP48V4Mz6Nr3lpykh6DsEfGJMfP9udmQ==</latexit>

L = (x� g(z))2 + �2 + µ2 � log(�)� 1
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Loss terms

Sample from latent 
variables z


Produce data points x
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Loss terms

Sample from latent 
variables z


Produce data points x


To choose correct latent 
distribution given data, 
could use Bayes theorem:
 Difficult due to p(x)
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Conditional
 Prior


Evidence
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Loss terms
To choose correct latent 
distribution given data, 
could use Bayes theorem:


Instead, approximate with family of posterior 
distributions (variational inference): 


And find optimal approximation:


Still difficult due to (hidden) p(x) term!
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Loss terms
To choose correct latent 
distribution given data, 
could use Bayes theorem:


Instead, approximate with family of posterior 
distributions (variational inference): 


And find optimal approximation:


Still difficult due to p(x) term!
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<latexit sha1_base64="xnM7y4O/lu8kUP2MLC4PaFpvxEg="></latexit>

KL(q(x) || p(x)) = �
Z

dx q(x) log
p(x)

q(x)

Kullback-Leibler 
definition


<latexit sha1_base64="2LwORddJ5th0E5JQ6lKjvgx/9QU=">AAAB/XicbVDLSgMxFM34rPU1PnZugkVoQcqMFHUjFN24rGAf0A4lk2ba0EwmJBlpOxZ/xY0LRdz6H+78G9N2Ftp64HIP59xLbo4vGFXacb6tpeWV1bX1zEZ2c2t7Z9fe26+pKJaYVHHEItnwkSKMclLVVDPSEJKg0Gek7vdvJn79gUhFI36vh4J4IepyGlCMtJHa9qHID05HBXgFRX70OCiYNii07ZxTdKaAi8RNSQ6kqLTtr1YnwnFIuMYMKdV0HaG9BElNMSPjbCtWRCDcR13SNJSjkCgvmV4/hidG6cAgkqa4hlP190aCQqWGoW8mQ6R7at6biP95zVgHl15CuYg14Xj2UBAzqCM4iQJ2qCRYs6EhCEtqboW4hyTC2gSWNSG4819eJLWzonteLN2VcuXrNI4MOALHIA9ccAHK4BZUQBVgMALP4BW8WU/Wi/VufcxGl6x05wD8gfX5A5Bmk2A=</latexit>

p(x, z) = p(z|x)p(x)

Reminder
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Loss terms

Introduce


Rewrite


As KL is >=0, ELBO is a lower 
limit for p(X) 
ELBO:  Evidence Lower Bound
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Loss terms

Rewrite for samples, using neural 
networks:

Reconstruction term Regularisation term

Maximise
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<latexit sha1_base64="Wu2woahU1yaPP09xdvYgY20VGpk=">AAACH3icbVDLTgIxFO3gC/GFunTTSEyGGMgMIejGhOjGhQtM5JEAkk7pDA3tzKTtGHHCn7jxV9y40Bjjjr+xwCwUPEnT03Puze09TsioVJY1MVIrq2vrG+nNzNb2zu5edv+gIYNIYFLHAQtEy0GSMOqTuqKKkVYoCOIOI01neDX1mw9ESBr4d2oUki5Hnk9dipHSUi9buYEX0HyEBeiZT/n8fQmewo6kHkdzyiN9F2CHBZ451/P6afeyOatozQCXiZ2QHEhQ62W/O/0AR5z4CjMkZdu2QtWNkVAUMzLOdCJJQoSHyCNtTX3EiezGs/3G8EQrfegGQh9fwZn6uyNGXMoRd3QlR2ogF72p+J/XjpR73o2pH0aK+Hg+yI0YVAGchgX7VBCs2EgThAXVf4V4gATCSkea0SHYiysvk0apaFeK5dtyrnqZxJEGR+AYmMAGZ6AKrkEN1AEGz+AVvIMP48V4Mz6Nr3lpykh6DsEfGJMfP9udmQ==</latexit>

L = (x� g(z))2 + �2 + µ2 � log(�)� 1

Assume normal 
distribution

Difference between normal and 
standard normal
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Loss terms

Rewrite for samples, using neural 
networks:

Reconstruction term Regularisation term

Maximise
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L = (x� g(z))2 + �2 + µ2 � log(�)� 1

Assume normal 
distribution

Difference between normal and 
standard normal



Architecture:


• Low complexity, fast and adaptable


• Target: Maximise lower bound on likelihood 

Learning:


• Stable training 


• Average prediction → blurrier output


• Interpretable latent space 

Maturity:


• Well established,  
many variants and extensions


Comments on VAEs
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VAE

DCGAN
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Trajectory Displacement Information
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In this paper, we introduce a method for e�ciently generating jets in the field of High Energy
Physics. Our model is designed to generate ten di↵erent types of jets, expanding the versatility of jet
generation techniques. Beyond the kinematic features of the jet constituents, our model also excels in
generating informative features that provide insight into the types of jet constituents, such as features
that indicate if a constituent is an electron or a photon, o↵ering a more comprehensive understanding
of the generated jets. Furthermore, our model incorporates valuable impact parameter information,
enhancing its potential utility in high-energy physics research.

I. INTRODUCTION

Recently there has been considerable interest and
activity in generative modeling for jet constituents.
While showering and hadronization with standard
programs such as Pythia and Herwig is not a ma-
jor computational bottleneck at the LHC [1] what

about NLO generators?, generative modeling at
the jet constituent level still has potentially far-
reaching applications to anomaly detection [2] and
beyond. More generally it is also an interesting
laboratory for method development. In particular,
it has been fruitful and e↵ective to view the jet
constituents as a high-dimensional point cloud, and
to devise methods for point cloud generative mod-
els that incorporate permutation invariance. This
route has led to a number of state-of-the-art ap-
proaches, recently explored in [3–11], that combine
di↵erent permutation-invariant layers such as trans-
formers [12] and the EPiC layer [4], with state-of-
the-art generative modeling frameworks such as dif-
fusion [13–17] and flow-matching [18–21]. Successful
models developed for jet point clouds can also po-
tentially be adapted to other important point cloud
generative modeling problems such as for fast emu-
lation of GEANT4 calorimeter showers [9, 11].
So far this activity has focused almost exclusively

on the JetNet dataset of [22, 23]. Originally gener-
ated by [24], this dataset was subsequently adopted
in the works of [3] as a useful benchmark dataset
for jet generative modeling. However, the JetNet
dataset has a number of drawbacks that are readily
becoming apparent. First and foremost is the size –
since it is limited in size, there are not enough jets
in JetNet to facilitate the training of state-of-the-art
generative models as well as metrics such as the bi-
nary classifier metric which require additional train-
ing data. Second, JetNet uses small-radius (R = 0.4)
jets, despite saying otherwise in their papers. This

⇤
joschka.birk@uni-hamburg.de

FIG. 1: Schematic overview of the di↵erent jet con-
stituent features available in the JetClass dataset.
The horizontal line at the bottom represents the
beam axis and the circle on this line represents the
primary vertex (PV).

can lead to the problem that the decay products are
not fully contained in the jet, which can be seen e.g.
in distributions such as the jet mass for top quarks,
where there is a prominent secondary mass peak.
Finally, JetNet focuses solely on the kinematics of
the jet constituents, whereas there is a wealth of ad-
ditional information inside the jets that could also
be modeled, such as trajectory displacement, charge,
and particle ID as illustrated in Figure 1.

In this work, we introduce the first jet cloud
modeling on the much larger dataset of JetClass.
Other than demonstrating that existing techniques
scale well to this new dataset, we also tackle new
challenges introduced by the JetClass dataset, in-

Jet Constituents

Reduce computational bottleneck

Predict background from 
data

(Some) Simulation targets

Classification and 
Reconstruction tasks

Act as surrogate models
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can lead to the problem that the decay products are
not fully contained in the jet, which can be seen e.g.
in distributions such as the jet mass for top quarks,
where there is a prominent secondary mass peak.
Finally, JetNet focuses solely on the kinematics of
the jet constituents, whereas there is a wealth of ad-
ditional information inside the jets that could also
be modeled, such as trajectory displacement, charge,
and particle ID as illustrated in Figure 1.

In this work, we introduce the first jet cloud
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This is what we want to know

Simulation is crucial to connect 
experimental data with theory 

predictions



Generative Models
This happens in the experiment

This is what we want to know

Simulation is crucial to connect 
experimental data with theory 

predictions, but computationally 
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Generative Models
This happens in the experiment

This is what we want to know

Simulation is crucial to connect 
experimental data with theory 

predictions, but computationally 
very costly 

→Use generative models trained on 
simulation or data to augment 
simulations




Simulation targets

How to represent?




Simulation targets

How to represent?


Tabular data:  
Easy, insufficient for high-dimensions




Simulation targets

How to represent?


Tabular data


Fixed grid (voxels)




24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 18

Bounded Information Bottleneck Autoencoder

•Combines VAE and GAN approaches

•Final Post Processor network for fine tuning
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Slava Voloshynovskiy et al.: 
Information bottleneck through 
variational glasses: 1912.00830


Bounded Information 
Bottleneck AE

BIB-AE (GAN + VAE)

Generative results

(Transposed) Convolution
Latent Critic

Critic
Difference 
Critic

Latent Regularisation 
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24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 18

Bounded Information Bottleneck Autoencoder

•Combines VAE and GAN approaches

•Final Post Processor network for fine tuning
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Bounded Information Bottleneck Autoencoder

•Combines VAE and GAN approaches

•Final Post Processor network for fine tuning
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24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 2020

Cell Energy Spectrum
Photons Pions

Generative results
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(Normalising) Flows

Go with the…
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Generative models

In auto-encoders, the decoder learns to ‘undo’ 
the encoder


Can we make this exact?



Generative models

Learn a diffeomorphism between data 
and latent-space


 

Choose latent space, e.g. standard 
normal distribution (normalising flow!)

Same dimension as data!
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Generative models

Learn a diffeomorphism between data 
and latent-space


Bijective, invertable 

f-1 is not a learned inversion, but 
exact inverse by construction



Generative models

Learn a diffeomorphism between data 
and latent-space


Bijective, invertable 

Learn likelihood of data

Take into account Jacobian 
determinant to evaluate 
probability density

15
05

.0
57

70
, 1

90
8.

09
25

7



Generative models

2 challenges:

Invertible 

Easy-to-calculate Jacobean 


Take into account Jacobian 
determinant to evaluate 
probability density
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Coupling flows
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Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

Coupling layers: Not the most expressive,  
but useful for illustration/understanding
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volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

Simple (e.g. dense) 
neural networks


Coupling flows
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enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:
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Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
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✓
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◆
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✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:
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As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

Calculating Jacobian determinant
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enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:
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As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:
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As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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The Jacobian matrix for this transformation J1 reads:

J1 =

 
@z1
@x1

@z1
@x2

@x2
@x1

@x2
@x2

!
(18.25)

=

✓
diag(exp(s2(x2)))

@z1
@x2

0 1

◆
. (18.26)

By construction, we arrived at a triangular matrix. This shape greatly
simplifies the calculation of the determinant:

detJ1 =
Y

exp(s2(x2)) = exp
⇣X

s2(x2)
⌘

. (18.27)

Here, the sum goes over the output dimension of s2. In the same way, the
Jacobian determinant for the second half of the transformation f2 can be
calculated to be

detJ2 = exp
⇣X

s1(z1)
⌘

. (18.28)

Combining these shows the simple form of the overall determinant of the
forward pass:

|detJf | = exp
⇣X

s2(x2) +
X

s1(z1)
⌘

= exp
⇣X

s(x)
⌘
. (18.29)

For the last equality, we simplified the notation to highlight that the deter-
minant is the exponential function applied to a sum of network predictions
s. When multiple such blocks are applied in sequence, due to (18.21), we
just gain additional terms in that sum.

To summarize, by splitting the input features into two parts we no-
tice how a transformation block, that is invertible and allows calculat-
ing the change in probability volume, can be constructed from standard
(i.e., non-invertible networks) and basic mathematical operations. When
more expressiveness is needed, multiple such blocks can be applied subse-
quently. An alternative construction based on autoregressive transforma-
tions is sketched in Example 18.6.

Example 18.6. Autoregressive flows: A popular alternative build-
ing block for invertible networks are masked autoregressive flows
(MAFs) [210]. An autoregressive flow is a bijective function of a number
of inputs yt which for each output xt is conditioned on all preceding

with
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Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 260

260 Deep Learning for Physics Research

s2

z1 z1

t2 s1 t1

+භ

භ +

z

z2

exp

exp

s2

z1 z1

t2 s1 t1

-

-

z

z2

exp

exp

඲

඲

x

x1

x2

x

x1

x2 x2

x2

Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:
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◆
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As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:
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As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:
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As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:
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As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)
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For high-dimensional distributions we use the Euclidean squared distance
||f(x))||22. Also inserting the explicit form of the Jacobian determinant
(18.29) yields:

L = �Ex⇠pdata


�1

2
||f(x))||22 +

X
s(x)

�

Using the batch size k, the objective function to be minimized finally be-
comes

L =
1

k

kX

i=1

✓
1

2
||f(xi))||22 �

X
s(xi)

◆
. (18.36)

In this way, the network in the lower Figure 18.10 will generate new data x
from Gaussian distributed latent variables z which approximate pdata(x).
The precise form will be di↵erent for other implementations of normalizing
flows, but the underlying idea of building bijective mappings that allow
tracking the change in probability volume remains.

Example 18.7. Flows in lattice QCD: The theory of Quantum Chro-
modynamics (QCD) describes the so-called strong interaction of funda-
mental constituents of matter. Its coupling strength is inversely pro-
portional to the energy, leading to asymptotic freedom at high energies
and to strongly coupled theories at low energies. In this strong coupling
limit, the theory becomes non-perturbative, meaning that an expansion
in powers of the coupling strength will, in general, not converge. To
circumvent this problem, calculations are carried out on a discretized
spacetime lattice, often using Monte Carlo methods. However, these be-
come increasingly ine�cient in some phase space regions. Learning the
probability distribution of physical observables and sampling from it —
using generative models — is a promising alternative. A popular solu-
tion consists of training normalizing flow models for this problem. We
point to Ref. [211] for a hands-on pedagogical introduction of flows in
the context of lattice field theory.

A particularly interesting aspect is including symmetries of the un-
derlying theory in constructing the flow model. In Ref. [212], the au-
thors consider gauge transformations and show how the building blocks
of normalizing flows (the coupling layers) can be made equivariant under
certain symmetries — i.e., constructed in such a way that applying the
symmetry commutes with the coupling layer.

Training objective: Minimise negative 
log likelihood of data


Sample points from training data
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In this way, the network in the lower Figure 18.10 will generate new data x
from Gaussian distributed latent variables z which approximate pdata(x).
The precise form will be di↵erent for other implementations of normalizing
flows, but the underlying idea of building bijective mappings that allow
tracking the change in probability volume remains.

Example 18.7. Flows in lattice QCD: The theory of Quantum Chro-
modynamics (QCD) describes the so-called strong interaction of funda-
mental constituents of matter. Its coupling strength is inversely pro-
portional to the energy, leading to asymptotic freedom at high energies
and to strongly coupled theories at low energies. In this strong coupling
limit, the theory becomes non-perturbative, meaning that an expansion
in powers of the coupling strength will, in general, not converge. To
circumvent this problem, calculations are carried out on a discretized
spacetime lattice, often using Monte Carlo methods. However, these be-
come increasingly ine�cient in some phase space regions. Learning the
probability distribution of physical observables and sampling from it —
using generative models — is a promising alternative. A popular solu-
tion consists of training normalizing flow models for this problem. We
point to Ref. [211] for a hands-on pedagogical introduction of flows in
the context of lattice field theory.

A particularly interesting aspect is including symmetries of the un-
derlying theory in constructing the flow model. In Ref. [212], the au-
thors consider gauge transformations and show how the building blocks
of normalizing flows (the coupling layers) can be made equivariant under
certain symmetries — i.e., constructed in such a way that applying the
symmetry commutes with the coupling layer.

Training objective: Minimise negative 
log likelihood of data
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For high-dimensional distributions we use the Euclidean squared distance
||f(x))||22. Also inserting the explicit form of the Jacobian determinant
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In this way, the network in the lower Figure 18.10 will generate new data x
from Gaussian distributed latent variables z which approximate pdata(x).
The precise form will be di↵erent for other implementations of normalizing
flows, but the underlying idea of building bijective mappings that allow
tracking the change in probability volume remains.

Example 18.7. Flows in lattice QCD: The theory of Quantum Chro-
modynamics (QCD) describes the so-called strong interaction of funda-
mental constituents of matter. Its coupling strength is inversely pro-
portional to the energy, leading to asymptotic freedom at high energies
and to strongly coupled theories at low energies. In this strong coupling
limit, the theory becomes non-perturbative, meaning that an expansion
in powers of the coupling strength will, in general, not converge. To
circumvent this problem, calculations are carried out on a discretized
spacetime lattice, often using Monte Carlo methods. However, these be-
come increasingly ine�cient in some phase space regions. Learning the
probability distribution of physical observables and sampling from it —
using generative models — is a promising alternative. A popular solu-
tion consists of training normalizing flow models for this problem. We
point to Ref. [211] for a hands-on pedagogical introduction of flows in
the context of lattice field theory.

A particularly interesting aspect is including symmetries of the un-
derlying theory in constructing the flow model. In Ref. [212], the au-
thors consider gauge transformations and show how the building blocks
of normalizing flows (the coupling layers) can be made equivariant under
certain symmetries — i.e., constructed in such a way that applying the
symmetry commutes with the coupling layer.

Training objective: Minimise negative 
log likelihood of data
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Fig. 3. Coupling architecture. a) A single coupling flow described in
Equation (15). A coupling function h is applied to one part of the space,
while its parameters depend on the other part. b) Two subsequent multi-
scale flows in the generative direction. A flow is applied to a relatively low
dimensional vector z; its parameters no longer depend on the rest part
zaux. Then new dimensions are gradually introduced to the distribution.

Sometimes, however, the conditioner can be constant
(i.e., not depend on xB at all). This allows for the construc-
tion of a “multi-scale flow” Dinh et al. [2017] which gradually
introduces dimensions to the distribution in the generative
direction (Figure 3b). In the normalizing direction, the di-
mension reduces by half after each iteration step, such that
most of semantic information is retained. This reduces the
computational costs of transforming high dimensional dis-
tributions and can capture the multi-scale structure inherent
in certain kinds of data like natural images.

The question remains of how to partition x. This is
often done by splitting the dimensions in half [Dinh et al.,
2015], potentially after a random permutation. However,
more structured partitioning has also been explored and
is common practice, particularly when modelling images.
For instance, Dinh et al. [2017] used “masked” flows that
take alternating pixels or blocks of channels in the case
of an image in non-volume preserving flows (RealNVP).
In place of permutation Kingma and Dhariwal [2018] used
1 ⇥ 1 convolution (Glow). For the partition for the multi-
scale flow in the normalizing direction, Das et al. [2019]
suggested selecting features at which the Jacobian of the
flow has higher values for the propagated part.

3.4.2 Autoregressive Flows

Kingma et al. [2016] used autoregressive models as a form
of normalizing flow. These are non-linear generalizations of
multiplication by a triangular matrix (Section 3.2.2).

Let h(· ; ✓) : R ! R be a bijection parameterized by ✓.
Then an autoregressive model is a function g : RD

! RD ,
which outputs each entry of y = g(x) conditioned on the
previous entries of the input:

yt = h(xt;⇥t(x1:t�1)), (18)

where x1:t = (x1, . . . , xt). For t = 2, . . . , D we choose
arbitrary functions ⇥t(·) mapping Rt�1 to the set of all
parameters, and ⇥1 is a constant. The functions ⇥t(·) are
called conditioners.

The Jacobian matrix of the autoregressive transformation
g is triangular. Each output yt only depends on x1:t, and so
the determinant is just a product of its diagonal entries:

det (Dg) =
DY

t=1

@yt

@xt
. (19)

In practice, it’s possible to efficiently compute all the entries
of the direct flow (Equation (18)) in one pass using a single
network with appropriate masks [Germain et al., 2015].
This idea was used by Papamakarios et al. [2017] to create
masked autoregressive flows (MAF).

However, the computation of the inverse is more chal-
lenging. Given the inverse of h, the inverse of g can be found
with recursion: we have x1 = h

�1(y1;⇥1) and for any
t = 2, . . . , D, xt = h

�1(yt;⇥t(x1:t�1)). This computation is
inherently sequential which makes it difficult to implement
efficiently on modern hardware as it cannot be parallelized.

Note that the functional form for the autoregressive
model is very similar to that for the coupling flow. In both
cases a bijection h is used, which has as an input one part
of the space and which is parameterized conditioned on
the other part. We call this bijection a coupling function in
both cases. Note that Huang et al. [2018] used the name
“transformer” (which has nothing to do with transformers
in NLP).

Alternatively, Kingma et al. [2016] introduced the “in-
verse autoregressive flow” (IAF), which outputs each entry
of y conditioned the previous entries of y (with respect to
the fixed ordering). Formally,

yt = h(xt; ✓t(y1:t�1)). (20)

One can see that the functional form of the inverse autore-
gressive flow is the same as the form of the inverse of
the flow in Equation (18), hence the name. Computation
of the IAF is sequential and expensive, but the inverse of
IAF (which is a direct autoregressive flow) can be computed
relatively efficiently (Figure 4).

Fig. 4. Autoregressive flows. On the left, is the direct autoregressive
flow given in Equation (18). Each output depends on the current and
previous inputs and so this operation can be easily parallelized. On
the right, is the inverse autoregressive flow from Equation (20). Each
output depends on the current input and the previous outputs and so
computation is inherently sequential and cannot be parallelized.

In Section 2.2.1 we noted that papers typically model
flows in the “normalizing flow” direction (i.e., in terms of f
from data to the base density) to enable efficient evaluation
of the log-likelihood during training. In this context one can
think of IAF as a flow in the generative direction: i.e.in terms
of g from base density to data. Hence Papamakarios et al.

Alternative to coupling flows: 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Fig. 3. Coupling architecture. a) A single coupling flow described in
Equation (15). A coupling function h is applied to one part of the space,
while its parameters depend on the other part. b) Two subsequent multi-
scale flows in the generative direction. A flow is applied to a relatively low
dimensional vector z; its parameters no longer depend on the rest part
zaux. Then new dimensions are gradually introduced to the distribution.

Sometimes, however, the conditioner can be constant
(i.e., not depend on xB at all). This allows for the construc-
tion of a “multi-scale flow” Dinh et al. [2017] which gradually
introduces dimensions to the distribution in the generative
direction (Figure 3b). In the normalizing direction, the di-
mension reduces by half after each iteration step, such that
most of semantic information is retained. This reduces the
computational costs of transforming high dimensional dis-
tributions and can capture the multi-scale structure inherent
in certain kinds of data like natural images.

The question remains of how to partition x. This is
often done by splitting the dimensions in half [Dinh et al.,
2015], potentially after a random permutation. However,
more structured partitioning has also been explored and
is common practice, particularly when modelling images.
For instance, Dinh et al. [2017] used “masked” flows that
take alternating pixels or blocks of channels in the case
of an image in non-volume preserving flows (RealNVP).
In place of permutation Kingma and Dhariwal [2018] used
1 ⇥ 1 convolution (Glow). For the partition for the multi-
scale flow in the normalizing direction, Das et al. [2019]
suggested selecting features at which the Jacobian of the
flow has higher values for the propagated part.

3.4.2 Autoregressive Flows

Kingma et al. [2016] used autoregressive models as a form
of normalizing flow. These are non-linear generalizations of
multiplication by a triangular matrix (Section 3.2.2).

Let h(· ; ✓) : R ! R be a bijection parameterized by ✓.
Then an autoregressive model is a function g : RD

! RD ,
which outputs each entry of y = g(x) conditioned on the
previous entries of the input:

yt = h(xt;⇥t(x1:t�1)), (18)

where x1:t = (x1, . . . , xt). For t = 2, . . . , D we choose
arbitrary functions ⇥t(·) mapping Rt�1 to the set of all
parameters, and ⇥1 is a constant. The functions ⇥t(·) are
called conditioners.

The Jacobian matrix of the autoregressive transformation
g is triangular. Each output yt only depends on x1:t, and so
the determinant is just a product of its diagonal entries:

det (Dg) =
DY

t=1

@yt

@xt
. (19)

In practice, it’s possible to efficiently compute all the entries
of the direct flow (Equation (18)) in one pass using a single
network with appropriate masks [Germain et al., 2015].
This idea was used by Papamakarios et al. [2017] to create
masked autoregressive flows (MAF).

However, the computation of the inverse is more chal-
lenging. Given the inverse of h, the inverse of g can be found
with recursion: we have x1 = h

�1(y1;⇥1) and for any
t = 2, . . . , D, xt = h

�1(yt;⇥t(x1:t�1)). This computation is
inherently sequential which makes it difficult to implement
efficiently on modern hardware as it cannot be parallelized.

Note that the functional form for the autoregressive
model is very similar to that for the coupling flow. In both
cases a bijection h is used, which has as an input one part
of the space and which is parameterized conditioned on
the other part. We call this bijection a coupling function in
both cases. Note that Huang et al. [2018] used the name
“transformer” (which has nothing to do with transformers
in NLP).

Alternatively, Kingma et al. [2016] introduced the “in-
verse autoregressive flow” (IAF), which outputs each entry
of y conditioned the previous entries of y (with respect to
the fixed ordering). Formally,

yt = h(xt; ✓t(y1:t�1)). (20)

One can see that the functional form of the inverse autore-
gressive flow is the same as the form of the inverse of
the flow in Equation (18), hence the name. Computation
of the IAF is sequential and expensive, but the inverse of
IAF (which is a direct autoregressive flow) can be computed
relatively efficiently (Figure 4).

Fig. 4. Autoregressive flows. On the left, is the direct autoregressive
flow given in Equation (18). Each output depends on the current and
previous inputs and so this operation can be easily parallelized. On
the right, is the inverse autoregressive flow from Equation (20). Each
output depends on the current input and the previous outputs and so
computation is inherently sequential and cannot be parallelized.

In Section 2.2.1 we noted that papers typically model
flows in the “normalizing flow” direction (i.e., in terms of f
from data to the base density) to enable efficient evaluation
of the log-likelihood during training. In this context one can
think of IAF as a flow in the generative direction: i.e.in terms
of g from base density to data. Hence Papamakarios et al.
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Fig. 3. Coupling architecture. a) A single coupling flow described in
Equation (15). A coupling function h is applied to one part of the space,
while its parameters depend on the other part. b) Two subsequent multi-
scale flows in the generative direction. A flow is applied to a relatively low
dimensional vector z; its parameters no longer depend on the rest part
zaux. Then new dimensions are gradually introduced to the distribution.

Sometimes, however, the conditioner can be constant
(i.e., not depend on xB at all). This allows for the construc-
tion of a “multi-scale flow” Dinh et al. [2017] which gradually
introduces dimensions to the distribution in the generative
direction (Figure 3b). In the normalizing direction, the di-
mension reduces by half after each iteration step, such that
most of semantic information is retained. This reduces the
computational costs of transforming high dimensional dis-
tributions and can capture the multi-scale structure inherent
in certain kinds of data like natural images.

The question remains of how to partition x. This is
often done by splitting the dimensions in half [Dinh et al.,
2015], potentially after a random permutation. However,
more structured partitioning has also been explored and
is common practice, particularly when modelling images.
For instance, Dinh et al. [2017] used “masked” flows that
take alternating pixels or blocks of channels in the case
of an image in non-volume preserving flows (RealNVP).
In place of permutation Kingma and Dhariwal [2018] used
1 ⇥ 1 convolution (Glow). For the partition for the multi-
scale flow in the normalizing direction, Das et al. [2019]
suggested selecting features at which the Jacobian of the
flow has higher values for the propagated part.

3.4.2 Autoregressive Flows

Kingma et al. [2016] used autoregressive models as a form
of normalizing flow. These are non-linear generalizations of
multiplication by a triangular matrix (Section 3.2.2).

Let h(· ; ✓) : R ! R be a bijection parameterized by ✓.
Then an autoregressive model is a function g : RD

! RD ,
which outputs each entry of y = g(x) conditioned on the
previous entries of the input:

yt = h(xt;⇥t(x1:t�1)), (18)

where x1:t = (x1, . . . , xt). For t = 2, . . . , D we choose
arbitrary functions ⇥t(·) mapping Rt�1 to the set of all
parameters, and ⇥1 is a constant. The functions ⇥t(·) are
called conditioners.

The Jacobian matrix of the autoregressive transformation
g is triangular. Each output yt only depends on x1:t, and so
the determinant is just a product of its diagonal entries:

det (Dg) =
DY

t=1

@yt

@xt
. (19)

In practice, it’s possible to efficiently compute all the entries
of the direct flow (Equation (18)) in one pass using a single
network with appropriate masks [Germain et al., 2015].
This idea was used by Papamakarios et al. [2017] to create
masked autoregressive flows (MAF).

However, the computation of the inverse is more chal-
lenging. Given the inverse of h, the inverse of g can be found
with recursion: we have x1 = h

�1(y1;⇥1) and for any
t = 2, . . . , D, xt = h

�1(yt;⇥t(x1:t�1)). This computation is
inherently sequential which makes it difficult to implement
efficiently on modern hardware as it cannot be parallelized.

Note that the functional form for the autoregressive
model is very similar to that for the coupling flow. In both
cases a bijection h is used, which has as an input one part
of the space and which is parameterized conditioned on
the other part. We call this bijection a coupling function in
both cases. Note that Huang et al. [2018] used the name
“transformer” (which has nothing to do with transformers
in NLP).

Alternatively, Kingma et al. [2016] introduced the “in-
verse autoregressive flow” (IAF), which outputs each entry
of y conditioned the previous entries of y (with respect to
the fixed ordering). Formally,

yt = h(xt; ✓t(y1:t�1)). (20)

One can see that the functional form of the inverse autore-
gressive flow is the same as the form of the inverse of
the flow in Equation (18), hence the name. Computation
of the IAF is sequential and expensive, but the inverse of
IAF (which is a direct autoregressive flow) can be computed
relatively efficiently (Figure 4).

Fig. 4. Autoregressive flows. On the left, is the direct autoregressive
flow given in Equation (18). Each output depends on the current and
previous inputs and so this operation can be easily parallelized. On
the right, is the inverse autoregressive flow from Equation (20). Each
output depends on the current input and the previous outputs and so
computation is inherently sequential and cannot be parallelized.

In Section 2.2.1 we noted that papers typically model
flows in the “normalizing flow” direction (i.e., in terms of f
from data to the base density) to enable efficient evaluation
of the log-likelihood during training. In this context one can
think of IAF as a flow in the generative direction: i.e.in terms
of g from base density to data. Hence Papamakarios et al.
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Fig. 3. Coupling architecture. a) A single coupling flow described in
Equation (15). A coupling function h is applied to one part of the space,
while its parameters depend on the other part. b) Two subsequent multi-
scale flows in the generative direction. A flow is applied to a relatively low
dimensional vector z; its parameters no longer depend on the rest part
zaux. Then new dimensions are gradually introduced to the distribution.

Sometimes, however, the conditioner can be constant
(i.e., not depend on xB at all). This allows for the construc-
tion of a “multi-scale flow” Dinh et al. [2017] which gradually
introduces dimensions to the distribution in the generative
direction (Figure 3b). In the normalizing direction, the di-
mension reduces by half after each iteration step, such that
most of semantic information is retained. This reduces the
computational costs of transforming high dimensional dis-
tributions and can capture the multi-scale structure inherent
in certain kinds of data like natural images.

The question remains of how to partition x. This is
often done by splitting the dimensions in half [Dinh et al.,
2015], potentially after a random permutation. However,
more structured partitioning has also been explored and
is common practice, particularly when modelling images.
For instance, Dinh et al. [2017] used “masked” flows that
take alternating pixels or blocks of channels in the case
of an image in non-volume preserving flows (RealNVP).
In place of permutation Kingma and Dhariwal [2018] used
1 ⇥ 1 convolution (Glow). For the partition for the multi-
scale flow in the normalizing direction, Das et al. [2019]
suggested selecting features at which the Jacobian of the
flow has higher values for the propagated part.

3.4.2 Autoregressive Flows

Kingma et al. [2016] used autoregressive models as a form
of normalizing flow. These are non-linear generalizations of
multiplication by a triangular matrix (Section 3.2.2).

Let h(· ; ✓) : R ! R be a bijection parameterized by ✓.
Then an autoregressive model is a function g : RD

! RD ,
which outputs each entry of y = g(x) conditioned on the
previous entries of the input:

yt = h(xt;⇥t(x1:t�1)), (18)

where x1:t = (x1, . . . , xt). For t = 2, . . . , D we choose
arbitrary functions ⇥t(·) mapping Rt�1 to the set of all
parameters, and ⇥1 is a constant. The functions ⇥t(·) are
called conditioners.

The Jacobian matrix of the autoregressive transformation
g is triangular. Each output yt only depends on x1:t, and so
the determinant is just a product of its diagonal entries:

det (Dg) =
DY

t=1

@yt

@xt
. (19)

In practice, it’s possible to efficiently compute all the entries
of the direct flow (Equation (18)) in one pass using a single
network with appropriate masks [Germain et al., 2015].
This idea was used by Papamakarios et al. [2017] to create
masked autoregressive flows (MAF).

However, the computation of the inverse is more chal-
lenging. Given the inverse of h, the inverse of g can be found
with recursion: we have x1 = h

�1(y1;⇥1) and for any
t = 2, . . . , D, xt = h

�1(yt;⇥t(x1:t�1)). This computation is
inherently sequential which makes it difficult to implement
efficiently on modern hardware as it cannot be parallelized.

Note that the functional form for the autoregressive
model is very similar to that for the coupling flow. In both
cases a bijection h is used, which has as an input one part
of the space and which is parameterized conditioned on
the other part. We call this bijection a coupling function in
both cases. Note that Huang et al. [2018] used the name
“transformer” (which has nothing to do with transformers
in NLP).

Alternatively, Kingma et al. [2016] introduced the “in-
verse autoregressive flow” (IAF), which outputs each entry
of y conditioned the previous entries of y (with respect to
the fixed ordering). Formally,

yt = h(xt; ✓t(y1:t�1)). (20)

One can see that the functional form of the inverse autore-
gressive flow is the same as the form of the inverse of
the flow in Equation (18), hence the name. Computation
of the IAF is sequential and expensive, but the inverse of
IAF (which is a direct autoregressive flow) can be computed
relatively efficiently (Figure 4).

Fig. 4. Autoregressive flows. On the left, is the direct autoregressive
flow given in Equation (18). Each output depends on the current and
previous inputs and so this operation can be easily parallelized. On
the right, is the inverse autoregressive flow from Equation (20). Each
output depends on the current input and the previous outputs and so
computation is inherently sequential and cannot be parallelized.

In Section 2.2.1 we noted that papers typically model
flows in the “normalizing flow” direction (i.e., in terms of f
from data to the base density) to enable efficient evaluation
of the log-likelihood during training. In this context one can
think of IAF as a flow in the generative direction: i.e.in terms
of g from base density to data. Hence Papamakarios et al.
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Fig. 3. Coupling architecture. a) A single coupling flow described in
Equation (15). A coupling function h is applied to one part of the space,
while its parameters depend on the other part. b) Two subsequent multi-
scale flows in the generative direction. A flow is applied to a relatively low
dimensional vector z; its parameters no longer depend on the rest part
zaux. Then new dimensions are gradually introduced to the distribution.

Sometimes, however, the conditioner can be constant
(i.e., not depend on xB at all). This allows for the construc-
tion of a “multi-scale flow” Dinh et al. [2017] which gradually
introduces dimensions to the distribution in the generative
direction (Figure 3b). In the normalizing direction, the di-
mension reduces by half after each iteration step, such that
most of semantic information is retained. This reduces the
computational costs of transforming high dimensional dis-
tributions and can capture the multi-scale structure inherent
in certain kinds of data like natural images.

The question remains of how to partition x. This is
often done by splitting the dimensions in half [Dinh et al.,
2015], potentially after a random permutation. However,
more structured partitioning has also been explored and
is common practice, particularly when modelling images.
For instance, Dinh et al. [2017] used “masked” flows that
take alternating pixels or blocks of channels in the case
of an image in non-volume preserving flows (RealNVP).
In place of permutation Kingma and Dhariwal [2018] used
1 ⇥ 1 convolution (Glow). For the partition for the multi-
scale flow in the normalizing direction, Das et al. [2019]
suggested selecting features at which the Jacobian of the
flow has higher values for the propagated part.

3.4.2 Autoregressive Flows

Kingma et al. [2016] used autoregressive models as a form
of normalizing flow. These are non-linear generalizations of
multiplication by a triangular matrix (Section 3.2.2).

Let h(· ; ✓) : R ! R be a bijection parameterized by ✓.
Then an autoregressive model is a function g : RD

! RD ,
which outputs each entry of y = g(x) conditioned on the
previous entries of the input:

yt = h(xt;⇥t(x1:t�1)), (18)

where x1:t = (x1, . . . , xt). For t = 2, . . . , D we choose
arbitrary functions ⇥t(·) mapping Rt�1 to the set of all
parameters, and ⇥1 is a constant. The functions ⇥t(·) are
called conditioners.

The Jacobian matrix of the autoregressive transformation
g is triangular. Each output yt only depends on x1:t, and so
the determinant is just a product of its diagonal entries:

det (Dg) =
DY

t=1

@yt

@xt
. (19)

In practice, it’s possible to efficiently compute all the entries
of the direct flow (Equation (18)) in one pass using a single
network with appropriate masks [Germain et al., 2015].
This idea was used by Papamakarios et al. [2017] to create
masked autoregressive flows (MAF).

However, the computation of the inverse is more chal-
lenging. Given the inverse of h, the inverse of g can be found
with recursion: we have x1 = h

�1(y1;⇥1) and for any
t = 2, . . . , D, xt = h

�1(yt;⇥t(x1:t�1)). This computation is
inherently sequential which makes it difficult to implement
efficiently on modern hardware as it cannot be parallelized.

Note that the functional form for the autoregressive
model is very similar to that for the coupling flow. In both
cases a bijection h is used, which has as an input one part
of the space and which is parameterized conditioned on
the other part. We call this bijection a coupling function in
both cases. Note that Huang et al. [2018] used the name
“transformer” (which has nothing to do with transformers
in NLP).

Alternatively, Kingma et al. [2016] introduced the “in-
verse autoregressive flow” (IAF), which outputs each entry
of y conditioned the previous entries of y (with respect to
the fixed ordering). Formally,

yt = h(xt; ✓t(y1:t�1)). (20)

One can see that the functional form of the inverse autore-
gressive flow is the same as the form of the inverse of
the flow in Equation (18), hence the name. Computation
of the IAF is sequential and expensive, but the inverse of
IAF (which is a direct autoregressive flow) can be computed
relatively efficiently (Figure 4).

Fig. 4. Autoregressive flows. On the left, is the direct autoregressive
flow given in Equation (18). Each output depends on the current and
previous inputs and so this operation can be easily parallelized. On
the right, is the inverse autoregressive flow from Equation (20). Each
output depends on the current input and the previous outputs and so
computation is inherently sequential and cannot be parallelized.

In Section 2.2.1 we noted that papers typically model
flows in the “normalizing flow” direction (i.e., in terms of f
from data to the base density) to enable efficient evaluation
of the log-likelihood during training. In this context one can
think of IAF as a flow in the generative direction: i.e.in terms
of g from base density to data. Hence Papamakarios et al.
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Fig. 3. Coupling architecture. a) A single coupling flow described in
Equation (15). A coupling function h is applied to one part of the space,
while its parameters depend on the other part. b) Two subsequent multi-
scale flows in the generative direction. A flow is applied to a relatively low
dimensional vector z; its parameters no longer depend on the rest part
zaux. Then new dimensions are gradually introduced to the distribution.

Sometimes, however, the conditioner can be constant
(i.e., not depend on xB at all). This allows for the construc-
tion of a “multi-scale flow” Dinh et al. [2017] which gradually
introduces dimensions to the distribution in the generative
direction (Figure 3b). In the normalizing direction, the di-
mension reduces by half after each iteration step, such that
most of semantic information is retained. This reduces the
computational costs of transforming high dimensional dis-
tributions and can capture the multi-scale structure inherent
in certain kinds of data like natural images.

The question remains of how to partition x. This is
often done by splitting the dimensions in half [Dinh et al.,
2015], potentially after a random permutation. However,
more structured partitioning has also been explored and
is common practice, particularly when modelling images.
For instance, Dinh et al. [2017] used “masked” flows that
take alternating pixels or blocks of channels in the case
of an image in non-volume preserving flows (RealNVP).
In place of permutation Kingma and Dhariwal [2018] used
1 ⇥ 1 convolution (Glow). For the partition for the multi-
scale flow in the normalizing direction, Das et al. [2019]
suggested selecting features at which the Jacobian of the
flow has higher values for the propagated part.

3.4.2 Autoregressive Flows

Kingma et al. [2016] used autoregressive models as a form
of normalizing flow. These are non-linear generalizations of
multiplication by a triangular matrix (Section 3.2.2).

Let h(· ; ✓) : R ! R be a bijection parameterized by ✓.
Then an autoregressive model is a function g : RD

! RD ,
which outputs each entry of y = g(x) conditioned on the
previous entries of the input:

yt = h(xt;⇥t(x1:t�1)), (18)

where x1:t = (x1, . . . , xt). For t = 2, . . . , D we choose
arbitrary functions ⇥t(·) mapping Rt�1 to the set of all
parameters, and ⇥1 is a constant. The functions ⇥t(·) are
called conditioners.

The Jacobian matrix of the autoregressive transformation
g is triangular. Each output yt only depends on x1:t, and so
the determinant is just a product of its diagonal entries:

det (Dg) =
DY

t=1

@yt

@xt
. (19)

In practice, it’s possible to efficiently compute all the entries
of the direct flow (Equation (18)) in one pass using a single
network with appropriate masks [Germain et al., 2015].
This idea was used by Papamakarios et al. [2017] to create
masked autoregressive flows (MAF).

However, the computation of the inverse is more chal-
lenging. Given the inverse of h, the inverse of g can be found
with recursion: we have x1 = h

�1(y1;⇥1) and for any
t = 2, . . . , D, xt = h

�1(yt;⇥t(x1:t�1)). This computation is
inherently sequential which makes it difficult to implement
efficiently on modern hardware as it cannot be parallelized.

Note that the functional form for the autoregressive
model is very similar to that for the coupling flow. In both
cases a bijection h is used, which has as an input one part
of the space and which is parameterized conditioned on
the other part. We call this bijection a coupling function in
both cases. Note that Huang et al. [2018] used the name
“transformer” (which has nothing to do with transformers
in NLP).

Alternatively, Kingma et al. [2016] introduced the “in-
verse autoregressive flow” (IAF), which outputs each entry
of y conditioned the previous entries of y (with respect to
the fixed ordering). Formally,

yt = h(xt; ✓t(y1:t�1)). (20)

One can see that the functional form of the inverse autore-
gressive flow is the same as the form of the inverse of
the flow in Equation (18), hence the name. Computation
of the IAF is sequential and expensive, but the inverse of
IAF (which is a direct autoregressive flow) can be computed
relatively efficiently (Figure 4).

Fig. 4. Autoregressive flows. On the left, is the direct autoregressive
flow given in Equation (18). Each output depends on the current and
previous inputs and so this operation can be easily parallelized. On
the right, is the inverse autoregressive flow from Equation (20). Each
output depends on the current input and the previous outputs and so
computation is inherently sequential and cannot be parallelized.

In Section 2.2.1 we noted that papers typically model
flows in the “normalizing flow” direction (i.e., in terms of f
from data to the base density) to enable efficient evaluation
of the log-likelihood during training. In this context one can
think of IAF as a flow in the generative direction: i.e.in terms
of g from base density to data. Hence Papamakarios et al.

Masked autoregressive flow (MAF):
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Slow: Latent space → data


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Fig. 3. Coupling architecture. a) A single coupling flow described in
Equation (15). A coupling function h is applied to one part of the space,
while its parameters depend on the other part. b) Two subsequent multi-
scale flows in the generative direction. A flow is applied to a relatively low
dimensional vector z; its parameters no longer depend on the rest part
zaux. Then new dimensions are gradually introduced to the distribution.

Sometimes, however, the conditioner can be constant
(i.e., not depend on xB at all). This allows for the construc-
tion of a “multi-scale flow” Dinh et al. [2017] which gradually
introduces dimensions to the distribution in the generative
direction (Figure 3b). In the normalizing direction, the di-
mension reduces by half after each iteration step, such that
most of semantic information is retained. This reduces the
computational costs of transforming high dimensional dis-
tributions and can capture the multi-scale structure inherent
in certain kinds of data like natural images.

The question remains of how to partition x. This is
often done by splitting the dimensions in half [Dinh et al.,
2015], potentially after a random permutation. However,
more structured partitioning has also been explored and
is common practice, particularly when modelling images.
For instance, Dinh et al. [2017] used “masked” flows that
take alternating pixels or blocks of channels in the case
of an image in non-volume preserving flows (RealNVP).
In place of permutation Kingma and Dhariwal [2018] used
1 ⇥ 1 convolution (Glow). For the partition for the multi-
scale flow in the normalizing direction, Das et al. [2019]
suggested selecting features at which the Jacobian of the
flow has higher values for the propagated part.

3.4.2 Autoregressive Flows

Kingma et al. [2016] used autoregressive models as a form
of normalizing flow. These are non-linear generalizations of
multiplication by a triangular matrix (Section 3.2.2).

Let h(· ; ✓) : R ! R be a bijection parameterized by ✓.
Then an autoregressive model is a function g : RD

! RD ,
which outputs each entry of y = g(x) conditioned on the
previous entries of the input:

yt = h(xt;⇥t(x1:t�1)), (18)

where x1:t = (x1, . . . , xt). For t = 2, . . . , D we choose
arbitrary functions ⇥t(·) mapping Rt�1 to the set of all
parameters, and ⇥1 is a constant. The functions ⇥t(·) are
called conditioners.

The Jacobian matrix of the autoregressive transformation
g is triangular. Each output yt only depends on x1:t, and so
the determinant is just a product of its diagonal entries:

det (Dg) =
DY

t=1

@yt

@xt
. (19)

In practice, it’s possible to efficiently compute all the entries
of the direct flow (Equation (18)) in one pass using a single
network with appropriate masks [Germain et al., 2015].
This idea was used by Papamakarios et al. [2017] to create
masked autoregressive flows (MAF).

However, the computation of the inverse is more chal-
lenging. Given the inverse of h, the inverse of g can be found
with recursion: we have x1 = h

�1(y1;⇥1) and for any
t = 2, . . . , D, xt = h

�1(yt;⇥t(x1:t�1)). This computation is
inherently sequential which makes it difficult to implement
efficiently on modern hardware as it cannot be parallelized.

Note that the functional form for the autoregressive
model is very similar to that for the coupling flow. In both
cases a bijection h is used, which has as an input one part
of the space and which is parameterized conditioned on
the other part. We call this bijection a coupling function in
both cases. Note that Huang et al. [2018] used the name
“transformer” (which has nothing to do with transformers
in NLP).

Alternatively, Kingma et al. [2016] introduced the “in-
verse autoregressive flow” (IAF), which outputs each entry
of y conditioned the previous entries of y (with respect to
the fixed ordering). Formally,

yt = h(xt; ✓t(y1:t�1)). (20)

One can see that the functional form of the inverse autore-
gressive flow is the same as the form of the inverse of
the flow in Equation (18), hence the name. Computation
of the IAF is sequential and expensive, but the inverse of
IAF (which is a direct autoregressive flow) can be computed
relatively efficiently (Figure 4).

Fig. 4. Autoregressive flows. On the left, is the direct autoregressive
flow given in Equation (18). Each output depends on the current and
previous inputs and so this operation can be easily parallelized. On
the right, is the inverse autoregressive flow from Equation (20). Each
output depends on the current input and the previous outputs and so
computation is inherently sequential and cannot be parallelized.

In Section 2.2.1 we noted that papers typically model
flows in the “normalizing flow” direction (i.e., in terms of f
from data to the base density) to enable efficient evaluation
of the log-likelihood during training. In this context one can
think of IAF as a flow in the generative direction: i.e.in terms
of g from base density to data. Hence Papamakarios et al.
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Slow: Data → latent space 
Fast: Latent space → data
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Fig. 3. Coupling architecture. a) A single coupling flow described in
Equation (15). A coupling function h is applied to one part of the space,
while its parameters depend on the other part. b) Two subsequent multi-
scale flows in the generative direction. A flow is applied to a relatively low
dimensional vector z; its parameters no longer depend on the rest part
zaux. Then new dimensions are gradually introduced to the distribution.

Sometimes, however, the conditioner can be constant
(i.e., not depend on xB at all). This allows for the construc-
tion of a “multi-scale flow” Dinh et al. [2017] which gradually
introduces dimensions to the distribution in the generative
direction (Figure 3b). In the normalizing direction, the di-
mension reduces by half after each iteration step, such that
most of semantic information is retained. This reduces the
computational costs of transforming high dimensional dis-
tributions and can capture the multi-scale structure inherent
in certain kinds of data like natural images.

The question remains of how to partition x. This is
often done by splitting the dimensions in half [Dinh et al.,
2015], potentially after a random permutation. However,
more structured partitioning has also been explored and
is common practice, particularly when modelling images.
For instance, Dinh et al. [2017] used “masked” flows that
take alternating pixels or blocks of channels in the case
of an image in non-volume preserving flows (RealNVP).
In place of permutation Kingma and Dhariwal [2018] used
1 ⇥ 1 convolution (Glow). For the partition for the multi-
scale flow in the normalizing direction, Das et al. [2019]
suggested selecting features at which the Jacobian of the
flow has higher values for the propagated part.

3.4.2 Autoregressive Flows

Kingma et al. [2016] used autoregressive models as a form
of normalizing flow. These are non-linear generalizations of
multiplication by a triangular matrix (Section 3.2.2).

Let h(· ; ✓) : R ! R be a bijection parameterized by ✓.
Then an autoregressive model is a function g : RD

! RD ,
which outputs each entry of y = g(x) conditioned on the
previous entries of the input:

yt = h(xt;⇥t(x1:t�1)), (18)

where x1:t = (x1, . . . , xt). For t = 2, . . . , D we choose
arbitrary functions ⇥t(·) mapping Rt�1 to the set of all
parameters, and ⇥1 is a constant. The functions ⇥t(·) are
called conditioners.

The Jacobian matrix of the autoregressive transformation
g is triangular. Each output yt only depends on x1:t, and so
the determinant is just a product of its diagonal entries:

det (Dg) =
DY

t=1

@yt

@xt
. (19)

In practice, it’s possible to efficiently compute all the entries
of the direct flow (Equation (18)) in one pass using a single
network with appropriate masks [Germain et al., 2015].
This idea was used by Papamakarios et al. [2017] to create
masked autoregressive flows (MAF).

However, the computation of the inverse is more chal-
lenging. Given the inverse of h, the inverse of g can be found
with recursion: we have x1 = h

�1(y1;⇥1) and for any
t = 2, . . . , D, xt = h

�1(yt;⇥t(x1:t�1)). This computation is
inherently sequential which makes it difficult to implement
efficiently on modern hardware as it cannot be parallelized.

Note that the functional form for the autoregressive
model is very similar to that for the coupling flow. In both
cases a bijection h is used, which has as an input one part
of the space and which is parameterized conditioned on
the other part. We call this bijection a coupling function in
both cases. Note that Huang et al. [2018] used the name
“transformer” (which has nothing to do with transformers
in NLP).

Alternatively, Kingma et al. [2016] introduced the “in-
verse autoregressive flow” (IAF), which outputs each entry
of y conditioned the previous entries of y (with respect to
the fixed ordering). Formally,

yt = h(xt; ✓t(y1:t�1)). (20)

One can see that the functional form of the inverse autore-
gressive flow is the same as the form of the inverse of
the flow in Equation (18), hence the name. Computation
of the IAF is sequential and expensive, but the inverse of
IAF (which is a direct autoregressive flow) can be computed
relatively efficiently (Figure 4).

Fig. 4. Autoregressive flows. On the left, is the direct autoregressive
flow given in Equation (18). Each output depends on the current and
previous inputs and so this operation can be easily parallelized. On
the right, is the inverse autoregressive flow from Equation (20). Each
output depends on the current input and the previous outputs and so
computation is inherently sequential and cannot be parallelized.

In Section 2.2.1 we noted that papers typically model
flows in the “normalizing flow” direction (i.e., in terms of f
from data to the base density) to enable efficient evaluation
of the log-likelihood during training. In this context one can
think of IAF as a flow in the generative direction: i.e.in terms
of g from base density to data. Hence Papamakarios et al.
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Fig. 2. Overview of flows discussed in this review. We start with elemen-
twise bijections, linear flows, and planar and radial flows. All of these
have drawbacks and are limited in utility. We then discuss two architec-
tures (coupling flows and autoregressive flows) which support invertible
non-linear transformations. These both use a coupling function, and we
summarize the different coupling functions available. Finally, we discuss
residual flows and their continuous extension infinitesimal flows.

values of the derivatives of h. This can be generalized by
allowing each element to have its own distinct bijective
function which might be useful if we wish to only modify
portions of our parameter vector. In deep learning terminol-
ogy, h, could be viewed as an “activation function”. Note
that the most commonly used activation function ReLU is
not bijective and can not be directly applicable, however,
the (Parametric) Leaky ReLU [He et al., 2015; Maas et al.,
2013] can be used instead among others. Note that recently
spline-based activation functions have also been considered
[Durkan et al., 2019a,b] and will be discussed in Section
3.4.4.4.

3.2 Linear Flows
Elementwise operations alone are insufficient as they cannot
express any form of correlation between dimensions. Linear
mappings can express correlation between dimensions:

g(x) = Ax+ b (8)

where A 2 RD⇥D and b 2 RD are parameters. If A is an
invertible matrix, the function is invertible.

Linear flows are limited in their expressiveness. Con-
sider a Gaussian base distribution: pZ(z) = N (z, µ,⌃). Af-
ter transformation by a linear flow, the distribution remains
Gaussian with distribution pY = N (y,Aµ + b,AT⌃A).
More generally, a linear flow of a distribution from the expo-
nential family remains in the exponential family. However,
linear flows are an important building block as they form
the basis of affine coupling flows (Section 3.4.4.1).

Note that the determinant of the Jacobian is simply
det(A), which can be computed in O(D3), as can the
inverse. Hence, using linear flows can become expensive
for large D. By restricting the form of A we can avoid these
practical problems at the expense of expressive power. In
the following sections we discuss different ways of limiting
the form of linear transforms to make them more practical.

3.2.1 Diagonal

If A is diagonal with nonzero diagonal entries, then its
inverse can be computed in linear time and its determinant

is the product of the diagonal entries. However, the result is
an elementwise transformation and hence cannot express
correlation between dimensions. Nonetheless, a diagonal
linear flow can still be useful for representing normaliza-
tion transformations [Dinh et al., 2017] which have become
a ubiquitous part of modern neural networks [Ioffe and
Szegedy, 2015].

3.2.2 Triangular

The triangular matrix is a more expressive form of linear
transformation whose determinant is the product of its
diagonal. It is non-singular so long as its diagonal entries
are non-zero. Inversion is relatively inexpensive requiring a
single pass of back-substitution costing O(D2) operations.

Tomczak and Welling [2017] combined K triangular
matrices Ti, each with ones on the diagonal, and a K-
dimensional probability vector ! to define a more general
linear flow y = (

PK
i=1 !iTi)z. The determinant of this

bijection is one. However finding the inverse has O(D3)
complexity, if some of the matrices are upper- and some are
lower-triangular.

3.2.3 Permutation and Orthogonal

The expressiveness of triangular transformations is sensitive
to the ordering of dimensions. Reordering the dimensions
can be done easily using a permutation matrix which has
an absolute determinant of 1. Different strategies have been
tried, including reversing and a fixed random permutation
[Dinh et al., 2017; Kingma and Dhariwal, 2018]. However,
the permutations cannot be directly optimized and so re-
main fixed after initialization which may not be optimal.

A more general alternative is the use of orthogonal
transformations. The inverse and absolute determinant of an
orthogonal matrix are both trivial to compute which make
them efficient. Tomczak and Welling [2016] used orthogonal
matrices parameterized by the Householder transform. The
idea is based on the fact from linear algebra that any
orthogonal matrix can be written as a product of reflections.
To parameterize a reflection matrix H in RD one fixes a
nonzero vector v 2 RD , and then defines H = 1� 2

||v||2vv
T .

3.2.4 Factorizations

Instead of limiting the form of A, Kingma and Dhariwal
[2018] proposed using the LU factorization:

g(x) = PLUx+ b (9)

where L is lower triangular with ones on the diagonal, U is
upper triangular with non-zero diagonal entries, and P is a
permutation matrix. The determinant is the product of the
diagonal entries of U which can be computed in O(D). The
inverse of the function g can be computed using two passes
of backward substitution in O(D2). However, the discrete
permutation P cannot be easily optimized. To avoid this, P
is randomly generated initially and then fixed. Hoogeboom
et al. [2019a] noted that fixing the permutation matrix limits
the flexibility of the transformation, and proposed using the
QR decomposition instead where the orthogonal matrix Q

is described with Householder transforms.
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Fig. 2. Overview of flows discussed in this review. We start with elemen-
twise bijections, linear flows, and planar and radial flows. All of these
have drawbacks and are limited in utility. We then discuss two architec-
tures (coupling flows and autoregressive flows) which support invertible
non-linear transformations. These both use a coupling function, and we
summarize the different coupling functions available. Finally, we discuss
residual flows and their continuous extension infinitesimal flows.

values of the derivatives of h. This can be generalized by
allowing each element to have its own distinct bijective
function which might be useful if we wish to only modify
portions of our parameter vector. In deep learning terminol-
ogy, h, could be viewed as an “activation function”. Note
that the most commonly used activation function ReLU is
not bijective and can not be directly applicable, however,
the (Parametric) Leaky ReLU [He et al., 2015; Maas et al.,
2013] can be used instead among others. Note that recently
spline-based activation functions have also been considered
[Durkan et al., 2019a,b] and will be discussed in Section
3.4.4.4.

3.2 Linear Flows
Elementwise operations alone are insufficient as they cannot
express any form of correlation between dimensions. Linear
mappings can express correlation between dimensions:

g(x) = Ax+ b (8)

where A 2 RD⇥D and b 2 RD are parameters. If A is an
invertible matrix, the function is invertible.

Linear flows are limited in their expressiveness. Con-
sider a Gaussian base distribution: pZ(z) = N (z, µ,⌃). Af-
ter transformation by a linear flow, the distribution remains
Gaussian with distribution pY = N (y,Aµ + b,AT⌃A).
More generally, a linear flow of a distribution from the expo-
nential family remains in the exponential family. However,
linear flows are an important building block as they form
the basis of affine coupling flows (Section 3.4.4.1).

Note that the determinant of the Jacobian is simply
det(A), which can be computed in O(D3), as can the
inverse. Hence, using linear flows can become expensive
for large D. By restricting the form of A we can avoid these
practical problems at the expense of expressive power. In
the following sections we discuss different ways of limiting
the form of linear transforms to make them more practical.

3.2.1 Diagonal

If A is diagonal with nonzero diagonal entries, then its
inverse can be computed in linear time and its determinant

is the product of the diagonal entries. However, the result is
an elementwise transformation and hence cannot express
correlation between dimensions. Nonetheless, a diagonal
linear flow can still be useful for representing normaliza-
tion transformations [Dinh et al., 2017] which have become
a ubiquitous part of modern neural networks [Ioffe and
Szegedy, 2015].

3.2.2 Triangular

The triangular matrix is a more expressive form of linear
transformation whose determinant is the product of its
diagonal. It is non-singular so long as its diagonal entries
are non-zero. Inversion is relatively inexpensive requiring a
single pass of back-substitution costing O(D2) operations.

Tomczak and Welling [2017] combined K triangular
matrices Ti, each with ones on the diagonal, and a K-
dimensional probability vector ! to define a more general
linear flow y = (

PK
i=1 !iTi)z. The determinant of this

bijection is one. However finding the inverse has O(D3)
complexity, if some of the matrices are upper- and some are
lower-triangular.

3.2.3 Permutation and Orthogonal

The expressiveness of triangular transformations is sensitive
to the ordering of dimensions. Reordering the dimensions
can be done easily using a permutation matrix which has
an absolute determinant of 1. Different strategies have been
tried, including reversing and a fixed random permutation
[Dinh et al., 2017; Kingma and Dhariwal, 2018]. However,
the permutations cannot be directly optimized and so re-
main fixed after initialization which may not be optimal.

A more general alternative is the use of orthogonal
transformations. The inverse and absolute determinant of an
orthogonal matrix are both trivial to compute which make
them efficient. Tomczak and Welling [2016] used orthogonal
matrices parameterized by the Householder transform. The
idea is based on the fact from linear algebra that any
orthogonal matrix can be written as a product of reflections.
To parameterize a reflection matrix H in RD one fixes a
nonzero vector v 2 RD , and then defines H = 1� 2

||v||2vv
T .

3.2.4 Factorizations

Instead of limiting the form of A, Kingma and Dhariwal
[2018] proposed using the LU factorization:

g(x) = PLUx+ b (9)

where L is lower triangular with ones on the diagonal, U is
upper triangular with non-zero diagonal entries, and P is a
permutation matrix. The determinant is the product of the
diagonal entries of U which can be computed in O(D). The
inverse of the function g can be computed using two passes
of backward substitution in O(D2). However, the discrete
permutation P cannot be easily optimized. To avoid this, P
is randomly generated initially and then fixed. Hoogeboom
et al. [2019a] noted that fixing the permutation matrix limits
the flexibility of the transformation, and proposed using the
QR decomposition instead where the orthogonal matrix Q

is described with Householder transforms.
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


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= Eq


� log p(xT ) �

X

t�1

log
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q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
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1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:
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�
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
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t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
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t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
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Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=
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This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:
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�
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
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↵̄tx0, (1 � ↵̄t)I) (4)
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This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
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1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)

2

This is added in the training 
process
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)

2Rewrite: State at any time

Efficient training is therefore possible by optimizing random terms of L with stochastic gradient
descent. Further improvements come from variance reduction by rewriting L (3) as:

Eq


DKL(q(xT |x0) k p(xT ))| {z }

LT

+
X

t>1

DKL(q(xt�1|xt,x0) k p✓(xt�1|xt))| {z }
Lt�1

� log p✓(x0|x1)| {z }
L0

�
(5)

(See Appendix A for details. The labels on the terms are used in Section 3.) Equation (5) uses KL
divergence to directly compare p✓(xt�1|xt) against forward process posteriors, which are tractable
when conditioned on x0:

q(xt�1|xt,x0) = N (xt�1; µ̃t(xt,x0), �̃tI), (6)

where µ̃t(xt,x0) :=

p
↵̄t�1�t

1 � ↵̄t
x0 +

p
↵t(1 � ↵̄t�1)

1 � ↵̄t
xt and �̃t :=

1 � ↵̄t�1

1 � ↵̄t
�t (7)

Consequently, all KL divergences in Eq. (5) are comparisons between Gaussians, so they can be
calculated in a Rao-Blackwellized fashion with closed form expressions instead of high variance
Monte Carlo estimates.

3 Diffusion models and denoising autoencoders

Diffusion models might appear to be a restricted class of latent variable models, but they allow a
large number of degrees of freedom in implementation. One must choose the variances �t of the
forward process and the model architecture and Gaussian distribution parameterization of the reverse
process. To guide our choices, we establish a new explicit connection between diffusion models
and denoising score matching (Section 3.2) that leads to a simplified, weighted variational bound
objective for diffusion models (Section 3.4). Ultimately, our model design is justified by simplicity
and empirical results (Section 4). Our discussion is categorized by the terms of Eq. (5).

3.1 Forward process and LT

We ignore the fact that the forward process variances �t are learnable by reparameterization and
instead fix them to constants (see Section 4 for details). Thus, in our implementation, the approximate
posterior q has no learnable parameters, so LT is a constant during training and can be ignored.

3.2 Reverse process and L1:T�1

Now we discuss our choices in p✓(xt�1|xt) = N (xt�1;µ✓(xt, t),⌃✓(xt, t)) for 1 < t  T . First,
we set ⌃✓(xt, t) = �

2
t I to untrained time dependent constants. Experimentally, both �

2
t = �t and

�
2
t = �̃t = 1�↵̄t�1

1�↵̄t
�t had similar results. The first choice is optimal for x0 ⇠ N (0, I), and the

second is optimal for x0 deterministically set to one point. These are the two extreme choices
corresponding to upper and lower bounds on reverse process entropy for data with coordinatewise
unit variance [53].

Second, to represent the mean µ✓(xt, t), we propose a specific parameterization motivated by the
following analysis of Lt. With p✓(xt�1|xt) = N (xt�1;µ✓(xt, t), �2

t I), we can write:

Lt�1 = Eq


1

2�
2
t

kµ̃t(xt,x0) � µ✓(xt, t)k2

�
+ C (8)

where C is a constant that does not depend on ✓. So, we see that the most straightforward parameteri-
zation of µ✓ is a model that predicts µ̃t, the forward process posterior mean. However, we can expand
Eq. (8) further by reparameterizing Eq. (4) as xt(x0, ✏) =

p
↵̄tx0 +

p
1 � ↵̄t✏ for ✏ ⇠ N (0, I) and

applying the forward process posterior formula (7):

Lt�1 � C = Ex0,✏

"
1

2�
2
t

����µ̃t

✓
xt(x0, ✏),

1p
↵̄t

(xt(x0, ✏) �
p

1 � ↵̄t✏)

◆
� µ✓(xt(x0, ✏), t)

����
2
#

(9)

= Ex0,✏

"
1

2�
2
t

����
1

p
↵t

✓
xt(x0, ✏) � �tp

1 � ↵̄t
✏

◆
� µ✓(xt(x0, ✏), t)

����
2
#

(10)

3

Will try to predict
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
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t=1
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Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:
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�
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
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↵̄tx0, (1 � ↵̄t)I) (4)
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This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
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1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
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This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
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t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
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Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Efficient training is therefore possible by optimizing random terms of L with stochastic gradient
descent. Further improvements come from variance reduction by rewriting L (3) as:

Eq


DKL(q(xT |x0) k p(xT ))| {z }

LT

+
X

t>1

DKL(q(xt�1|xt,x0) k p✓(xt�1|xt))| {z }
Lt�1

� log p✓(x0|x1)| {z }
L0

�
(5)

(See Appendix A for details. The labels on the terms are used in Section 3.) Equation (5) uses KL
divergence to directly compare p✓(xt�1|xt) against forward process posteriors, which are tractable
when conditioned on x0:

q(xt�1|xt,x0) = N (xt�1; µ̃t(xt,x0), �̃tI), (6)

where µ̃t(xt,x0) :=

p
↵̄t�1�t

1 � ↵̄t
x0 +

p
↵t(1 � ↵̄t�1)

1 � ↵̄t
xt and �̃t :=

1 � ↵̄t�1

1 � ↵̄t
�t (7)

Consequently, all KL divergences in Eq. (5) are comparisons between Gaussians, so they can be
calculated in a Rao-Blackwellized fashion with closed form expressions instead of high variance
Monte Carlo estimates.

3 Diffusion models and denoising autoencoders

Diffusion models might appear to be a restricted class of latent variable models, but they allow a
large number of degrees of freedom in implementation. One must choose the variances �t of the
forward process and the model architecture and Gaussian distribution parameterization of the reverse
process. To guide our choices, we establish a new explicit connection between diffusion models
and denoising score matching (Section 3.2) that leads to a simplified, weighted variational bound
objective for diffusion models (Section 3.4). Ultimately, our model design is justified by simplicity
and empirical results (Section 4). Our discussion is categorized by the terms of Eq. (5).

3.1 Forward process and LT

We ignore the fact that the forward process variances �t are learnable by reparameterization and
instead fix them to constants (see Section 4 for details). Thus, in our implementation, the approximate
posterior q has no learnable parameters, so LT is a constant during training and can be ignored.

3.2 Reverse process and L1:T�1

Now we discuss our choices in p✓(xt�1|xt) = N (xt�1;µ✓(xt, t),⌃✓(xt, t)) for 1 < t  T . First,
we set ⌃✓(xt, t) = �

2
t I to untrained time dependent constants. Experimentally, both �

2
t = �t and

�
2
t = �̃t = 1�↵̄t�1

1�↵̄t
�t had similar results. The first choice is optimal for x0 ⇠ N (0, I), and the

second is optimal for x0 deterministically set to one point. These are the two extreme choices
corresponding to upper and lower bounds on reverse process entropy for data with coordinatewise
unit variance [53].

Second, to represent the mean µ✓(xt, t), we propose a specific parameterization motivated by the
following analysis of Lt. With p✓(xt�1|xt) = N (xt�1;µ✓(xt, t), �2

t I), we can write:

Lt�1 = Eq


1

2�
2
t

kµ̃t(xt,x0) � µ✓(xt, t)k2

�
+ C (8)

where C is a constant that does not depend on ✓. So, we see that the most straightforward parameteri-
zation of µ✓ is a model that predicts µ̃t, the forward process posterior mean. However, we can expand
Eq. (8) further by reparameterizing Eq. (4) as xt(x0, ✏) =

p
↵̄tx0 +

p
1 � ↵̄t✏ for ✏ ⇠ N (0, I) and

applying the forward process posterior formula (7):

Lt�1 � C = Ex0,✏

"
1

2�
2
t

����µ̃t

✓
xt(x0, ✏),

1p
↵̄t

(xt(x0, ✏) �
p

1 � ↵̄t✏)

◆
� µ✓(xt(x0, ✏), t)

����
2
#

(9)

= Ex0,✏

"
1

2�
2
t

����
1

p
↵t

✓
xt(x0, ✏) � �tp

1 � ↵̄t
✏

◆
� µ✓(xt(x0, ✏), t)

����
2
#

(10)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
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What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :
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Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=
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s=1 ↵s, we have
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
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Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
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↵̄tx0, (1 � ↵̄t)I) (4)

2

Reverse  
(Noise → data)

Use to parametrise function:

and learn to predict noise



Diff

��<latexit sha1_base64="7yFrn0YPyuP5dVIvc7Tl2zcbS/g=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJXdKuix6MVjBfsB7VKyaXYbmk2WJKvU0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhSln2njet1NYW9/Y3Cpul3Z29/bL7sFhS8tMEdokkkvVCbGmnAnaNMxw2kkVxUnIaTsc3cz89gNVmklxb8YpDRIcCxYxgo2V+m65x6WIFYuHBislH/tuxat6c6BV4uekAjkafferN5AkS6gwhGOtu76XmmCClWGE02mpl2maYjLCMe1aKnBCdTCZHz5Fp1YZoEgqW8Kgufp7YoITrcdJaDsTbIZ62ZuJ/3ndzERXwYSJNDNUkMWiKOPISDRLAQ2YosTwsSWYKGZvRWSIFSbGZlWyIfjLL6+SVq3qn1drdxeV+nUeRxGO4QTOwIdLqMMtNKAJBDJ4hld4c56cF+fd+Vi0Fpx85gj+wPn8AXOGk5o=</latexit>

xT �� · · · �� xt ������ xt�1 �� · · · �� x0
<latexit sha1_base64="l4LvSgM7PR7I/kkuy5soikK4gpU="></latexit>

p✓(xt�1|xt)
<latexit sha1_base64="XVzP503G8Ma8Lkwk3KKGZcZJbZ0=">AAACEnicbVC7SgNBFJ2Nrxhfq5Y2g0FICsNuFEwZsLGMYB6QLMvsZDYZMvtg5q4Y1nyDjb9iY6GIrZWdf+Mk2SImHrhwOOde7r3HiwVXYFk/Rm5tfWNzK79d2Nnd2z8wD49aKkokZU0aiUh2PKKY4CFrAgfBOrFkJPAEa3uj66nfvmdS8Si8g3HMnIAMQu5zSkBLrlmO3R4MGZBSLyAw9Pz0YeKmcG5P8CNekKDsmkWrYs2AV4mdkSLK0HDN714/oknAQqCCKNW1rRiclEjgVLBJoZcoFhM6IgPW1TQkAVNOOntpgs+00sd+JHWFgGfq4kRKAqXGgac7p0eqZW8q/ud1E/BrTsrDOAEW0vkiPxEYIjzNB/e5ZBTEWBNCJde3YjokklDQKRZ0CPbyy6ukVa3YF5Xq7WWxXsviyKMTdIpKyEZXqI5uUAM1EUVP6AW9oXfj2Xg1PozPeWvOyGaO0R8YX7+bCp4F</latexit>

q(xt|xt�1)
<latexit sha1_base64="eAZ87UuTmAQoJ4u19RGH5tA+bCI=">AAACC3icbVC7TgJBFJ31ifhatbSZQEywkOyiiZQkNpaYyCMBspkdZmHC7MOZu0ay0tv4KzYWGmPrD9j5N87CFgieZJIz59ybe+9xI8EVWNaPsbK6tr6xmdvKb+/s7u2bB4dNFcaSsgYNRSjbLlFM8IA1gINg7Ugy4ruCtdzRVeq37plUPAxuYRyxnk8GAfc4JaAlxyzclbo+gaHrJQ8TB/AjnvsmcGZPTh2zaJWtKfAysTNSRBnqjvnd7Yc09lkAVBClOrYVQS8hEjgVbJLvxopFhI7IgHU0DYjPVC+Z3jLBJ1rpYy+U+gWAp+p8R0J8pca+qyvTRdWil4r/eZ0YvGov4UEUAwvobJAXCwwhToPBfS4ZBTHWhFDJ9a6YDokkFHR8eR2CvXjyMmlWyvZ5uXJzUaxVszhy6BgVUAnZ6BLV0DWqowai6Am9oDf0bjwbr8aH8TkrXTGyniP0B8bXL+1hmu8=</latexit>

Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
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t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
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Training is performed by optimizing the usual variational bound on negative log likelihood:
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :
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The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)

2

Reverse  
(Noise → data)

Resulting learning objective

Table 1: CIFAR10 results. NLL measured in bits/dim.
Model IS FID NLL Test (Train)

Conditional

EBM [11] 8.30 37.9
JEM [17] 8.76 38.4
BigGAN [3] 9.22 14.73
StyleGAN2 + ADA (v1) [29] 10.06 2.67

Unconditional

Diffusion (original) [53]  5.40
Gated PixelCNN [59] 4.60 65.93 3.03 (2.90)
Sparse Transformer [7] 2.80
PixelIQN [43] 5.29 49.46
EBM [11] 6.78 38.2
NCSNv2 [56] 31.75
NCSN [55] 8.87±0.12 25.32
SNGAN [39] 8.22±0.05 21.7
SNGAN-DDLS [4] 9.09±0.10 15.42
StyleGAN2 + ADA (v1) [29] 9.74 ± 0.05 3.26
Ours (L, fixed isotropic ⌃) 7.67±0.13 13.51  3.70 (3.69)
Ours (Lsimple) 9.46±0.11 3.17  3.75 (3.72)

Table 2: Unconditional CIFAR10 reverse
process parameterization and training objec-
tive ablation. Blank entries were unstable to
train and generated poor samples with out-of-
range scores.

Objective IS FID

µ̃ prediction (baseline)

L, learned diagonal ⌃ 7.28±0.10 23.69
L, fixed isotropic ⌃ 8.06±0.09 13.22
kµ̃ � µ̃✓k2 – –

✏ prediction (ours)

L, learned diagonal ⌃ – –
L, fixed isotropic ⌃ 7.67±0.13 13.51
k✏̃ � ✏✓k2 (Lsimple) 9.46±0.11 3.17

training. However, we found it beneficial to sample quality (and simpler to implement) to train on the
following variant of the variational bound:

Lsimple(✓) := Et,x0,✏

h��✏ � ✏✓(
p

↵̄tx0 +
p

1 � ↵̄t✏, t)
��2

i
(14)

where t is uniform between 1 and T . The t = 1 case corresponds to L0 with the integral in the
discrete decoder definition (13) approximated by the Gaussian probability density function times the
bin width, ignoring �

2
1 and edge effects. The t > 1 cases correspond to an unweighted version of

Eq. (12), analogous to the loss weighting used by the NCSN denoising score matching model [55].
(LT does not appear because the forward process variances �t are fixed.) Algorithm 1 displays the
complete training procedure with this simplified objective.

Since our simplified objective (14) discards the weighting in Eq. (12), it is a weighted variational
bound that emphasizes different aspects of reconstruction compared to the standard variational
bound [18, 22]. In particular, our diffusion process setup in Section 4 causes the simplified objective
to down-weight loss terms corresponding to small t. These terms train the network to denoise data
with very small amounts of noise, so it is beneficial to down-weight them so that the network can
focus on more difficult denoising tasks at larger t terms. We will see in our experiments that this
reweighting leads to better sample quality.

4 Experiments

We set T = 1000 for all experiments so that the number of neural network evaluations needed
during sampling matches previous work [53, 55]. We set the forward process variances to constants
increasing linearly from �1 = 10�4 to �T = 0.02. These constants were chosen to be small
relative to data scaled to [�1, 1], ensuring that reverse and forward processes have approximately
the same functional form while keeping the signal-to-noise ratio at xT as small as possible (LT =
DKL(q(xT |x0) k N (0, I)) ⇡ 10�5 bits per dimension in our experiments).

To represent the reverse process, we use a U-Net backbone similar to an unmasked PixelCNN++ [52,
48] with group normalization throughout [66]. Parameters are shared across time, which is specified
to the network using the Transformer sinusoidal position embedding [60]. We use self-attention at
the 16 ⇥ 16 feature map resolution [63, 60]. Details are in Appendix B.

4.1 Sample quality

Table 1 shows Inception scores, FID scores, and negative log likelihoods (lossless codelengths) on
CIFAR10. With our FID score of 3.17, our unconditional model achieves better sample quality than
most models in the literature, including class conditional models. Our FID score is computed with
respect to the training set, as is standard practice; when we compute it with respect to the test set, the
score is 5.24, which is still better than many of the training set FID scores in the literature.

5

Efficient training is therefore possible by optimizing random terms of L with stochastic gradient
descent. Further improvements come from variance reduction by rewriting L (3) as:

Eq


DKL(q(xT |x0) k p(xT ))| {z }

LT

+
X

t>1

DKL(q(xt�1|xt,x0) k p✓(xt�1|xt))| {z }
Lt�1

� log p✓(x0|x1)| {z }
L0

�
(5)

(See Appendix A for details. The labels on the terms are used in Section 3.) Equation (5) uses KL
divergence to directly compare p✓(xt�1|xt) against forward process posteriors, which are tractable
when conditioned on x0:

q(xt�1|xt,x0) = N (xt�1; µ̃t(xt,x0), �̃tI), (6)

where µ̃t(xt,x0) :=

p
↵̄t�1�t

1 � ↵̄t
x0 +

p
↵t(1 � ↵̄t�1)

1 � ↵̄t
xt and �̃t :=

1 � ↵̄t�1

1 � ↵̄t
�t (7)

Consequently, all KL divergences in Eq. (5) are comparisons between Gaussians, so they can be
calculated in a Rao-Blackwellized fashion with closed form expressions instead of high variance
Monte Carlo estimates.

3 Diffusion models and denoising autoencoders

Diffusion models might appear to be a restricted class of latent variable models, but they allow a
large number of degrees of freedom in implementation. One must choose the variances �t of the
forward process and the model architecture and Gaussian distribution parameterization of the reverse
process. To guide our choices, we establish a new explicit connection between diffusion models
and denoising score matching (Section 3.2) that leads to a simplified, weighted variational bound
objective for diffusion models (Section 3.4). Ultimately, our model design is justified by simplicity
and empirical results (Section 4). Our discussion is categorized by the terms of Eq. (5).

3.1 Forward process and LT

We ignore the fact that the forward process variances �t are learnable by reparameterization and
instead fix them to constants (see Section 4 for details). Thus, in our implementation, the approximate
posterior q has no learnable parameters, so LT is a constant during training and can be ignored.

3.2 Reverse process and L1:T�1

Now we discuss our choices in p✓(xt�1|xt) = N (xt�1;µ✓(xt, t),⌃✓(xt, t)) for 1 < t  T . First,
we set ⌃✓(xt, t) = �

2
t I to untrained time dependent constants. Experimentally, both �

2
t = �t and

�
2
t = �̃t = 1�↵̄t�1

1�↵̄t
�t had similar results. The first choice is optimal for x0 ⇠ N (0, I), and the

second is optimal for x0 deterministically set to one point. These are the two extreme choices
corresponding to upper and lower bounds on reverse process entropy for data with coordinatewise
unit variance [53].

Second, to represent the mean µ✓(xt, t), we propose a specific parameterization motivated by the
following analysis of Lt. With p✓(xt�1|xt) = N (xt�1;µ✓(xt, t), �2

t I), we can write:

Lt�1 = Eq


1

2�
2
t

kµ̃t(xt,x0) � µ✓(xt, t)k2

�
+ C (8)

where C is a constant that does not depend on ✓. So, we see that the most straightforward parameteri-
zation of µ✓ is a model that predicts µ̃t, the forward process posterior mean. However, we can expand
Eq. (8) further by reparameterizing Eq. (4) as xt(x0, ✏) =

p
↵̄tx0 +

p
1 � ↵̄t✏ for ✏ ⇠ N (0, I) and

applying the forward process posterior formula (7):

Lt�1 � C = Ex0,✏

"
1

2�
2
t

����µ̃t

✓
xt(x0, ✏),

1p
↵̄t

(xt(x0, ✏) �
p

1 � ↵̄t✏)

◆
� µ✓(xt(x0, ✏), t)

����
2
#

(9)

= Ex0,✏

"
1

2�
2
t

����
1

p
↵t

✓
xt(x0, ✏) � �tp

1 � ↵̄t
✏

◆
� µ✓(xt(x0, ✏), t)

����
2
#

(10)

3

Reminder: Forward 
diffusion to time t

Noisy image

Timestep



Diff

��<latexit sha1_base64="7yFrn0YPyuP5dVIvc7Tl2zcbS/g=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJXdKuix6MVjBfsB7VKyaXYbmk2WJKvU0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhSln2njet1NYW9/Y3Cpul3Z29/bL7sFhS8tMEdokkkvVCbGmnAnaNMxw2kkVxUnIaTsc3cz89gNVmklxb8YpDRIcCxYxgo2V+m65x6WIFYuHBislH/tuxat6c6BV4uekAjkafferN5AkS6gwhGOtu76XmmCClWGE02mpl2maYjLCMe1aKnBCdTCZHz5Fp1YZoEgqW8Kgufp7YoITrcdJaDsTbIZ62ZuJ/3ndzERXwYSJNDNUkMWiKOPISDRLAQ2YosTwsSWYKGZvRWSIFSbGZlWyIfjLL6+SVq3qn1drdxeV+nUeRxGO4QTOwIdLqMMtNKAJBDJ4hld4c56cF+fd+Vi0Fpx85gj+wPn8AXOGk5o=</latexit>

xT �� · · · �� xt ������ xt�1 �� · · · �� x0
<latexit sha1_base64="l4LvSgM7PR7I/kkuy5soikK4gpU="></latexit>

p✓(xt�1|xt)
<latexit sha1_base64="XVzP503G8Ma8Lkwk3KKGZcZJbZ0=">AAACEnicbVC7SgNBFJ2Nrxhfq5Y2g0FICsNuFEwZsLGMYB6QLMvsZDYZMvtg5q4Y1nyDjb9iY6GIrZWdf+Mk2SImHrhwOOde7r3HiwVXYFk/Rm5tfWNzK79d2Nnd2z8wD49aKkokZU0aiUh2PKKY4CFrAgfBOrFkJPAEa3uj66nfvmdS8Si8g3HMnIAMQu5zSkBLrlmO3R4MGZBSLyAw9Pz0YeKmcG5P8CNekKDsmkWrYs2AV4mdkSLK0HDN714/oknAQqCCKNW1rRiclEjgVLBJoZcoFhM6IgPW1TQkAVNOOntpgs+00sd+JHWFgGfq4kRKAqXGgac7p0eqZW8q/ud1E/BrTsrDOAEW0vkiPxEYIjzNB/e5ZBTEWBNCJde3YjokklDQKRZ0CPbyy6ukVa3YF5Xq7WWxXsviyKMTdIpKyEZXqI5uUAM1EUVP6AW9oXfj2Xg1PozPeWvOyGaO0R8YX7+bCp4F</latexit>

q(xt|xt�1)
<latexit sha1_base64="eAZ87UuTmAQoJ4u19RGH5tA+bCI=">AAACC3icbVC7TgJBFJ31ifhatbSZQEywkOyiiZQkNpaYyCMBspkdZmHC7MOZu0ay0tv4KzYWGmPrD9j5N87CFgieZJIz59ybe+9xI8EVWNaPsbK6tr6xmdvKb+/s7u2bB4dNFcaSsgYNRSjbLlFM8IA1gINg7Ugy4ruCtdzRVeq37plUPAxuYRyxnk8GAfc4JaAlxyzclbo+gaHrJQ8TB/AjnvsmcGZPTh2zaJWtKfAysTNSRBnqjvnd7Yc09lkAVBClOrYVQS8hEjgVbJLvxopFhI7IgHU0DYjPVC+Z3jLBJ1rpYy+U+gWAp+p8R0J8pca+qyvTRdWil4r/eZ0YvGov4UEUAwvobJAXCwwhToPBfS4ZBTHWhFDJ9a6YDokkFHR8eR2CvXjyMmlWyvZ5uXJzUaxVszhy6BgVUAnZ6BLV0DWqowai6Am9oDf0bjwbr8aH8TkrXTGyniP0B8bXL+1hmu8=</latexit>

Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)

2

Core idea: Stepwise transition 
from pure noise to data

Algorithm 1 Training
1: repeat
2: x0 ⇠ q(x0)
3: t ⇠ Uniform({1, . . . , T})
4: ✏ ⇠ N (0, I)
5: Take gradient descent step on

r✓

��✏� ✏✓(
p
↵̄tx0 +

p
1� ↵̄t✏, t)

��2

6: until converged

Algorithm 2 Sampling

1: xT ⇠ N (0, I)
2: for t = T, . . . , 1 do
3: z ⇠ N (0, I) if t > 1, else z = 0

4: xt�1 = 1p
↵t

⇣
xt � 1�↵tp

1�↵̄t
✏✓(xt, t)

⌘
+ �tz

5: end for
6: return x0

Equation (10) reveals that µ✓ must predict 1p
↵t

⇣
xt � �tp

1�↵̄t
✏
⌘

given xt. Since xt is available as
input to the model, we may choose the parameterization

µ✓(xt, t) = µ̃t

✓
xt,

1p
↵̄t

(xt �
p

1 � ↵̄t✏✓(xt))

◆
=

1
p

↵t

✓
xt � �tp

1 � ↵̄t
✏✓(xt, t)

◆
(11)

where ✏✓ is a function approximator intended to predict ✏ from xt. To sample xt�1 ⇠ p✓(xt�1|xt) is
to compute xt�1 = 1p

↵t

⇣
xt � �tp

1�↵̄t
✏✓(xt, t)

⌘
+�tz, where z ⇠ N (0, I). The complete sampling

procedure, Algorithm 2, resembles Langevin dynamics with ✏✓ as a learned gradient of the data
density. Furthermore, with the parameterization (11), Eq. (10) simplifies to:

Ex0,✏


�

2
t

2�
2
t ↵t(1 � ↵̄t)

��✏ � ✏✓(
p

↵̄tx0 +
p

1 � ↵̄t✏, t)
��2

�
(12)

which resembles denoising score matching over multiple noise scales indexed by t [55]. As Eq. (12)
is equal to (one term of) the variational bound for the Langevin-like reverse process (11), we see
that optimizing an objective resembling denoising score matching is equivalent to using variational
inference to fit the finite-time marginal of a sampling chain resembling Langevin dynamics.

To summarize, we can train the reverse process mean function approximator µ✓ to predict µ̃t, or by
modifying its parameterization, we can train it to predict ✏. (There is also the possibility of predicting
x0, but we found this to lead to worse sample quality early in our experiments.) We have shown that
the ✏-prediction parameterization both resembles Langevin dynamics and simplifies the diffusion
model’s variational bound to an objective that resembles denoising score matching. Nonetheless,
it is just another parameterization of p✓(xt�1|xt), so we verify its effectiveness in Section 4 in an
ablation where we compare predicting ✏ against predicting µ̃t.

3.3 Data scaling, reverse process decoder, and L0

We assume that image data consists of integers in {0, 1, . . . , 255} scaled linearly to [�1, 1]. This
ensures that the neural network reverse process operates on consistently scaled inputs starting from
the standard normal prior p(xT ). To obtain discrete log likelihoods, we set the last term of the reverse
process to an independent discrete decoder derived from the Gaussian N (x0;µ✓(x1, 1), �2

1I):

p✓(x0|x1) =
DY

i=1

Z �+(xi
0)

��(xi
0)

N (x; µi
✓(x1, 1), �2

1) dx

�+(x) =

⇢
1 if x = 1
x + 1

255 if x < 1
��(x) =

⇢
�1 if x = �1
x � 1

255 if x > �1

(13)

where D is the data dimensionality and the i superscript indicates extraction of one coordinate.
(It would be straightforward to instead incorporate a more powerful decoder like a conditional
autoregressive model, but we leave that to future work.) Similar to the discretized continuous
distributions used in VAE decoders and autoregressive models [34, 52], our choice here ensures that
the variational bound is a lossless codelength of discrete data, without need of adding noise to the
data or incorporating the Jacobian of the scaling operation into the log likelihood. At the end of
sampling, we display µ✓(x1, 1) noiselessly.

3.4 Simplified training objective

With the reverse process and decoder defined above, the variational bound, consisting of terms derived
from Eqs. (12) and (13), is clearly differentiable with respect to ✓ and is ready to be employed for
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Algorithm 1 Training
1: repeat
2: x0 ⇠ q(x0)
3: t ⇠ Uniform({1, . . . , T})
4: ✏ ⇠ N (0, I)
5: Take gradient descent step on

r✓

��✏� ✏✓(
p
↵̄tx0 +

p
1� ↵̄t✏, t)

��2

6: until converged

Algorithm 2 Sampling

1: xT ⇠ N (0, I)
2: for t = T, . . . , 1 do
3: z ⇠ N (0, I) if t > 1, else z = 0

4: xt�1 = 1p
↵t

⇣
xt � 1�↵tp

1�↵̄t
✏✓(xt, t)

⌘
+ �tz

5: end for
6: return x0

Equation (10) reveals that µ✓ must predict 1p
↵t

⇣
xt � �tp

1�↵̄t
✏
⌘

given xt. Since xt is available as
input to the model, we may choose the parameterization

µ✓(xt, t) = µ̃t

✓
xt,

1p
↵̄t

(xt �
p

1 � ↵̄t✏✓(xt))

◆
=

1
p

↵t

✓
xt � �tp

1 � ↵̄t
✏✓(xt, t)

◆
(11)

where ✏✓ is a function approximator intended to predict ✏ from xt. To sample xt�1 ⇠ p✓(xt�1|xt) is
to compute xt�1 = 1p

↵t

⇣
xt � �tp

1�↵̄t
✏✓(xt, t)

⌘
+�tz, where z ⇠ N (0, I). The complete sampling

procedure, Algorithm 2, resembles Langevin dynamics with ✏✓ as a learned gradient of the data
density. Furthermore, with the parameterization (11), Eq. (10) simplifies to:

Ex0,✏


�

2
t

2�
2
t ↵t(1 � ↵̄t)

��✏ � ✏✓(
p

↵̄tx0 +
p

1 � ↵̄t✏, t)
��2

�
(12)

which resembles denoising score matching over multiple noise scales indexed by t [55]. As Eq. (12)
is equal to (one term of) the variational bound for the Langevin-like reverse process (11), we see
that optimizing an objective resembling denoising score matching is equivalent to using variational
inference to fit the finite-time marginal of a sampling chain resembling Langevin dynamics.

To summarize, we can train the reverse process mean function approximator µ✓ to predict µ̃t, or by
modifying its parameterization, we can train it to predict ✏. (There is also the possibility of predicting
x0, but we found this to lead to worse sample quality early in our experiments.) We have shown that
the ✏-prediction parameterization both resembles Langevin dynamics and simplifies the diffusion
model’s variational bound to an objective that resembles denoising score matching. Nonetheless,
it is just another parameterization of p✓(xt�1|xt), so we verify its effectiveness in Section 4 in an
ablation where we compare predicting ✏ against predicting µ̃t.

3.3 Data scaling, reverse process decoder, and L0

We assume that image data consists of integers in {0, 1, . . . , 255} scaled linearly to [�1, 1]. This
ensures that the neural network reverse process operates on consistently scaled inputs starting from
the standard normal prior p(xT ). To obtain discrete log likelihoods, we set the last term of the reverse
process to an independent discrete decoder derived from the Gaussian N (x0;µ✓(x1, 1), �2

1I):

p✓(x0|x1) =
DY

i=1

Z �+(xi
0)

��(xi
0)

N (x; µi
✓(x1, 1), �2

1) dx

�+(x) =

⇢
1 if x = 1
x + 1

255 if x < 1
��(x) =

⇢
�1 if x = �1
x � 1

255 if x > �1

(13)

where D is the data dimensionality and the i superscript indicates extraction of one coordinate.
(It would be straightforward to instead incorporate a more powerful decoder like a conditional
autoregressive model, but we leave that to future work.) Similar to the discretized continuous
distributions used in VAE decoders and autoregressive models [34, 52], our choice here ensures that
the variational bound is a lossless codelength of discrete data, without need of adding noise to the
data or incorporating the Jacobian of the scaling operation into the log likelihood. At the end of
sampling, we display µ✓(x1, 1) noiselessly.

3.4 Simplified training objective

With the reverse process and decoder defined above, the variational bound, consisting of terms derived
from Eqs. (12) and (13), is clearly differentiable with respect to ✓ and is ready to be employed for
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
= Eq


� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 4.3: The basic idea of diffusion models, where data is progressively perturbed with noise
and then reversed. The process of adding noise can be described by a stochastic differential
equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure
taken from Ref. [73].

where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,
respectively. By reversing this process, points drawn from the prior can be transformed into
samples that follow the data distribution. This reverse process is also described by a stochastic
differential equation:

dxt =
[
f(t)xt − g(t)2st(x)

]
dt+ g(t)dwt , (4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-
tion [182] and is defined as

st(x) = ∇x log pt(x) . (4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An
alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-
thors showed that for all diffusion processes, there exists a deterministic differential equation of
the form

dxt =

[
f(t)xt −

1

2
g(t)2st(xt)

]
dt . (4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved
with any standard ODE solver.

In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.
For diffusion models, an approximation of this score function can be learned with a neural net-
work. This formulation of diffusion models is referred to as score-based diffusion models [183,
184] and this approximation of the score function is strongly related to the training behaviour
of continuous normalizing flows. Therefore, a framework that describes both models will be

61
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form p✓(x0) :=
R

p✓(x0:T ) dx1:T , where
x1, . . . ,xT are latents of the same dimensionality as the data x0 ⇠ q(x0). The joint distribution
p✓(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ;0, I):

p✓(x0:T ) := p(xT )
TY

t=1

p✓(xt�1|xt), p✓(xt�1|xt) := N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule �1, . . . , �T :

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N (xt;
p

1 � �txt�1, �tI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [� log p✓(x0)]  Eq


� log

p✓(x0:T )

q(x1:T |x0)

�
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
� log p(xT ) �

X

t�1

log
p✓(xt�1|xt)

q(xt|xt�1)

�
=: L (3)

The forward process variances �t can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in p✓(xt�1|xt), because both processes have the same functional form when
�t are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation ↵t := 1 � �t and ↵̄t :=

Qt
s=1 ↵s, we have

q(xt|x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I) (4)
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Figure 4.3: The basic idea of diffusion models, where data is progressively perturbed with noise
and then reversed. The process of adding noise can be described by a stochastic differential
equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure
taken from Ref. [73].

where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,
respectively. By reversing this process, points drawn from the prior can be transformed into
samples that follow the data distribution. This reverse process is also described by a stochastic
differential equation:

dxt =
[
f(t)xt − g(t)2st(x)

]
dt+ g(t)dwt , (4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-
tion [182] and is defined as

st(x) = ∇x log pt(x) . (4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An
alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-
thors showed that for all diffusion processes, there exists a deterministic differential equation of
the form

dxt =

[
f(t)xt −

1

2
g(t)2st(xt)

]
dt . (4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved
with any standard ODE solver.

In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.
For diffusion models, an approximation of this score function can be learned with a neural net-
work. This formulation of diffusion models is referred to as score-based diffusion models [183,
184] and this approximation of the score function is strongly related to the training behaviour
of continuous normalizing flows. Therefore, a framework that describes both models will be
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large enough such that p�max pxq « N px;0,�2
maxIq. Song & Ermon (2019) propose to train a Noise

Conditional Score Network (NCSN), denoted by s✓px,�q, with a weighted sum of denoising score
matching (Vincent, 2011) objectives:

✓˚ “ argmin
✓

Nÿ

i“1

�2
i EpdatapxqEp�i px̃|xq

“
ks✓px̃,�iq ´ rx̃ log p�ipx̃ | xqk22

‰
. (1)

Given sufficient data and model capacity, the optimal score-based model s✓˚ px,�q matches
rx log p�pxq almost everywhere for � P t�iuNi“1. For sampling, Song & Ermon (2019) run M steps
of Langevin MCMC to get a sample for each p�ipxq sequentially:

xm
i “ xm´1

i ` ✏is✓˚ pxm´1
i ,�iq ` ?

2✏iz
m
i , m “ 1, 2, ¨ ¨ ¨ ,M, (2)

where ✏i ° 0 is the step size, and zmi is standard normal. The above is repeated for i “ N,N ´
1, ¨ ¨ ¨ , 1 in turn with x0

N „ N px | 0,�2
maxIq and x0

i “ xM
i`1 when i † N . As M Ñ 8 and ✏i Ñ 0

for all i, xM
1 becomes an exact sample from p�min pxq « pdatapxq under some regularity conditions.

2.2 DENOISING DIFFUSION PROBABILISTIC MODELS (DDPM)

Sohl-Dickstein et al. (2015); Ho et al. (2020) consider a sequence of positive noise scales
0 † �1,�2, ¨ ¨ ¨ ,�N † 1. For each training data point x0 „ pdatapxq, a discrete Markov chain
tx0,x1, ¨ ¨ ¨ ,xNu is constructed such that ppxi | xi´1q “ N pxi;

?
1 ´ �ixi´1,�iIq, and therefore

p↵ipxi | x0q “ N pxi;
?
↵ix0, p1 ´ ↵iqIq, where ↵i :“

±i
j“1p1 ´ �jq. Similar to SMLD, we can

denote the perturbed data distribution as p↵ipx̃q :“ ≥
pdatapxqp↵ipx̃ | xqdx. The noise scales are pre-

scribed such that xN is approximately distributed according to N p0, Iq. A variational Markov chain
in the reverse direction is parameterized with p✓pxi´1|xiq “ N pxi´1;

1?
1´�i

pxi`�is✓pxi, iqq,�iIq,
and trained with a re-weighted variant of the evidence lower bound (ELBO):

✓˚ “ argmin
✓

Nÿ

i“1

p1 ´ ↵iqEpdatapxqEp↵i px̃|xqrks✓px̃, iq ´ rx̃ log p↵ipx̃ | xqk22s. (3)

After solving Eq. (3) to get the optimal model s✓˚ px, iq, samples can be generated by starting from
xN „ N p0, Iq and following the estimated reverse Markov chain as below

xi´1 “ 1?
1 ´ �i

pxi ` �is✓˚ pxi, iqq `
a
�izi, i “ N,N ´ 1, ¨ ¨ ¨ , 1. (4)

We call this method ancestral sampling, since it amounts to performing ancestral sampling from
the graphical model

±N
i“1 p✓pxi´1 | xiq. The objective Eq. (3) described here is Lsimple in Ho et al.

(2020), written in a form to expose more similarity to Eq. (1). Like Eq. (1), Eq. (3) is also a weighted
sum of denoising score matching objectives, which implies that the optimal model, s✓˚ px̃, iq, matches
the score of the perturbed data distribution, rx log p↵ipxq. Notably, the weights of the i-th summand
in Eq. (1) and Eq. (3), namely �2

i and p1´↵iq, are related to corresponding perturbation kernels in the
same functional form: �2

i 91{Erkrx log p�ipx̃ | xqk22s and p1 ´ ↵iq91{Erkrx log p↵ipx̃ | xqk22s.

3 SCORE-BASED GENERATIVE MODELING WITH SDES

Perturbing data with multiple noise scales is key to the success of previous methods. We propose to
generalize this idea further to an infinite number of noise scales, such that perturbed data distributions
evolve according to an SDE as the noise intensifies. An overview of our framework is given in Fig. 2.

3.1 PERTURBING DATA WITH SDES

Our goal is to construct a diffusion process txptquTt“0 indexed by a continuous time variable t P r0, T s,
such that xp0q „ p0, for which we have a dataset of i.i.d. samples, and xpT q „ pT , for which we
have a tractable form to generate samples efficiently. In other words, p0 is the data distribution and
pT is the prior distribution. This diffusion process can be modeled as the solution to an Itô SDE:

dx “ fpx, tqdt ` gptqdw, (5)
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Figure 4.3: The basic idea of diffusion models, where data is progressively perturbed with noise
and then reversed. The process of adding noise can be described by a stochastic differential
equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure
taken from Ref. [73].

where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,
respectively. By reversing this process, points drawn from the prior can be transformed into
samples that follow the data distribution. This reverse process is also described by a stochastic
differential equation:

dxt =
[
f(t)xt − g(t)2st(x)

]
dt+ g(t)dwt , (4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-
tion [182] and is defined as

st(x) = ∇x log pt(x) . (4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An
alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-
thors showed that for all diffusion processes, there exists a deterministic differential equation of
the form

dxt =

[
f(t)xt −

1

2
g(t)2st(xt)

]
dt . (4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved
with any standard ODE solver.

In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.
For diffusion models, an approximation of this score function can be learned with a neural net-
work. This formulation of diffusion models is referred to as score-based diffusion models [183,
184] and this approximation of the score function is strongly related to the training behaviour
of continuous normalizing flows. Therefore, a framework that describes both models will be
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Figure 2: Overview of score-based generative modeling through SDEs. We can map data to a
noise distribution (the prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling
(Section 3.2). We can also reverse the associated probability flow ODE (Section 4.3), which yields a
deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE
and probability flow ODE can be obtained by estimating the score rx log ptpxq (Section 3.3).

where w is the standard Wiener process (a.k.a., Brownian motion), fp¨, tq : Rd Ñ Rd is a vector-
valued function called the drift coefficient of xptq, and gp¨q : R Ñ R is a scalar function known as
the diffusion coefficient of xptq. For ease of presentation we assume the diffusion coefficient is a
scalar (instead of a dˆ d matrix) and does not depend on x, but our theory can be generalized to hold
in those cases (see Appendix A). The SDE has a unique strong solution as long as the coefficients
are globally Lipschitz in both state and time (Øksendal, 2003). We hereafter denote by ptpxq the
probability density of xptq, and use pstpxptq | xpsqq to denote the transition kernel from xpsq to xptq,
where 0 § s † t § T .

Typically, pT is an unstructured prior distribution that contains no information of p0, such as a
Gaussian distribution with fixed mean and variance. There are various ways of designing the SDE in
Eq. (5) such that it diffuses the data distribution into a fixed prior distribution. We provide several
examples later in Section 3.4 that are derived from continuous generalizations of SMLD and DDPM.

3.2 GENERATING SAMPLES BY REVERSING THE SDE

By starting from samples of xpT q „ pT and reversing the process, we can obtain samples xp0q „ p0.
A remarkable result from Anderson (1982) states that the reverse of a diffusion process is also a
diffusion process, running backwards in time and given by the reverse-time SDE:

dx “ rfpx, tq ´ gptq2rx log ptpxqsdt ` gptqdw̄, (6)

where w̄ is a standard Wiener process when time flows backwards from T to 0, and dt is an
infinitesimal negative timestep. Once the score of each marginal distribution, rx log ptpxq, is known
for all t, we can derive the reverse diffusion process from Eq. (6) and simulate it to sample from p0.

3.3 ESTIMATING SCORES FOR THE SDE

The score of a distribution can be estimated by training a score-based model on samples with
score matching (Hyvärinen, 2005; Song et al., 2019a). To estimate rx log ptpxq, we can train a
time-dependent score-based model s✓px, tq via a continuous generalization to Eqs. (1) and (3):

✓˚ “ argmin
✓

Et

!
�ptqExp0qExptq|xp0q

“ ��s✓pxptq, tq ´ rxptq log p0tpxptq | xp0qq
��2
2

‰)
. (7)

Here � : r0, T s Ñ R°0 is a positive weighting function, t is uniformly sampled over r0, T s,
xp0q „ p0pxq and xptq „ p0tpxptq | xp0qq. With sufficient data and model capacity, score matching
ensures that the optimal solution to Eq. (7), denoted by s✓˚ px, tq, equals rx log ptpxq for almost all
x and t. As in SMLD and DDPM, we can typically choose �91{E

“ ��rxptq log p0tpxptq | xp0qq
��2
2

‰
.

Note that Eq. (7) uses denoising score matching, but other score matching objectives, such as sliced

4

Score function

Probability density of x(t)



Continuos Diff

High Fidelity Particle Cloud Generation with Flow Matching Cedric Ewen

Figure 4.3: The basic idea of diffusion models, where data is progressively perturbed with noise
and then reversed. The process of adding noise can be described by a stochastic differential
equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure
taken from Ref. [73].

where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,
respectively. By reversing this process, points drawn from the prior can be transformed into
samples that follow the data distribution. This reverse process is also described by a stochastic
differential equation:

dxt =
[
f(t)xt − g(t)2st(x)

]
dt+ g(t)dwt , (4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-
tion [182] and is defined as

st(x) = ∇x log pt(x) . (4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An
alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-
thors showed that for all diffusion processes, there exists a deterministic differential equation of
the form

dxt =

[
f(t)xt −

1

2
g(t)2st(xt)

]
dt . (4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved
with any standard ODE solver.

In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.
For diffusion models, an approximation of this score function can be learned with a neural net-
work. This formulation of diffusion models is referred to as score-based diffusion models [183,
184] and this approximation of the score function is strongly related to the training behaviour
of continuous normalizing flows. Therefore, a framework that describes both models will be
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Figure 2: Overview of score-based generative modeling through SDEs. We can map data to a
noise distribution (the prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling
(Section 3.2). We can also reverse the associated probability flow ODE (Section 4.3), which yields a
deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE
and probability flow ODE can be obtained by estimating the score rx log ptpxq (Section 3.3).

where w is the standard Wiener process (a.k.a., Brownian motion), fp¨, tq : Rd Ñ Rd is a vector-
valued function called the drift coefficient of xptq, and gp¨q : R Ñ R is a scalar function known as
the diffusion coefficient of xptq. For ease of presentation we assume the diffusion coefficient is a
scalar (instead of a dˆ d matrix) and does not depend on x, but our theory can be generalized to hold
in those cases (see Appendix A). The SDE has a unique strong solution as long as the coefficients
are globally Lipschitz in both state and time (Øksendal, 2003). We hereafter denote by ptpxq the
probability density of xptq, and use pstpxptq | xpsqq to denote the transition kernel from xpsq to xptq,
where 0 § s † t § T .

Typically, pT is an unstructured prior distribution that contains no information of p0, such as a
Gaussian distribution with fixed mean and variance. There are various ways of designing the SDE in
Eq. (5) such that it diffuses the data distribution into a fixed prior distribution. We provide several
examples later in Section 3.4 that are derived from continuous generalizations of SMLD and DDPM.

3.2 GENERATING SAMPLES BY REVERSING THE SDE

By starting from samples of xpT q „ pT and reversing the process, we can obtain samples xp0q „ p0.
A remarkable result from Anderson (1982) states that the reverse of a diffusion process is also a
diffusion process, running backwards in time and given by the reverse-time SDE:

dx “ rfpx, tq ´ gptq2rx log ptpxqsdt ` gptqdw̄, (6)

where w̄ is a standard Wiener process when time flows backwards from T to 0, and dt is an
infinitesimal negative timestep. Once the score of each marginal distribution, rx log ptpxq, is known
for all t, we can derive the reverse diffusion process from Eq. (6) and simulate it to sample from p0.

3.3 ESTIMATING SCORES FOR THE SDE

The score of a distribution can be estimated by training a score-based model on samples with
score matching (Hyvärinen, 2005; Song et al., 2019a). To estimate rx log ptpxq, we can train a
time-dependent score-based model s✓px, tq via a continuous generalization to Eqs. (1) and (3):

✓˚ “ argmin
✓

Et

!
�ptqExp0qExptq|xp0q

“ ��s✓pxptq, tq ´ rxptq log p0tpxptq | xp0qq
��2
2

‰)
. (7)

Here � : r0, T s Ñ R°0 is a positive weighting function, t is uniformly sampled over r0, T s,
xp0q „ p0pxq and xptq „ p0tpxptq | xp0qq. With sufficient data and model capacity, score matching
ensures that the optimal solution to Eq. (7), denoted by s✓˚ px, tq, equals rx log ptpxq for almost all
x and t. As in SMLD and DDPM, we can typically choose �91{E

“ ��rxptq log p0tpxptq | xp0qq
��2
2

‰
.

Note that Eq. (7) uses denoising score matching, but other score matching objectives, such as sliced
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Figure 2: Overview of score-based generative modeling through SDEs. We can map data to a
noise distribution (the prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling
(Section 3.2). We can also reverse the associated probability flow ODE (Section 4.3), which yields a
deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE
and probability flow ODE can be obtained by estimating the score rx log ptpxq (Section 3.3).

where w is the standard Wiener process (a.k.a., Brownian motion), fp¨, tq : Rd Ñ Rd is a vector-
valued function called the drift coefficient of xptq, and gp¨q : R Ñ R is a scalar function known as
the diffusion coefficient of xptq. For ease of presentation we assume the diffusion coefficient is a
scalar (instead of a dˆ d matrix) and does not depend on x, but our theory can be generalized to hold
in those cases (see Appendix A). The SDE has a unique strong solution as long as the coefficients
are globally Lipschitz in both state and time (Øksendal, 2003). We hereafter denote by ptpxq the
probability density of xptq, and use pstpxptq | xpsqq to denote the transition kernel from xpsq to xptq,
where 0 § s † t § T .

Typically, pT is an unstructured prior distribution that contains no information of p0, such as a
Gaussian distribution with fixed mean and variance. There are various ways of designing the SDE in
Eq. (5) such that it diffuses the data distribution into a fixed prior distribution. We provide several
examples later in Section 3.4 that are derived from continuous generalizations of SMLD and DDPM.

3.2 GENERATING SAMPLES BY REVERSING THE SDE

By starting from samples of xpT q „ pT and reversing the process, we can obtain samples xp0q „ p0.
A remarkable result from Anderson (1982) states that the reverse of a diffusion process is also a
diffusion process, running backwards in time and given by the reverse-time SDE:

dx “ rfpx, tq ´ gptq2rx log ptpxqsdt ` gptqdw̄, (6)

where w̄ is a standard Wiener process when time flows backwards from T to 0, and dt is an
infinitesimal negative timestep. Once the score of each marginal distribution, rx log ptpxq, is known
for all t, we can derive the reverse diffusion process from Eq. (6) and simulate it to sample from p0.

3.3 ESTIMATING SCORES FOR THE SDE

The score of a distribution can be estimated by training a score-based model on samples with
score matching (Hyvärinen, 2005; Song et al., 2019a). To estimate rx log ptpxq, we can train a
time-dependent score-based model s✓px, tq via a continuous generalization to Eqs. (1) and (3):

✓˚ “ argmin
✓

Et
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�ptqExp0qExptq|xp0q

“ ��s✓pxptq, tq ´ rxptq log p0tpxptq | xp0qq
��2
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‰)
. (7)

Here � : r0, T s Ñ R°0 is a positive weighting function, t is uniformly sampled over r0, T s,
xp0q „ p0pxq and xptq „ p0tpxptq | xp0qq. With sufficient data and model capacity, score matching
ensures that the optimal solution to Eq. (7), denoted by s✓˚ px, tq, equals rx log ptpxq for almost all
x and t. As in SMLD and DDPM, we can typically choose �91{E

“ ��rxptq log p0tpxptq | xp0qq
��2
2

‰
.

Note that Eq. (7) uses denoising score matching, but other score matching objectives, such as sliced
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Figure 4.3: The basic idea of diffusion models, where data is progressively perturbed with noise
and then reversed. The process of adding noise can be described by a stochastic differential
equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure
taken from Ref. [73].

where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,
respectively. By reversing this process, points drawn from the prior can be transformed into
samples that follow the data distribution. This reverse process is also described by a stochastic
differential equation:

dxt =
[
f(t)xt − g(t)2st(x)

]
dt+ g(t)dwt , (4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-
tion [182] and is defined as

st(x) = ∇x log pt(x) . (4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An
alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-
thors showed that for all diffusion processes, there exists a deterministic differential equation of
the form

dxt =

[
f(t)xt −

1

2
g(t)2st(xt)

]
dt . (4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved
with any standard ODE solver.

In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.
For diffusion models, an approximation of this score function can be learned with a neural net-
work. This formulation of diffusion models is referred to as score-based diffusion models [183,
184] and this approximation of the score function is strongly related to the training behaviour
of continuous normalizing flows. Therefore, a framework that describes both models will be
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Figure 4.3: The basic idea of diffusion models, where data is progressively perturbed with noise

and then reversed. The process of adding noise can be described by a stochastic differential

equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure

taken from Ref. [73].where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,

respectively. By reversing this process, points drawn from the prior can be transformed into

samples that follow the data distribution. This reverse process is also described by a stochastic

differential equation:

dxt =
[
f(t)xt − g(t) 2st(x)

]
dt+ g(t)dwt ,

(4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-

tion [182] and is defined as

st(x) = ∇
x log pt(x) .

(4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An

alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-

thors showed that for all diffusion processes, there exists a deterministic differential equation of

the form

dxt =
[
f(t)xt − 1

2 g(t) 2st(xt)
]
dt .

(4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved

with any standard ODE solver.In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.

For diffusion models, an approximation of this score function can be learned with a neural net-

work. This formulation of diffusion models is referred to as score-based diffusion models [183,

184] and this approximation of the score function is strongly related to the training behaviour

of continuous normalizing flows. Therefore, a framework that describes both models will be
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Figure 4.2: Intuitive transformation from an ordinary discrete normalizing flow to a continuous
normalizing flow (CNF). An ordinary normalizing flow consists of a countable number of inde-
pendent invertible functions ft that are applied sequentially. By assuming that the independent
functions are one function at different points in time t and taking the limit of infinitely small
time steps, one can describe the transformation with an ordinary differential equation. For an
ordinary normalizing flow, the functions ft are directly represented with neural networks. For
the continuous normalizing flow, the time derivative of xt is a neural network and x0 can be
obtained by solving the differential equation. The probability paths are just for illustrating the
move from discrete to continuous paths and do not represent the actual probability paths for the
shown distributions. Parts of the figure are taken from Refs. [74, 179].

special architectures have to be used. Second, the training is very computationally expensive
due to the evaluation of the log-determinant of the Jacobian scaling with O(d3). Correspond-
ingly, most of the research on normalizing flows has been focused on finding invertible neural
network architectures that exploit cheap calculations of the Jacobian while still being expressive
enough to model complex data distributions [174–178]

4.3 Continuous Normalizing Flows

In the previous section, a normalizing flow was introduced as a sequence of invertible functions.
Usually, these functions are independent of each other, but one can also see them as one function
at different points in time t. When considering infinitely small time steps, this time-dependent
function can be described by an ordinary differential equation and is referred to as continuous
normalizing flow (CNF) xt [74]:

dxt

dt
= vt(xt) , (4.8)

where vt is a time-dependent vector field. It is this vector field that is now modelled by a neural
network instead of the flow as in the case for ordinary normalizing flows. This vector field gen-
erates a probability path pt, which describes how the marginal probability density changes over
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4.2 Normalizing Flows

Normalizing flows [170] are a class of generative models that are based on the change of vari-
ables formula. Let x1 be a random variable with density p0 : Rd → [0,∞) and f : Rd → Rd be
a bijective (invertible) function. Then the density p0 : R → [0,∞) of the random variable x0

with x0 = f(x1) is given by

p0(x0) = p1(x1)

∣∣∣∣det
∂f(x1)

∂x1

∣∣∣∣
−1

. (4.4)

In order to express complex densities it makes sense to use a sequence of invertible functions ft
with t = T, T − 1..., 1 instead of a single function f . This leads to the following formula

x0 = f1... ◦ fT−1 ◦ fT (xT ) , (4.5)

p0(x0) = pT (xT )
∏

t

∣∣∣∣det
∂ft(xT )

∂xT

∣∣∣∣
−1

= pT (xT )
∏

t

|det Jt|−1 , (4.6)

where Jt is the Jacobian matrix of ft.

This formula can be used to transform a simple density pT into a more complex density p0

and an illustration of this can be seen in Fig. 4.2. In generative modelling, the goal is also to
transform a simple density pT into a more complex density p0, where p0 is the density of the
training data. To turn this into a generative model, the function ft is chosen to be a neural net-
work. Additionally, a simple density pT is needed which is typically chosen to be a Gaussian.
This means that one can just sample from pT and feed it through the neural network to get a
sample from the complex data distribution that was learned by the model.

Now the question remains how to train the model. It turns out that taking the logarithm of
Eq. 4.6 actually leads to a function that can be used as a loss function to train the model:

log p0(x0) = log pT (xT )−
∑

t

log |det Jt| (4.7)

This is the log-likelihood and the first term is like a mean square error loss and the second term
is there to ensure that the distributions are properly normalized - hence the name normalizing
flows.

Having the log-likelihood as a loss function is useful because this results in a very stable training
behaviour which is not the case for other generative models like generative adversarial networks
(GANs). Additionally, the log-likelihood can be used to evaluate the performance of the model.
There are however two main issues when using neural networks with this approach. First, the
transformation ft has to be invertible. This is not the case for most neural networks and therefore
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Figure 4.2: Intuitive transformation from an ordinary discrete normalizing flow to a continuous
normalizing flow (CNF). An ordinary normalizing flow consists of a countable number of inde-
pendent invertible functions ft that are applied sequentially. By assuming that the independent
functions are one function at different points in time t and taking the limit of infinitely small
time steps, one can describe the transformation with an ordinary differential equation. For an
ordinary normalizing flow, the functions ft are directly represented with neural networks. For
the continuous normalizing flow, the time derivative of xt is a neural network and x0 can be
obtained by solving the differential equation. The probability paths are just for illustrating the
move from discrete to continuous paths and do not represent the actual probability paths for the
shown distributions. Parts of the figure are taken from Refs. [74, 179].

special architectures have to be used. Second, the training is very computationally expensive
due to the evaluation of the log-determinant of the Jacobian scaling with O(d3). Correspond-
ingly, most of the research on normalizing flows has been focused on finding invertible neural
network architectures that exploit cheap calculations of the Jacobian while still being expressive
enough to model complex data distributions [174–178]

4.3 Continuous Normalizing Flows

In the previous section, a normalizing flow was introduced as a sequence of invertible functions.
Usually, these functions are independent of each other, but one can also see them as one function
at different points in time t. When considering infinitely small time steps, this time-dependent
function can be described by an ordinary differential equation and is referred to as continuous
normalizing flow (CNF) xt [74]:

dxt

dt
= vt(xt) , (4.8)

where vt is a time-dependent vector field. It is this vector field that is now modelled by a neural
network instead of the flow as in the case for ordinary normalizing flows. This vector field gen-
erates a probability path pt, which describes how the marginal probability density changes over
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Figure 4.2: Intuitive transformation from an ordinary discrete normalizing flow to a continuous
normalizing flow (CNF). An ordinary normalizing flow consists of a countable number of inde-
pendent invertible functions ft that are applied sequentially. By assuming that the independent
functions are one function at different points in time t and taking the limit of infinitely small
time steps, one can describe the transformation with an ordinary differential equation. For an
ordinary normalizing flow, the functions ft are directly represented with neural networks. For
the continuous normalizing flow, the time derivative of xt is a neural network and x0 can be
obtained by solving the differential equation. The probability paths are just for illustrating the
move from discrete to continuous paths and do not represent the actual probability paths for the
shown distributions. Parts of the figure are taken from Refs. [74, 179].

special architectures have to be used. Second, the training is very computationally expensive
due to the evaluation of the log-determinant of the Jacobian scaling with O(d3). Correspond-
ingly, most of the research on normalizing flows has been focused on finding invertible neural
network architectures that exploit cheap calculations of the Jacobian while still being expressive
enough to model complex data distributions [174–178]
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In the previous section, a normalizing flow was introduced as a sequence of invertible functions.
Usually, these functions are independent of each other, but one can also see them as one function
at different points in time t. When considering infinitely small time steps, this time-dependent
function can be described by an ordinary differential equation and is referred to as continuous
normalizing flow (CNF) xt [74]:

dxt

dt
= vt(xt) , (4.8)

where vt is a time-dependent vector field. It is this vector field that is now modelled by a neural
network instead of the flow as in the case for ordinary normalizing flows. This vector field gen-
erates a probability path pt, which describes how the marginal probability density changes over
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time, i.e. from a data distribution p0 at t = 0 to a prior distribution p1 at t = 1. The probability
path is a result of the CNF xt that pushes the density forward via the change of variable formula
exactly like in the previous section.

Sampling from a trained model is now as easy as solving this differential equation, which can
be done with any standard algorithm for solving differential equations. For training the model,
the log likelihood can still be used but the formula changes to

log p0(x0) = log p1(x1)−
∫ t0

t1

tr
(
∂ut

∂xt

)
dt . (4.9)

This means that instead of the log determinant of the Jacobian in Eq. 4.7, now only the trace
needs to be calculated which scales with O(d2) instead of O(d3). Additionally, the neural net-
work does not need to be invertible any more which gives much more freedom in the choice of
the architecture.

Although the computational complexity of the training has been reduced, the training is still
computationally expensive. One reason for this is that for the first term in Eq. 4.9, the reverse
ODE needs to be solved during training to get x0 from x1. The second reason is that the scaling
of the trace withO(d2) is still not ideal. There have been some approaches to reduce the compu-
tational complexity even further, for example by using Hutchinson’s trace estimator [179] that
reduced the computational complexity to O(d) but in practice CNFs are still computationally
expensive to train. The generation is also slower than for other generative models like GANs,
because ODE solvers require multiple forward passes through the neural network. [180]

4.4 Diffusion Models

Diffusion Models are a different class of generative models that also transform a simple density
into a more complex one. The starting idea was to progressively perturb the data with noise and
then try to reverse this process for the generation. In the last years, diffusion models have be-
come very popular due to their simple and stable training procedure and their ability to generate
high-quality samples, overtaking GANs in generation fidelity [172, 181].

In the beginning, this noise perturbation was done in discrete steps [172] but over time con-
tinuous processes became more common. This continuous process of adding noise to the data
can be described by a stochastic differential equation (SDE) [73]. Considering a diffusion pro-
cess {xt}t≥0 where the points follow a data distribution at t = 0 and a prior at t = 1, the SDE is
given by

dxt = f(t)xtdt+ g(t)dwt , (4.10)
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4.2 Normalizing Flows

Normalizing flows [170] are a class of generative models that are based on the change of vari-
ables formula. Let x1 be a random variable with density p0 : Rd → [0,∞) and f : Rd → Rd be
a bijective (invertible) function. Then the density p0 : R → [0,∞) of the random variable x0

with x0 = f(x1) is given by

p0(x0) = p1(x1)

∣∣∣∣det
∂f(x1)

∂x1

∣∣∣∣
−1

. (4.4)

In order to express complex densities it makes sense to use a sequence of invertible functions ft
with t = T, T − 1..., 1 instead of a single function f . This leads to the following formula

x0 = f1... ◦ fT−1 ◦ fT (xT ) , (4.5)

p0(x0) = pT (xT )
∏

t

∣∣∣∣det
∂ft(xT )

∂xT

∣∣∣∣
−1

= pT (xT )
∏

t

|det Jt|−1 , (4.6)

where Jt is the Jacobian matrix of ft.

This formula can be used to transform a simple density pT into a more complex density p0

and an illustration of this can be seen in Fig. 4.2. In generative modelling, the goal is also to
transform a simple density pT into a more complex density p0, where p0 is the density of the
training data. To turn this into a generative model, the function ft is chosen to be a neural net-
work. Additionally, a simple density pT is needed which is typically chosen to be a Gaussian.
This means that one can just sample from pT and feed it through the neural network to get a
sample from the complex data distribution that was learned by the model.

Now the question remains how to train the model. It turns out that taking the logarithm of
Eq. 4.6 actually leads to a function that can be used as a loss function to train the model:

log p0(x0) = log pT (xT )−
∑

t

log |det Jt| (4.7)

This is the log-likelihood and the first term is like a mean square error loss and the second term
is there to ensure that the distributions are properly normalized - hence the name normalizing
flows.

Having the log-likelihood as a loss function is useful because this results in a very stable training
behaviour which is not the case for other generative models like generative adversarial networks
(GANs). Additionally, the log-likelihood can be used to evaluate the performance of the model.
There are however two main issues when using neural networks with this approach. First, the
transformation ft has to be invertible. This is not the case for most neural networks and therefore
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Figure 4.2: Intuitive transformation from an ordinary discrete normalizing flow to a continuous
normalizing flow (CNF). An ordinary normalizing flow consists of a countable number of inde-
pendent invertible functions ft that are applied sequentially. By assuming that the independent
functions are one function at different points in time t and taking the limit of infinitely small
time steps, one can describe the transformation with an ordinary differential equation. For an
ordinary normalizing flow, the functions ft are directly represented with neural networks. For
the continuous normalizing flow, the time derivative of xt is a neural network and x0 can be
obtained by solving the differential equation. The probability paths are just for illustrating the
move from discrete to continuous paths and do not represent the actual probability paths for the
shown distributions. Parts of the figure are taken from Refs. [74, 179].

special architectures have to be used. Second, the training is very computationally expensive
due to the evaluation of the log-determinant of the Jacobian scaling with O(d3). Correspond-
ingly, most of the research on normalizing flows has been focused on finding invertible neural
network architectures that exploit cheap calculations of the Jacobian while still being expressive
enough to model complex data distributions [174–178]

4.3 Continuous Normalizing Flows

In the previous section, a normalizing flow was introduced as a sequence of invertible functions.
Usually, these functions are independent of each other, but one can also see them as one function
at different points in time t. When considering infinitely small time steps, this time-dependent
function can be described by an ordinary differential equation and is referred to as continuous
normalizing flow (CNF) xt [74]:

dxt

dt
= vt(xt) , (4.8)

where vt is a time-dependent vector field. It is this vector field that is now modelled by a neural
network instead of the flow as in the case for ordinary normalizing flows. This vector field gen-
erates a probability path pt, which describes how the marginal probability density changes over

59

For sampling: 

Solve differential equation (ODE)




Remember: Normalising Flows
High Fidelity Particle Cloud Generation with Flow Matching Cedric Ewen

discrete normalizing flow continuous normalizing flow 

5 05
Input/Hidden/Output

0

1

2

3

4

5

D
ep
th

5 05
Input/Hidden/Output

0

1

2

3

4

5

D
ep
th

0

z

0

z

generate

train

Figure 4.2: Intuitive transformation from an ordinary discrete normalizing flow to a continuous
normalizing flow (CNF). An ordinary normalizing flow consists of a countable number of inde-
pendent invertible functions ft that are applied sequentially. By assuming that the independent
functions are one function at different points in time t and taking the limit of infinitely small
time steps, one can describe the transformation with an ordinary differential equation. For an
ordinary normalizing flow, the functions ft are directly represented with neural networks. For
the continuous normalizing flow, the time derivative of xt is a neural network and x0 can be
obtained by solving the differential equation. The probability paths are just for illustrating the
move from discrete to continuous paths and do not represent the actual probability paths for the
shown distributions. Parts of the figure are taken from Refs. [74, 179].

special architectures have to be used. Second, the training is very computationally expensive
due to the evaluation of the log-determinant of the Jacobian scaling with O(d3). Correspond-
ingly, most of the research on normalizing flows has been focused on finding invertible neural
network architectures that exploit cheap calculations of the Jacobian while still being expressive
enough to model complex data distributions [174–178]

4.3 Continuous Normalizing Flows

In the previous section, a normalizing flow was introduced as a sequence of invertible functions.
Usually, these functions are independent of each other, but one can also see them as one function
at different points in time t. When considering infinitely small time steps, this time-dependent
function can be described by an ordinary differential equation and is referred to as continuous
normalizing flow (CNF) xt [74]:

dxt

dt
= vt(xt) , (4.8)

where vt is a time-dependent vector field. It is this vector field that is now modelled by a neural
network instead of the flow as in the case for ordinary normalizing flows. This vector field gen-
erates a probability path pt, which describes how the marginal probability density changes over
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Figure 4.2: Intuitive transformation from an ordinary discrete normalizing flow to a continuous
normalizing flow (CNF). An ordinary normalizing flow consists of a countable number of inde-
pendent invertible functions ft that are applied sequentially. By assuming that the independent
functions are one function at different points in time t and taking the limit of infinitely small
time steps, one can describe the transformation with an ordinary differential equation. For an
ordinary normalizing flow, the functions ft are directly represented with neural networks. For
the continuous normalizing flow, the time derivative of xt is a neural network and x0 can be
obtained by solving the differential equation. The probability paths are just for illustrating the
move from discrete to continuous paths and do not represent the actual probability paths for the
shown distributions. Parts of the figure are taken from Refs. [74, 179].

special architectures have to be used. Second, the training is very computationally expensive
due to the evaluation of the log-determinant of the Jacobian scaling with O(d3). Correspond-
ingly, most of the research on normalizing flows has been focused on finding invertible neural
network architectures that exploit cheap calculations of the Jacobian while still being expressive
enough to model complex data distributions [174–178]

4.3 Continuous Normalizing Flows

In the previous section, a normalizing flow was introduced as a sequence of invertible functions.
Usually, these functions are independent of each other, but one can also see them as one function
at different points in time t. When considering infinitely small time steps, this time-dependent
function can be described by an ordinary differential equation and is referred to as continuous
normalizing flow (CNF) xt [74]:

dxt

dt
= vt(xt) , (4.8)

where vt is a time-dependent vector field. It is this vector field that is now modelled by a neural
network instead of the flow as in the case for ordinary normalizing flows. This vector field gen-
erates a probability path pt, which describes how the marginal probability density changes over
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data sample x0 at t = 0 to a distribution p(x) at t = 1 (Fig. 4.4)2. Marginalizing over p gives
the marginal probability path which is a good approximation of the data distribution p0 at t = 0:

pt(x) =

∫
dx0 pt(x|x0)p0(x0) . (4.15)

The marginal vector field for generating this probability path can also be calculated by marginal-
izing over the conditioned vector fields ut(x|x0) and is given by

ut(x) =

∫
dx0 ut(x|x0)

pt(x|x0)p0(x0)

pt(x)
. (4.16)

The calculation of the marginal probability path and the marginal vector field is still not trivial
but fortunately, the training objective can be written in a way that does not require either. In
Ref. [75] it was shown that replacing the ut in the loss function with ut(x|x0) leads to the same
results. Therefore, the loss function becomes

LFM = ‖vθ(xt|t)− ut(xt|x0)‖2 . (4.17)

In order to use this loss function, one just needs to be able to sample from the conditional prob-
ability paths pt(x|x0) and calculate the conditioned vector fields ut(x|x0). Both steps are easy
to do because of the definition on a per-sample basis.

4.5.2 Gaussian Conditional Probability Paths

What remains is the definition of the conditional probability paths and vector fields. A natural
choice is to use Gaussian probability paths of the form

pt(x|x0) = N (x|γt,σt) , (4.18)

where µt(x0) and σt(x0) are the mean and covariance of the Gaussian distribution at time t

conditioned on the initial state x0. In Ref. [75] one specific choice of conditional Gaussian
probability paths was used where all paths go from a Gaussian with a small standard deviation
centred around x0 to the unit Gaussian distribution at t = 1. Many vector fields can generate
this probability path but one transformation that leads to a simple vector field is the flow

xt = γt + σtε , (4.19)

where ε is a point that follows the probability path distributions at each time step. The corre-
sponding vector field is given by

ut(xt|x0) = γ̇t + σ̇tε . (4.20)
2In the flow matching literature the time convention is usually reversed, e.g. noise at t = 0 and data at t = 1,

this thesis however will stick to the convention used for most diffusion models.
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conditioned on the initial state x0. In Ref. [75] one specific choice of conditional Gaussian
probability paths was used where all paths go from a Gaussian with a small standard deviation
centred around x0 to the unit Gaussian distribution at t = 1. Many vector fields can generate
this probability path but one transformation that leads to a simple vector field is the flow

xt = γt + σtε , (4.19)

where ε is a point that follows the probability path distributions at each time step. The corre-
sponding vector field is given by
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conditioned on the initial state x0. In Ref. [75] one specific choice of conditional Gaussian
probability paths was used where all paths go from a Gaussian with a small standard deviation
centred around x0 to the unit Gaussian distribution at t = 1. Many vector fields can generate
this probability path but one transformation that leads to a simple vector field is the flow

xt = γt + σtε , (4.19)

where ε is a point that follows the probability path distributions at each time step. The corre-
sponding vector field is given by

ut(xt|x0) = γ̇t + σ̇tε . (4.20)
2In the flow matching literature the time convention is usually reversed, e.g. noise at t = 0 and data at t = 1,

this thesis however will stick to the convention used for most diffusion models.

63

How to get the vector field 
describing morphing?


Constrains:

At t=0: Input data

At t=1: Target latent distribution


Use mixture of conditional 
morphings 


conditional path
Marginal path


Would allow calculating corresponding  
vector field


Still expensive, let network only 
approximate conditional vector field


22
10

.0
27

47
  



Flow Matching

How to get the vector field 
describing morphing?


Constrains:

At t=0: Input data

At t=1: Target latent distribution


Use mixture of conditional 
morphings 


But what are the  
actual paths?

Can use Gaussians with 
linear interpolation

22
10

.0
27

47
  

High Fidelity Particle Cloud Generation with Flow Matching Cedric Ewen

data sample x0 at t = 0 to a distribution p(x) at t = 1 (Fig. 4.4)2. Marginalizing over p gives
the marginal probability path which is a good approximation of the data distribution p0 at t = 0:

pt(x) =

∫
dx0 pt(x|x0)p0(x0) . (4.15)

The marginal vector field for generating this probability path can also be calculated by marginal-
izing over the conditioned vector fields ut(x|x0) and is given by

ut(x) =
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pt(x)
. (4.16)

The calculation of the marginal probability path and the marginal vector field is still not trivial
but fortunately, the training objective can be written in a way that does not require either. In
Ref. [75] it was shown that replacing the ut in the loss function with ut(x|x0) leads to the same
results. Therefore, the loss function becomes

LFM = ‖vθ(xt|t)− ut(xt|x0)‖2 . (4.17)

In order to use this loss function, one just needs to be able to sample from the conditional prob-
ability paths pt(x|x0) and calculate the conditioned vector fields ut(x|x0). Both steps are easy
to do because of the definition on a per-sample basis.

4.5.2 Gaussian Conditional Probability Paths

What remains is the definition of the conditional probability paths and vector fields. A natural
choice is to use Gaussian probability paths of the form

pt(x|x0) = N (x|γt,σt) , (4.18)

where µt(x0) and σt(x0) are the mean and covariance of the Gaussian distribution at time t

conditioned on the initial state x0. In Ref. [75] one specific choice of conditional Gaussian
probability paths was used where all paths go from a Gaussian with a small standard deviation
centred around x0 to the unit Gaussian distribution at t = 1. Many vector fields can generate
this probability path but one transformation that leads to a simple vector field is the flow

xt = γt + σtε , (4.19)

where ε is a point that follows the probability path distributions at each time step. The corre-
sponding vector field is given by

ut(xt|x0) = γ̇t + σ̇tε . (4.20)
2In the flow matching literature the time convention is usually reversed, e.g. noise at t = 0 and data at t = 1,

this thesis however will stick to the convention used for most diffusion models.
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Figure 4.5: Eight Gaussians as sets of 30 set constituents transformed into two moons by using
the EPiC architecture introduced in Chapter 5. For the left plot, the loss objective from Sec. 4.5.4
was used to allow usage of other than unit Gaussians as a prior. For the right plot, the loss
objective from Sec. 4.5.5 additionally enforces optimal transport paths between the marginal
distributions.

4.5.3 Optimal Transport Gaussian Conditional Probability Paths

The last step of defining a loss function is to choose specific functions for γt and σt. In Ref. [75]
a specific choice was a simple linear interpolation:

γFM
t = (1− t)x0, (4.21)

σFM
t = σmin + (1− σmin)t , (4.22)

where σmin is a hyperparameter that controls the minimum standard deviation of the Gaussian
probability paths. This choice leads to paths that are considered to be optimal in the sense that
they are the shortest and straightest paths between the initial and final distribution. Straight
paths are an important property that can lead to easier and faster solvable differential equations.
By using this choice, the vector field from Eq. 4.20 and the loss function become

ut(xt|x0) = γ̇t + σ̇tε = (1− σmin)ε− x0 (4.23)

and
LFM = ‖(vθ(xt, t)− (1− σmin)ε− x0)‖2 (4.24)

respectively. Finally, one gets a simple training objective that is easy and cheap to evaluate.

4.5.4 Non-Gaussian Marginal Distributions as Priors

This conditional optimal transport flow matching formulation can also be extended to be used
with other than unit Gaussians as a prior. In Ref. [187] it was shown, that Eq. 4.15 can be
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Figure 4.5: Eight Gaussians as sets of 30 set constituents transformed into two moons by using
the EPiC architecture introduced in Chapter 5. For the left plot, the loss objective from Sec. 4.5.4
was used to allow usage of other than unit Gaussians as a prior. For the right plot, the loss
objective from Sec. 4.5.5 additionally enforces optimal transport paths between the marginal
distributions.

4.5.3 Optimal Transport Gaussian Conditional Probability Paths

The last step of defining a loss function is to choose specific functions for γt and σt. In Ref. [75]
a specific choice was a simple linear interpolation:

γFM
t = (1− t)x0, (4.21)

σFM
t = σmin + (1− σmin)t , (4.22)

where σmin is a hyperparameter that controls the minimum standard deviation of the Gaussian
probability paths. This choice leads to paths that are considered to be optimal in the sense that
they are the shortest and straightest paths between the initial and final distribution. Straight
paths are an important property that can lead to easier and faster solvable differential equations.
By using this choice, the vector field from Eq. 4.20 and the loss function become

ut(xt|x0) = γ̇t + σ̇tε = (1− σmin)ε− x0 (4.23)

and
LFM = ‖(vθ(xt, t)− (1− σmin)ε− x0)‖2 (4.24)

respectively. Finally, one gets a simple training objective that is easy and cheap to evaluate.

4.5.4 Non-Gaussian Marginal Distributions as Priors

This conditional optimal transport flow matching formulation can also be extended to be used
with other than unit Gaussians as a prior. In Ref. [187] it was shown, that Eq. 4.15 can be
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objective from Sec. 4.5.5 additionally enforces optimal transport paths between the marginal
distributions.
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a specific choice was a simple linear interpolation:
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t = (1− t)x0, (4.21)

σFM
t = σmin + (1− σmin)t , (4.22)

where σmin is a hyperparameter that controls the minimum standard deviation of the Gaussian
probability paths. This choice leads to paths that are considered to be optimal in the sense that
they are the shortest and straightest paths between the initial and final distribution. Straight
paths are an important property that can lead to easier and faster solvable differential equations.
By using this choice, the vector field from Eq. 4.20 and the loss function become

ut(xt|x0) = γ̇t + σ̇tε = (1− σmin)ε− x0 (4.23)

and
LFM = ‖(vθ(xt, t)− (1− σmin)ε− x0)‖2 (4.24)

respectively. Finally, one gets a simple training objective that is easy and cheap to evaluate.

4.5.4 Non-Gaussian Marginal Distributions as Priors
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with other than unit Gaussians as a prior. In Ref. [187] it was shown, that Eq. 4.15 can be
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Figure 4.4: Illustration of the conditional flows from the flow matching framework. The left
plot shows the probability paths from Ref. [75] that go from a Gaussian with a small standard
deviation around x0 to the unit Gaussian distribution at t = 1. Both other plots show an extension
of this framework introduced in Ref. [187]. In the middle plot, not all paths converge to a unit
Gaussian which allows a transformation from any arbitrary distribution into another one. In
the right plot, optimal transport between the marginal distributions is enforced which leads to
straight non-intersecting paths. Figure taken from Ref. [187].

introduced in the next section covering the training behaviour and especially the relation of
continuous normalizing flows to score-based diffusion models.

4.5 Flow Matching

One idea to significantly reduce the computational complexity of the training of CNFs is to not
train the model with log-likelihood but rather by matching the neural network to a target func-
tion directly. This idea was introduced in Ref. [75] and is called flow matching1.

Flow matching builds on top of the CNF framework and suggests that the vector field from
Eq. 4.8 is directly matched to a target vector field ut such that the loss function can be a simple
MSE loss:

LFM = ‖vt(xt)− ut(xt)‖2 (4.14)

In comparison to log-likelihood training, no ODE and no trace need to be calculated during
training. The result is a significant speed-up for the CNF training. From a theoretical point of
view, it is however not entirely trivial to get the target vector field ut.

4.5.1 Conditional Flow Matching

To get ut, one can approximate the marginal probability path pt(x) by a mixture of conditioned
probability paths pt(x|x0) such that they go from a distribution concentrated around a particular

1Paradigms with similar approaches were also introduced at around the same time in Ref. [185] and Ref. [186].
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Figure 1: Left: Conditional flows from FM (Lipman et al., 2023), I-CFM (§3.2.2), and OT-CFM (§3.2.3).
Right: Learned flows (green) from moons (blue) to 8gaussians (black) using I-CFM (centre-right) and
OT-CFM (far right).

neural ordinary di�erential equation (ODE) (Chen et al., 2018). Unfortunately, CNFs have been held back by
di�culties in training and scaling to large datasets (Chen et al., 2018; Grathwohl et al., 2019; Onken et al.,
2021).

Meanwhile, di�usion models, which are the current state of the art on many generative modeling tasks
(Dhariwal & Nichol, 2021; Austin et al., 2021; Corso et al., 2022; Watson et al., 2022b), approximate a
stochastic di�erential equation (SDE) that transforms a simple density to the data distribution. Di�usion
models owe their success in part to their simple regression training objective, which does not require simulating
the SDE during training. Recently, (Lipman et al., 2023) showed that CNFs could also be trained using a
regression of the ODE’s drift similar to training of di�usion models, an objective called flow matching (FM).
FM was shown to produce high-quality samples and stabilize CNF training, but made the assumption of a
Gaussian source distribution, which was later relaxed in generalizations of FM to more general manifolds
(Chen & Lipman, 2023), arbitrary sources (Pooladian et al., 2023), and couplings between source and target
samples that are either part of the input data or are inferred using optimal transport. The first main
contribution of the present paper is to propose a unifying conditional flow matching (CFM) framework for
FM models with arbitrary pairings between source and target samples, generalizing existing FM and di�usion
modeling approaches (Table 1).

A major drawback of both CNF (ODE) and di�usion (SDE) models compared to other generative models
(e.g., variational autoencoders (Kingma & Welling, 2014), (discrete-time) normalizing flows, and generative
adversarial networks (Goodfellow et al., 2014)), is that integration of the ODE or SDE requires many passes
through the network to generate a high-quality sample, resulting in a long inference time. This drawback has
motivated work on enforcing an optimal transport (OT) property in neural ODEs (Tong et al., 2020; Finlay
et al., 2020; Onken et al., 2021; Liu, 2022; Liu et al., 2023), yielding straighter flows that can be integrated
accurately in fewer neural network evaluations. Such regularizations have not yet been studied for the full
generality of models trained with FM-like objectives, and their properties with regard to solving the dynamic
optimal transport problem were not empirically evaluated. Our second main contribution is a variant
of CFM called optimal transport conditional flow matching (OT-CFM) that approximates dynamic OT via
CNFs. We show that OT-CFM not only improves the e�ciency of training and inference, but also leads to
more accurate OT flows than existing neural OT models based on ODEs (Tong et al., 2020; Finlay et al.,
2020), SDEs (De Bortoli et al., 2021; Vargas et al., 2021), or input-convex neural networks (Makkuva et al.,
2020). Furthermore, an entropic variant of OT-CFM can be used to e�ciently train a CNF to match the
probability flow of a Schrödinger bridge. Our work is the first to enable simulation-free training of
dynamic OT maps and Schrödinger bridge probability flows for arbitrary source and target
distributions.

In summary, our contributions are:

(1) We introduce a novel class of objectives called (generalized) conditional flow matching (§3.1), and
prove their correctness. CFM is able to learn conditional generative models from any samplable source
distribution by conditioning on paired source and target samples, generalizing existing methods (Lipman
et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu, 2022; Pooladian et al., 2023).
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Figure 4.4: Illustration of the conditional flows from the flow matching framework. The left
plot shows the probability paths from Ref. [75] that go from a Gaussian with a small standard
deviation around x0 to the unit Gaussian distribution at t = 1. Both other plots show an extension
of this framework introduced in Ref. [187]. In the middle plot, not all paths converge to a unit
Gaussian which allows a transformation from any arbitrary distribution into another one. In
the right plot, optimal transport between the marginal distributions is enforced which leads to
straight non-intersecting paths. Figure taken from Ref. [187].

introduced in the next section covering the training behaviour and especially the relation of
continuous normalizing flows to score-based diffusion models.

4.5 Flow Matching

One idea to significantly reduce the computational complexity of the training of CNFs is to not
train the model with log-likelihood but rather by matching the neural network to a target func-
tion directly. This idea was introduced in Ref. [75] and is called flow matching1.

Flow matching builds on top of the CNF framework and suggests that the vector field from
Eq. 4.8 is directly matched to a target vector field ut such that the loss function can be a simple
MSE loss:

LFM = ‖vt(xt)− ut(xt)‖2 (4.14)

In comparison to log-likelihood training, no ODE and no trace need to be calculated during
training. The result is a significant speed-up for the CNF training. From a theoretical point of
view, it is however not entirely trivial to get the target vector field ut.

4.5.1 Conditional Flow Matching

To get ut, one can approximate the marginal probability path pt(x) by a mixture of conditioned
probability paths pt(x|x0) such that they go from a distribution concentrated around a particular

1Paradigms with similar approaches were also introduced at around the same time in Ref. [185] and Ref. [186].
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Figure 4.3: The basic idea of diffusion models, where data is progressively perturbed with noise
and then reversed. The process of adding noise can be described by a stochastic differential
equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure
taken from Ref. [73].

where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,
respectively. By reversing this process, points drawn from the prior can be transformed into
samples that follow the data distribution. This reverse process is also described by a stochastic
differential equation:

dxt =
[
f(t)xt − g(t)2st(x)

]
dt+ g(t)dwt , (4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-
tion [182] and is defined as

st(x) = ∇x log pt(x) . (4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An
alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-
thors showed that for all diffusion processes, there exists a deterministic differential equation of
the form

dxt =

[
f(t)xt −

1

2
g(t)2st(xt)

]
dt . (4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved
with any standard ODE solver.

In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.
For diffusion models, an approximation of this score function can be learned with a neural net-
work. This formulation of diffusion models is referred to as score-based diffusion models [183,
184] and this approximation of the score function is strongly related to the training behaviour
of continuous normalizing flows. Therefore, a framework that describes both models will be
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L2LF����, we show the absolute relative deviation to G����4 for both generative networks per
voxel:

L2LF����relative
8, 9 :=

���L2LF����overlay
8, 9 � G����4overlay

8, 9

���
G����4overlay

8, 9

, (4.1)

BIB-AErelative
8, 9 :=

���BIB-AEoverlay
8, 9 � G����4overlay

8, 9

���
G����4overlay

8, 9

, (4.2)

where 8 and 9 denote voxel positions. We observe that in general the generative models capture the
overlay quite well, with L2LF���� having smaller deviations from G����4 than the BIB-AE.

To compare the performance of the generative models in more detail, we start by looking at
the showers on the voxel level. Figure 5 shows the distributions of voxel energies as well as the
sparsity, i.e. the number of non-zero voxels per shower. One characteristic that repeats itself in
several histograms is that the BIB-AE is not capable of capturing the full G����4 distribution,
which can e.g. be seen in the sparsity plot. L2LF���� is much better in this regard. Further, the
energy deposited around the energy of a minimum ionizing particle (MIP) in the voxel distribution
is better modeled by L2LF���� in comparison to the BIB-AE, which slightly overshoots it. While
L2LF���� does not learn the G����4 distribution perfectly, it learns the distributions much better
than the BIB-AE.

For ⇢inc 2 {20, 80} GeV, Fig. 6 shows the energy profiles in G-, H- and I-direction. As can be
seen, the larger the incident energy ⇢inc, the more the maximum in the energy profiles shifts to later
layers, which both the BIB-AE and L2LF���� are able to learn. Deviations for both simulators
mainly exist in a few initial and final layers.

The distributions in Fig. 7 show the total energy depositions (⇢depos :=
Õ

8 ⇢8), both for
continuous incident energies uniformly distributed in [10, 100] GeV (left) and for discrete incident
energies ⇢inc 2 {20, 50, 80} GeV (right). In both of these distributions we observe that L2LF����
is much closer to the G����4 distribution than the BIB-AE.

Figure 8 shows the linearity5 (and its relative deviation to G����4) as well as the width (again
with its relative deviation).6 For the linearity, the relative deviation is for the BIB-AE maximally

5This does not correspond to the actual calorimeter linearity or resolution, as the increased thickness of the last 10
ECal layers is not calibrated for. It is, however, still a vital means for determining the performance of the generative
approaches.

6The linearity `90 is defined as the mean deposited energy over the ECal for discrete ⇢inc of a 90% subset of the
samples that have the smallest range. The width d90 is defined as d90 := `90/f90, where f90 is the standard deviation
of the 90% subset of the energy deposition samples that have the smallest range.

Figure 3: BIB-AE–generated shower (left), G����4 test shower (middle) and L2LF����-generated
shower (right). The black arrow indicates the (hypothetical) direction of an incoming particle.
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Figure 1: Architecture of the ������ ������������ ����.

3.2 ������ �����

Next, we turn to the second step of the generation process: generating shower shapes conditioned
on the total incident energy and the total deposited energies in each layer. Our overarching goal
here, as in the original CaloFlow, is to learn

?(I0, . . . ,I29 |⇢0, . . . , ⇢29, ⇢inc) (3.3)

where the ECal voxel energy depositions of layer 8 are denoted by I8 2 R100. Unlike in Sec. 3.1, no
cutoff is applied to the voxel energy depositions used in the ������ ����� training. This prevents
potential sharp edges in the voxel data, which would be caused by the cutoff, from interfering with
the training of the ������ �����. (For the ������ ������������ ����, this issue was already
circumvented, as each layer energy is the aggregate of multiple voxels, lessening any potential
edges.) The voxel energy depositions are preprocessed similarly to the layer energies used in the
������ ������������ ����. The precise nature of the preprocessing is outlined in App. B.

In the original CaloFlow, a single NF was trained on all the calorimeter voxels of every layer
together, to directly learn (3.3). Since the number of parameters of a single NF scales quadratically
with the dimensionality 3 of the samples, the single-NF approach of original CaloFlow applied to
the ILD dataset (which has 3 = 3000) would lead to a prohibitive number of parameters (> 1B).
One can attempt to reduce the number of parameters by decreasing the number of MADE blocks
as well as RQS bins, but this leads to a significantly reduced fidelity.

To reduce the number of parameters without sacrificing quality, our key idea here is to instead
train one NF per ECal layer. Since the evolution of a shower in layer 8 depends on what happened
in the previous layers, NF 8 has to be conditioned on the voxel energy depositions of the previous
layers. In other words, we endeavor to train 30 separate NFs to learn the distributions:

?8 (I8 |I0, . . . ,I8�1, ⇢0, . . . , ⇢29, ⇢inc), 8 = 0, . . . , 29 (3.4)

If each distribution ?8 could be learned perfectly, then they could be multiplied together to recon-
struct the full joint distribution (3.3). This would be in effect its own kind of autoregressive model.
However, in later layers, there are a lot of conditioning features, and we observed that attempting to
model the full conditional likelihood (3.4) resulted in suboptimal performance.
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Figure 2: Architecture of the ������ �����. As mentioned in the main text, NF 0 does not make
use of an embedding network for the conditioning. The postprocessing is explained in detail in
App. B.

NF 8 Context features Context shape
0 ⇢0, ⇢inc [# , 2]
1 I0, ⇢1, ⇢inc [# , 102]
2 I0, I1, ⇢2, ⇢inc [# , 202]
3 I0, I1, I2, ⇢3, ⇢inc [# , 302]
4 I0, I1, I2, I3, ⇢4, ⇢inc [# , 402]
� 5 I8�5, I8�4, I8�3, I8�2, I8�1, ⇢8 , ⇢inc [# , 502]

Table 1: For the conditioning on the previous 5 ECal layers, i.e. =cond = 5, this table shows the
context features each NF gets and their shape before being fed into an embedding network. Here,
# denotes the batch size used during training or sampling.

modified to operate on the photon showers with shape 30 ⇥ 10 ⇥ 10 by retraining it. The BIB-
AE consists of an encoder and a decoder pair, which is trained using a set of adversarial critics.
The BIB-AE generation process employs an additional post-processing step and a Kernel-Density-
Estimation–based latent sampling, as described in Ref. [18]. The BIB-AE model and PostProcessor
model have a combined total of 9.3M parameters, while the critics used to train them have an
additional 3.7M parameters.

4.1 Distributions

Figure 3 shows a single test shower of G����4 as well as a generated shower from the BIB-AE
and L2LF���� each. All single showers have an incident energy ⇢inc ⇡ 50 GeV. We see that the
individual shower from L2LF���� looks reasonable, with a broadly realistic morphology of voxels
and energy depositions.

Figure 4 shows the overlay of 95k showers, i.e. the mean of the voxel energies of 95k showers.
In order to create two-dimensional plots, the voxel energies are summed over the I-, G- or H-axis.
For G����4, the 95k test showers are used. To highlight potential differences for the BIB-AE and
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Figure 2: Architecture implementation of the EPiC GAN. Both the (a) generator and
(b) discriminator consist of multiple EPiC layers from Fig. 1 as well as (shared) neu-
ral networks for input/output dimensionality expansion/reduction. The � symbol
represents the aggregation function ⇢p!g with both element-wise summation and
average pooling. Though not shown, there are additional residual connections be-
tween EPiC layers described in the text.
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Figure 5: Same as Fig. 3 but for the JetNet30 top quark dataset.

Jet class Model
W M

1
( x10�3 )

W P
1

( x10�3 )
W EFP

1
( x10�5 )

Gluon
Truth 0.3 ± 0.1 0.3 ± 0.1 0.7 ± 0.3
EPiC-GAN 0.4 ± 0.1 3.2 ± 0.2 1.1 ± 0.7

Light
quark

Truth 0.3 ± 0.1 0.3 ± 0.2 0.6 ± 0.5
EPiC-GAN 0.4 ± 0.1 3.9 ± 0.3 0.7 ± 0.4

Top
Truth 0.3 ± 0.1 0.2 ± 0.1 1.3 ± 0.8
EPiC-GAN 0.6 ± 0.1 3.7 ± 0.3 2.8 ± 0.7

Table 3: Evaluation scores for the JetNet150 dataset. The truth values are a compar-
ison between the test and training set. Lower is better for all scores.

3.4 JetNet150 Results

Having observed competitive results with the EPiC-GAN on the JetNet30 datasets, we now
show results for the more challenging JetNet150 dataset with up to 150 particles. We do not
have a comparison with another generative model, since to our knowledge we are the first to
show a well performing and fast generating model on a jet dataset with such large particle
multiplicity.

The model architecture and training procedure is the same as for the JetNet30 datasets
from Sec. 3.3. In the following, we comparing the EPiC-GAN results for the JetNet150 gluon,
light quark and top datasets to the test dataset using the Wasserstein-1 distance metrics. We
then show the previously discussed nine particle- and jet-level distributions for the JetNet150
top dataset, which is the most challenging of the three datasets.

In Table 3, we compare EPiC-GAN generated events to the JetNet150 truth with the three
Wasserstein-1 distances introduced in Sec. 3.3. As of writing this publication, the FPND evalu-
ation score was not available for the JetNet150 dataset. For both the gluon and the light quark
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Flow Matching Beyond Kinematics: Generating Jets with Particle-ID and
Trajectory Displacement Information
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We introduce the first generative model trained on the JetClass dataset. Our model generates
jets at the constituent level, and it is a permutation-equivariant continuous normalizing flow (CNF)
trained with the flow matching technique. It is conditioned on the jet type, so that a single model can
be used to generate the ten di↵erent jet types of JetClass. For the first time, we also introduce a
generative model that goes beyond the kinematic features of jet constituents. The JetClass dataset
includes more features, such as particle-ID and track impact parameter, and we demonstrate that
our CNF can accurately model all of these additional features as well. Our generative model for
JetClass expands on the versatility of existing jet generation techniques, enhancing their potential
utility in high-energy physics research, and o↵ering a more comprehensive understanding of the
generated jets.

I. INTRODUCTION

Recently there has been considerable interest and
activity in generative modeling for jet constituents.
While showering and hadronization with standard
programs such as Pythia [1] and Herwig [2] is not
a major computational bottleneck at the LHC [3],
learning the properties of jets from data still has in-
teresting potential applications. For example, gen-
erative modeling at the jet constituent level can be
used to improve the performance of anomaly detec-
tion [4] techniques.

More generally, learning jets is an interesting lab-
oratory for method development. In particular, it
has been fruitful and e↵ective to view the jet con-
stituents as a high-dimensional point cloud, and
to devise methods for point cloud generative mod-
els that incorporate permutation invariance. This
route has led to a number of state-of-the-art ap-
proaches, recently explored in [5–14], that combine
di↵erent permutation-invariant layers such as trans-
formers [15] and the EPiC layer [7], with state-
of-the-art generative modeling frameworks such as
di↵usion [16–20] and flow matching [21–24]. Suc-
cessful models developed for jet point clouds can
also potentially be adapted to other important point
cloud generative modeling problems such as for fast
emulation of GEANT4 [25–27] calorimeter show-
ers [11, 13, 28, 29]. Finally, while event generation
with generative models has concentrated primarily
on low multiplicities and fixed structures [30–35], re-
cent, in-principle permutation invariant, approaches
exist as well [36, 37].

So far, e↵orts for jet generation have focused al-
most exclusively on the JetNet dataset of Refs. [38,
39]. Originally generated by [40], this dataset was
subsequently adopted in the works of Ref. [5] as

⇤
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Kinematics : 
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isElectron, isMuon, …

Trajectory displacement : 
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FIG. 1: Schematic overview of the di↵erent jet con-
stituent features available in the JetClass dataset.
The horizontal line at the bottom represents the
beam axis and the circle on this line represents the
primary vertex (PV).

a benchmark dataset for jet generative modeling.
However, the JetNet dataset has a number of draw-
backs that are readily becoming apparent. First, its
limited size (180k jets per jet type) means there are
not enough jets in JetNet to facilitate the train-
ing of state-of-the-art generative models as well as
metrics such as the binary classifier metric [41, 42]
which require additional training data. Second, Jet-
Net uses small-radius (R = 0.4) jets (although the
description in [5] incorrectly states a cone-size of
R = 0.8 which is in disagreement with the observed
angular distribution of constituents). This can lead
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Fig. 1: Schematic overview of the EPiC-JeDi and EPiC-FM training (left) and generation (right) pipeline.
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Fig. 2: Model schema of the EPiC Network generator architecture used in both EPiC-JeDi and EPiC-FM. Each multi-layer perceptron (MLP)
is a two-layer neural network with LeakyReLU activation. The pooling operation is a concatenation of both average and summation pooling.

(�⌘, ��, prel
T ), where

�⌘ = ⌘const �⌘jet,

�� = �const ��jet,

prel
T = pconst

T /pjet
T .

The jet four momentum vectors are calculated from the
vector sum of all constituents. All input variables are nor-
malised by their mean and standard deviation in the train-
ing dataset.

Furthermore we examine two scenarios for each
model:

– Unconditional the models are trained on the input
data solely comprising of the jet constituents features
x = (�⌘,��, prel

T ).
– Conditional the models are trained on jet constituents

x conditioned on jet-level features y = (pjet
T , mjet).

These features have been derived from the data
using a normalizing flow paired with a masked
autoregressive architecture.

Substructure observables are calculated from the jet
constituents for the purposes of evaluating the quality

of the generative model. In this work we focus on the
N-subjettiness [84] and energy correlation functions [85]
which are commonly used by the ATLAS and CMS collab-
orations, as well as the recently introduced energy flow
polynomials (EFPs) [86]. To assess the generation perfor-
mance we follow the procedure introduced in Ref. [45] as
well as additional measures studied in Refs. [46, 47]. All
substructure variables are calculated using the relative
pT of the constituents, and are not renormalised by the
inclusive jet pT.

4.3 Evaluation metrics

To assess the generation performance of each model, we
follow the procedure described in Ref. [45] as well as ad-
ditional measures studied in Refs. [46, 47]. However, in-
stead of using the Wasserstein-1 distance between gener-
ated showers and the target distributions we measure the
agreement using the Kullback-Leibler divergence (KLD).

As the Wasserstein-1 distance in one dimension is cal-
culated as the area between the two cumulative distribu-
tion functions, it is very sensitive to overall shifts in distri-
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The jet four momentum vectors are calculated from the
vector sum of all constituents. All input variables are nor-
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Furthermore we examine two scenarios for each
model:
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data solely comprising of the jet constituents features
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T ).
– Conditional the models are trained on jet constituents

x conditioned on jet-level features y = (pjet
T , mjet).

These features have been derived from the data
using a normalizing flow paired with a masked
autoregressive architecture.

Substructure observables are calculated from the jet
constituents for the purposes of evaluating the quality

of the generative model. In this work we focus on the
N-subjettiness [84] and energy correlation functions [85]
which are commonly used by the ATLAS and CMS collab-
orations, as well as the recently introduced energy flow
polynomials (EFPs) [86]. To assess the generation perfor-
mance we follow the procedure introduced in Ref. [45] as
well as additional measures studied in Refs. [46, 47]. All
substructure variables are calculated using the relative
pT of the constituents, and are not renormalised by the
inclusive jet pT.

4.3 Evaluation metrics

To assess the generation performance of each model, we
follow the procedure described in Ref. [45] as well as ad-
ditional measures studied in Refs. [46, 47]. However, in-
stead of using the Wasserstein-1 distance between gener-
ated showers and the target distributions we measure the
agreement using the Kullback-Leibler divergence (KLD).

As the Wasserstein-1 distance in one dimension is cal-
culated as the area between the two cumulative distribu-
tion functions, it is very sensitive to overall shifts in distri-
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FIG. 4: Average fraction of jet constituents of di↵erent particle types. For each jet type, the intervals show
the mean value over all evaluated jets with up and down variations of one standard deviation. The dotted
lines show the values obtained for real jets from the JetClass dataset and the solid lines show the values
obtained for the generated jets.

While particles in t ! bqq
0 jets have on average a

larger ⌘rel and thus have an overall wider ⌘rel distri-
bution, q/g jets are more collimated, resulting in a
sharper ⌘

rel peak around ⌘
rel = 0. Concerning the

p
rel
T distribution, t ! bqq

0 jets are expected to show a
smaller tail towards larger prelT values, since t ! bqq

0

jets contain on average more constituents and thus
the jet pT is distributed over more particles, leading
to smaller p

rel
T values. The generated distributions

of all three kinematic features agree very well with
the corresponding distribution from the JetClass
dataset, showing that our model is capable of gener-
ating jets of very di↵erent kinematic properties. This
is also confirmed by the KL divergence values listed
in Table II, which only have a small deviation from
the truth values.

A comparison of the trajectory displacement mod-
eling is shown in Figure 3 for H ! bb̄, H ! cc̄

and H ! gg jets. Due to the long lifetime of b-
and c-hadrons, the trajectory displacement of jet
constituents associated with those hadrons is ex-
pected to be on average larger than for other jet
constituents. Thus, the trajectory displacement dis-
tributions of H ! bb̄ and H ! cc̄ jets are expected
to be wider than the trajectory displacement distri-
bution of H ! gg jets. Since the trajectory displace-
ment is by definition zero for neutral particles in the
JetClass dataset, only charged particles are con-
sidered in the histograms in Figure 3. For all three
jet types, the histograms of the generated jets agree
very well with the histograms of the real jets, show-
ing that our model is capable of correctly modeling

the trajectory displacement of the jet constituents.
Notably, our model is able to catch the essential dif-
ferences between the trajectory displacement distri-
butions of H ! bb̄, H ! cc̄ and H ! gg jets, which
is an important feature from the physics point of
view. However, as seen both in the ratio panels in
Figure 3 and in the corresponding KL divergence val-
ues in Table II, the agreement between the target
distribution and the distribution obtained from the
generated jets is worse for the impact parameter fea-
tures than for the kinematic features, showing that
the modeling of these distributions is more challeng-
ing. This could be further optimized in future work
by choosing a di↵erent preprocessing for the impact
parameter features, by e.g. transforming them using
the hyperbolic tangent function, which would remove
the large tails of the distributions.

The evaluation of the particle-ID modeling is
shown in Figure 4, where we show the average frac-
tion of jet constituents of di↵erent particle types for
all ten jet types. For each jet type, the intervals show
the mean value over all evaluated jets with up and
down variation of one standard deviation. The agree-
ment between the generated jets and the real jets is
very good for all jet types, showing that on average
the generated jets contain the same fraction of di↵er-
ent particle types as the real jets. The modeling of
the electric charge also shows very good agreement,
which is shown in the Appendix in Section A.

Beyond kinematics
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(a)

(b)

(c)

FIG. 5: Jet mass (a) and subjettiness ratios ⌧32 (b) and ⌧21 (c) for all ten jet types. The histograms in
dotted lines show the distributions obtained from the JetClass dataset (i.e. real jets) and the solid lines
show the histograms obtained from the generated jets. Jets from the categories H ! bb̄, H ! cc̄ and H ! gg

are grouped into one joint histogram for better readability, since the individual histograms show very similar
shapes.

B. Jet substructure modeling

The jet mass mjet and the two subjettiness ra-
tios ⌧32 and ⌧21 are shown in Figure 5 for the dif-
ferent jet types. The real jets are shown in dotted
lines while the generated jets are shown in solid lines.
Both the jet mass and the subjettiness ratio distri-
butions show very good agreement for all jet types.
The largest deviations between the target distribu-
tion and the distribution of the generated jets are
seen for t ! bqq

0 and H ! `⌫qq
0, where the distri-

bution of the generated jets peaks at a larger value
of ⌧32. This mismodeling also shows in the values
of the KL divergence which are listed in Table III
for some of the jet-level observables. Further stud-

ies were done to determine whether narrowing down
our model’s features to just kinematics and whether
training solely on t ! bqq

0 jets enhances the model-
ing of the t ! bqq

0 substructure, which can be found
in the Appendix in Section C.

C. Classifier test

In addition to the evaluation presented in the
previous subsections, we also investigate the per-
formance of our model with the classifier test pro-
posed in Ref. [41]. Thus, a binary classifier is trained
to distinguish between real jets from the JetClass
dataset and fake jets that were generated with our
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Adding reconstruction

Hadrons, Better, Faster, Stronger 14

Figure 6. Comparison of the visible energy and number of active hits between
Geant4 and the di↵erent generative models for three selected pion energies. The
number of hits in the right plot is calculated after applying a cuto↵ at 0.5 MIP.

Figure 7. Mean (µ90, left) and relative width (�90/µ90, right) at generator level for
pions with various incident energies. In order to avoid edge e↵ects, the phase space
boundary regions of 10 and 100 GeV are removed for the response and resolution
studies. In the bottom panels, the relative o↵set of these quantities with respect to
the Geant4 simulation is shown.

Hadrons, Better, Faster, Stronger 15

simulation-reconstruction chain. To ensure a consistent comparison, the Geant4 data

undergoes the same projection/conversion operation as the WGAN and BIB-AE.

Figure 8 shows the same quantities presented in Fig. 7, but now at the

reconstruction level. The leftmost plot shows that the position of the mean is well

captured in the middle range of energies by both the models. Likewise, both models

display some larger discrepancies, up to 3-5% in the high and low energy sections, but

still have a reasonable agreement with Geant4. The relative width on the right plot

shows a fairly good agreement for the WGAN for the middle incident energies. On

the edge regions, however, up to 20% di↵erences for the BIB-AE and up to 40% for the

WGAN are present. It is worth noting that our models andGeant4 have better relative

width compared to the generator level as PandoraPFA uses a software compensation

algorithm [51] that improves the energy reconstruction of clusters by weighting hits

depending on their hit energy density.

Figure 8. Mean (µ90, left) and relative width (�90/µ90, right) at reconstruction level
for pions with various incident energies. In order to avoid edge e↵ects, the phase space
boundary regions of 10 and 100 GeV are removed for the response and resolution
studies. In the bottom panels, the relative o↵set of these quantities with respect to
the Geant4 simulation is shown.

4.3 Computing Times

The prime objective for using generative models in particle physics is to reduce the time

and cost per simulated sample. To do so, we benchmark the per-shower generation time

both on CPU and GPU hardware architectures. Fixed factors, such as initial sample

generation and network training time, are not included in this accounting, as they are
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FIG. 2: The weights of the low-level and high-level Dctr
models. The top plot presents histograms of the weights and
the bottom plot presents a scatter plot demonstrating the cor-
relation between the weights of the two models. The Pearson
correlation (⇢) is indicated in the plot.

tween 1-10 while the Gan is many ten-thousand times
faster than Geant4 [39].

Three composite observables are presented in Fig. 3.
The total number of activated cells is more peaked
around 780 in Geant4 than the Gan and both the low-
level and high-level models are able to significantly im-
prove the agreement with Geant4. The value of hS2i
is about 20 times smaller than the unweighted Gan for
the high-level Dctr model and about 5 times smaller for
the low-level model. The statistical dilution is modest for
the low-level model with r = 1.2 while it is 3.6 for the
high-level model. The modeling of the total energy is
also improved through the reweighting, where both the
low-level and high-level models shift the energy towards
lower values. The longitudinal centroid is already rela-
tively well-modeled by the Gan, but is further improved
by the high-levelDctrmodel, reducing the hS2i by more
than a factor of two.

Histograms of the energy in representative layers are
shown in Fig. 4. Generally, the Geant4 showers pen-
etrate deeper into the calorimeter than the Gan show-
ers, so the energy in the early layers is too high for the
Gan and the energy in the later layers is too low. The
Dctr models are able to correct these trends, with a sys-
tematically superior fidelity as measured by hS2i for the
high-level model.

The modeling of correlations between layers is probed

FIG. 3: Histograms of various observables from simulated
calorimeter showers of 50 GeV photons in a 5-layer calorime-
ter with 30 ⇥ 30 cells in each layer. A cell is activated if a
non-zero energy is registered in that cell. The panels below
each histogram show the ratio between the Gan or the Dctr-
Gan and the physics-based simulator Geant4. The legend
includes the separation power hS2i between the (weighted)
Gan model and the Geant4 model. Additionally, the ratio r
of the uncertainty in the mean of the observable between the
Gan and Geant4 is also presented.
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In this paper, we introduce a method for e�ciently generating jets in the field of High Energy
Physics. Our model is designed to generate ten di↵erent types of jets, expanding the versatility of jet
generation techniques. Beyond the kinematic features of the jet constituents, our model also excels in
generating informative features that provide insight into the types of jet constituents, such as features
that indicate if a constituent is an electron or a photon, o↵ering a more comprehensive understanding
of the generated jets. Furthermore, our model incorporates valuable impact parameter information,
enhancing its potential utility in high-energy physics research.

I. INTRODUCTION

Recently there has been considerable interest and
activity in generative modeling for jet constituents.
While showering and hadronization with standard
programs such as Pythia and Herwig is not a ma-
jor computational bottleneck at the LHC [1] what

about NLO generators?, generative modeling at
the jet constituent level still has potentially far-
reaching applications to anomaly detection [2] and
beyond. More generally it is also an interesting
laboratory for method development. In particular,
it has been fruitful and e↵ective to view the jet
constituents as a high-dimensional point cloud, and
to devise methods for point cloud generative mod-
els that incorporate permutation invariance. This
route has led to a number of state-of-the-art ap-
proaches, recently explored in [3–11], that combine
di↵erent permutation-invariant layers such as trans-
formers [12] and the EPiC layer [4], with state-of-
the-art generative modeling frameworks such as dif-
fusion [13–17] and flow-matching [18–21]. Successful
models developed for jet point clouds can also po-
tentially be adapted to other important point cloud
generative modeling problems such as for fast emu-
lation of GEANT4 calorimeter showers [9, 11].

So far this activity has focused almost exclusively
on the JetNet dataset of [22, 23]. Originally gener-
ated by [24], this dataset was subsequently adopted
in the works of [3] as a useful benchmark dataset
for jet generative modeling. However, the JetNet
dataset has a number of drawbacks that are readily
becoming apparent. First and foremost is the size –
since it is limited in size, there are not enough jets
in JetNet to facilitate the training of state-of-the-art
generative models as well as metrics such as the bi-
nary classifier metric which require additional train-
ing data. Second, JetNet uses small-radius (R = 0.4)
jets, despite saying otherwise in their papers. This

⇤
joschka.birk@uni-hamburg.de

FIG. 1: Schematic overview of the di↵erent jet con-
stituent features available in the JetClass dataset.
The horizontal line at the bottom represents the
beam axis and the circle on this line represents the
primary vertex (PV).

can lead to the problem that the decay products are
not fully contained in the jet, which can be seen e.g.
in distributions such as the jet mass for top quarks,
where there is a prominent secondary mass peak.
Finally, JetNet focuses solely on the kinematics of
the jet constituents, whereas there is a wealth of ad-
ditional information inside the jets that could also
be modeled, such as trajectory displacement, charge,
and particle ID as illustrated in Figure 1.

In this work, we introduce the first jet cloud
modeling on the much larger dataset of JetClass.
Other than demonstrating that existing techniques
scale well to this new dataset, we also tackle new
challenges introduced by the JetClass dataset, in-

JetNet JetClass

2106.11535, 2202.03772
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beyond. More generally it is also an interesting
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to devise methods for point cloud generative mod-
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route has led to a number of state-of-the-art ap-
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di↵erent permutation-invariant layers such as trans-
formers [12] and the EPiC layer [4], with state-of-
the-art generative modeling frameworks such as dif-
fusion [13–17] and flow-matching [18–21]. Successful
models developed for jet point clouds can also po-
tentially be adapted to other important point cloud
generative modeling problems such as for fast emu-
lation of GEANT4 calorimeter showers [9, 11].

So far this activity has focused almost exclusively
on the JetNet dataset of [22, 23]. Originally gener-
ated by [24], this dataset was subsequently adopted
in the works of [3] as a useful benchmark dataset
for jet generative modeling. However, the JetNet
dataset has a number of drawbacks that are readily
becoming apparent. First and foremost is the size –
since it is limited in size, there are not enough jets
in JetNet to facilitate the training of state-of-the-art
generative models as well as metrics such as the bi-
nary classifier metric which require additional train-
ing data. Second, JetNet uses small-radius (R = 0.4)
jets, despite saying otherwise in their papers. This

⇤
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FIG. 1: Schematic overview of the di↵erent jet con-
stituent features available in the JetClass dataset.
The horizontal line at the bottom represents the
beam axis and the circle on this line represents the
primary vertex (PV).

can lead to the problem that the decay products are
not fully contained in the jet, which can be seen e.g.
in distributions such as the jet mass for top quarks,
where there is a prominent secondary mass peak.
Finally, JetNet focuses solely on the kinematics of
the jet constituents, whereas there is a wealth of ad-
ditional information inside the jets that could also
be modeled, such as trajectory displacement, charge,
and particle ID as illustrated in Figure 1.

In this work, we introduce the first jet cloud
modeling on the much larger dataset of JetClass.
Other than demonstrating that existing techniques
scale well to this new dataset, we also tackle new
challenges introduced by the JetClass dataset, in-

JetNet JetClass

2106.11535, 2202.03772, https://calochallenge.github.io/homepage/

3 datasets of increasing complexity: 
DS1: Up to 533 voxels (ATLAS)

DS2: 6480 voxels

DS3: 40500 voxels
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Figure 4.3: The basic idea of diffusion models, where data is progressively perturbed with noise
and then reversed. The process of adding noise can be described by a stochastic differential
equation (SDE). To reverse the SDE and generate samples, the score function is needed. Figure
taken from Ref. [73].

where wt is a standard Wiener process and f(t) and g(t) are drift and diffusion coefficients,
respectively. By reversing this process, points drawn from the prior can be transformed into
samples that follow the data distribution. This reverse process is also described by a stochastic
differential equation:

dxt =
[
f(t)xt − g(t)2st(x)

]
dt+ g(t)dwt , (4.11)

where wt is a Wiener process with time reversed. The function st(x) is called the score func-
tion [182] and is defined as

st(x) = ∇x log pt(x) . (4.12)

This SDE can be solved with any standard SDE solver when the score function is known. An
alternative deterministic way of solving the reverse SDE was introduced in Ref. [73]. The au-
thors showed that for all diffusion processes, there exists a deterministic differential equation of
the form

dxt =

[
f(t)xt −

1

2
g(t)2st(xt)

]
dt . (4.13)

This ordinary differential equation is referred to as the probability flow ODE and can be solved
with any standard ODE solver.

In order to solve the differential equations Eq. 4.11 or Eq. 4.13, the score function is needed.
For diffusion models, an approximation of this score function can be learned with a neural net-
work. This formulation of diffusion models is referred to as score-based diffusion models [183,
184] and this approximation of the score function is strongly related to the training behaviour
of continuous normalizing flows. Therefore, a framework that describes both models will be
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Figure 4.4: Illustration of the conditional flows from the flow matching framework. The left
plot shows the probability paths from Ref. [75] that go from a Gaussian with a small standard
deviation around x0 to the unit Gaussian distribution at t = 1. Both other plots show an extension
of this framework introduced in Ref. [187]. In the middle plot, not all paths converge to a unit
Gaussian which allows a transformation from any arbitrary distribution into another one. In
the right plot, optimal transport between the marginal distributions is enforced which leads to
straight non-intersecting paths. Figure taken from Ref. [187].

introduced in the next section covering the training behaviour and especially the relation of
continuous normalizing flows to score-based diffusion models.

4.5 Flow Matching

One idea to significantly reduce the computational complexity of the training of CNFs is to not
train the model with log-likelihood but rather by matching the neural network to a target func-
tion directly. This idea was introduced in Ref. [75] and is called flow matching1.

Flow matching builds on top of the CNF framework and suggests that the vector field from
Eq. 4.8 is directly matched to a target vector field ut such that the loss function can be a simple
MSE loss:

LFM = ‖vt(xt)− ut(xt)‖2 (4.14)

In comparison to log-likelihood training, no ODE and no trace need to be calculated during
training. The result is a significant speed-up for the CNF training. From a theoretical point of
view, it is however not entirely trivial to get the target vector field ut.

4.5.1 Conditional Flow Matching

To get ut, one can approximate the marginal probability path pt(x) by a mixture of conditioned
probability paths pt(x|x0) such that they go from a distribution concentrated around a particular

1Paradigms with similar approaches were also introduced at around the same time in Ref. [185] and Ref. [186].
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