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1. Motivation: new physics and the LHC


2. Model-agnostic new physics searches with modern ML

• Outlier detection


• Overdensities
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By now, there are countless searches for new physics at the LHC. 
Almost all cut-based, model-specific.  
No sign of new physics yet…
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Model-agnostic NP searches?
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TABLE I. Existing two-body exclusive final state resonance searches at
p
s = 8 TeV. The ? symbol indicates no

existing search at the LHC.

e µ ⌧ � j b t W Z h

e ±⌥[4],±±[5] ±±[5, 6] ±⌥[6, 7] [7] ? ? ? ? ? ? ?
µ ±⌥[4],±±[5] [7] ? ? ? ? ? ? ?
⌧ [8] ? ? ? [9] ? ? ?
� [10] [11–13] ? ? [14] [14] ?
j [15] [16] [17] [18] [18] ?
b [16] [19] ? ? ?
t [20] [21] ? ?
W [22–25] [23, 24, 26, 27] [28–30]
Z [23, 25, 31] [28, 30, 32, 33]
h [34–37]

TABLE II. Theory models motivating two-body final state resonance searches. Here Z
0 and W

0 denote additional
gauge bosons, 6R denotes R-parity violating decays of sparticles in supersymmetry, H

±± denotes doubly-charged
Higgs bosons, H denotes additional neutral scalar or pseudoscalar Higgs bosons, L⇤ and Q

⇤ denote excited fermions,
XKK denote various Kaluza-Klein excitations of gravitons or Standard Model fields, ⇢ denotes neutral or charged
techni-rhos, LQ denotes leptoquarks, T 0, B0, Q0 denote vector-like top, bottom, and light-flavor quarks, and Q denotes
quirks. See also [38].
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From Craig, Draper, Kong, Ng & Whiteson 1610.09392 

e µ ⌧ q/g b t � Z/W H
BSM ! SM1 ⇥ SM1 BSM ! SM1 ⇥ SM2 BSM ! complex

q/g �/⇡
0’s b · · · tZ/H bH · · · ⌧qq

0
eqq

0
µqq

0 · · ·

e [37, 38] [39, 40] [39] ? ? ? [41] [42] ? ? ? ? ? ? ? ? [43, 44] ?
µ [37, 38] [39] ? ? ? [41] [42] ? ? ? ? ? ? ? ? ? [43, 44]

⌧ [45, 46] ? [47] ? ? ? ? ? ? ? ? ? ? [48, 49] ? ?
q/g [29, 30, 50,51] [52] ? [53, 54] [55] ? ? ? ? ? ? ? ? ? ?
b [29, 52, 56] [57] [54] [58] [59] ? ? ? [60] ? ? ? ? ?
t [61] ? [62] [63] ? ? ? [64] [60] ? ? ? ?
� [65, 66] [67–69] [68, 70] ? ? ? ? ? ? ? ? ?

Z/W [71] [71] ? ? ? ? ? ? ? ? ?
H [72, 73] [74] ? ? ? ? ? ? ? ?
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Table 14: References to existing searches for two-body resonances, where one decay product is from
the first column and one is from the first row. Only the most recent searches are considered. The
box BSM ! SM1 ⇥ SM2 represents cases where the primary resonance decays to a BSM particle,
which itself decays into two SM particles that are not the same. Colored cells indicate searches
that were covered by

p
s = 8 TeV searches reported in Ref. [14].

dedicated searches will likely need to be complimented with more model agnostic searches. Machine
learning methods may be able to automate this approach and solve significant statistical challenges
like large trails factors [15,16]. In particular, techniques such as neural networks can readily analyze
high-dimensional spaces and approaches with cross-validation can avoid over-training.

This work has focused on two-body decays into visible final states. Future work will consider
cases where there are undetectable particles (such as neutrinos and dark sectors) as well as multi-
body decays.

The LHC experiments have and will continue to collect rich datasets that may contain answers
to key questions about the fundamental properties of nature. Many well-motivated fundamental
theories have provided guiding principles to analyses these data. However, a more diversified
perspective will be required to full exploit the data - in fact, there may be something new already
hiding in the existing datasets!
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From Kim, Kong, Nachman & Whiteson 1907.06659

What if NP is not like any of the 
models we have searched for?  

There are a lot of NP scenarios that 
are not covered by existing searches! 



Model-agnostic NP searches?
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Why aren’t there more model-agnostic new physics searches?

Modern ML can help!
• model-specific ~ supervised ML

• model-agnostic ~ less-than-supervised ML

• unbinned analysis of high dimensional 
feature spaces (100s or 1000s of features)

• (nearly) optimal classifiers

• density estimation

• generative modeling

• …



2. Model-agnostic NP searches 
with modern ML
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Model-agnostic NP Searches @ LHC
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https://arxiv.org/abs/2101.08320

https://arxiv.org/abs/2105.14027

A lot of new ideas for model-agnostic searches!

https://arxiv.org/abs/2101.08320
https://arxiv.org/abs/2105.14027
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Proofs-of-concept are becoming actual LHC searches!

fit signal regions are defined as the mJJ signal regions
the NN used for training, combined with the adjacent
halves of the left and right neighboring regions; the fit
sidebands are defined as the complement of the fit
signal regions. An iterative procedure is applied until
the p value from the fit sideband χ2 is greater than
0.05. Since the NN is trained to distinguish the
signal region from its neighboring regions, it is

expected that themJJ spectrum is smooth in the fit sideband
region in the presence or absence of a true signal. First, the
data are fit to dn=dx ¼ p1ð1 − xÞp2−ξ1p3x−p3 , where
x ¼ mJJ=

ffiffiffi
s

p
, pi are fit parameters, and the ξi are chosen

to ensure that the pi are uncorrelated. If the fit quality
is insufficient, an extended function is used instead
[100]: dn=dx ¼ p1ð1 − xÞp2−ξ1p3x−p3þðp4−ξ2p3−ξ3p2Þ logðxÞ.
If the fit quality remains insufficient, a variation of the

Ev
en

ts 
/ 1

00
 G

eV

1

10

210

310 Data
Fit

ATLAS
-1 = 13 TeV, 139 fbs

 = 0.01

 [GeV]JJm
2500 3000 3500 4000 4500 5000 5500 6000 6500

Si
gn

ific
an

ce

4!
2!
0
2
4

Ev
en

ts 
/ 1

00
 G

eV

1

10

210

310

410
Data
Fit
Signal 1

 = 3000 GeVAm
Signal 2

 = 5000 GeVAm

ATLAS
-1 = 13 TeV, 139 fbs

 = 0.1

 [GeV]JJm
2500 3000 3500 4000 4500 5000 5500 6000 6500

Si
gn

ific
an

ce

4!
2!
0
2
4

Ev
en

ts 
/ 1

00
 G

eV

1

10

210

310 Data
Fit
Signal 1

 = 3000 GeVAm
Signal 2

 = 5000 GeVAm

ATLAS
-1 = 13 TeV, 139 fbs

 = 0.01

 [GeV]JJm
2500 3000 3500 4000 4500 5000 5500 6000 6500

Si
gn

ific
an

ce

10!

5!
0
5

10

Ev
en

ts 
/ 1

00
 G

eV

1

10

210

310

410
Data
Fit

ATLAS
-1 = 13 TeV, 139 fbs

 = 0.1

 [GeV]JJm
2500 3000 3500 4000 4500 5000 5500 6000 6500

Si
gn

ific
an

ce

4!
2!
0
2
4

(a)

(c) (d)

(b)

FIG. 2. A comparison of the fitted background and the data in all six signal regions, indicated by vertical dashed lines, and for (a),(c)
ϵ ¼ 0.1 and (b),(d) ϵ ¼ 0.01. Dashed histograms represent the fit uncertainty. The lower panel is the Gaussian-equivalent significance of
the deviation between the fit and data. The fits are performed including the sidebands, but only the signal region predictions and
observations in each region are shown. As the NN is different for each signal region, the presented spectrum is not necessarily smooth.
The top plots (a),(b) show the result without injected signal, and the bottom plots (c),(d) present the same results but with signals injected
only for the NN training at mA ¼ 3 TeV (signal 1) and mA ¼ 5 TeV (signal 2), each with mB ¼ mC ¼ 200 GeV. The injected cross
section for each signal is just below the limit from the inclusive dijet search [100].

PHYSICAL REVIEW LETTERS 125, 131801 (2020)

131801-4

CWoLa Hunting

ATLAS, PRL 125 131801 (2020)

CWoLa Hunting

RNN VAE

ATLAS-CONF-2022-045

Model-agnostic NP Searches @ LHC



8

Proofs-of-concept are becoming actual LHC searches!

fit signal regions are defined as the mJJ signal regions
the NN used for training, combined with the adjacent
halves of the left and right neighboring regions; the fit
sidebands are defined as the complement of the fit
signal regions. An iterative procedure is applied until
the p value from the fit sideband χ2 is greater than
0.05. Since the NN is trained to distinguish the
signal region from its neighboring regions, it is

expected that themJJ spectrum is smooth in the fit sideband
region in the presence or absence of a true signal. First, the
data are fit to dn=dx ¼ p1ð1 − xÞp2−ξ1p3x−p3 , where
x ¼ mJJ=

ffiffiffi
s

p
, pi are fit parameters, and the ξi are chosen

to ensure that the pi are uncorrelated. If the fit quality
is insufficient, an extended function is used instead
[100]: dn=dx ¼ p1ð1 − xÞp2−ξ1p3x−p3þðp4−ξ2p3−ξ3p2Þ logðxÞ.
If the fit quality remains insufficient, a variation of the

Ev
en

ts 
/ 1

00
 G

eV

1

10

210

310 Data
Fit

ATLAS
-1 = 13 TeV, 139 fbs

 = 0.01

 [GeV]JJm
2500 3000 3500 4000 4500 5000 5500 6000 6500

Si
gn

ific
an

ce

4!
2!
0
2
4

Ev
en

ts 
/ 1

00
 G

eV

1

10

210

310

410
Data
Fit
Signal 1

 = 3000 GeVAm
Signal 2

 = 5000 GeVAm

ATLAS
-1 = 13 TeV, 139 fbs

 = 0.1

 [GeV]JJm
2500 3000 3500 4000 4500 5000 5500 6000 6500

Si
gn

ific
an

ce

4!
2!
0
2
4

Ev
en

ts 
/ 1

00
 G

eV

1

10

210

310 Data
Fit
Signal 1

 = 3000 GeVAm
Signal 2

 = 5000 GeVAm

ATLAS
-1 = 13 TeV, 139 fbs

 = 0.01

 [GeV]JJm
2500 3000 3500 4000 4500 5000 5500 6000 6500

Si
gn

ific
an

ce

10!

5!
0
5

10

Ev
en

ts 
/ 1

00
 G

eV

1

10

210

310

410
Data
Fit

ATLAS
-1 = 13 TeV, 139 fbs

 = 0.1

 [GeV]JJm
2500 3000 3500 4000 4500 5000 5500 6000 6500

Si
gn

ific
an

ce

4!
2!
0
2
4

(a)

(c) (d)

(b)

FIG. 2. A comparison of the fitted background and the data in all six signal regions, indicated by vertical dashed lines, and for (a),(c)
ϵ ¼ 0.1 and (b),(d) ϵ ¼ 0.01. Dashed histograms represent the fit uncertainty. The lower panel is the Gaussian-equivalent significance of
the deviation between the fit and data. The fits are performed including the sidebands, but only the signal region predictions and
observations in each region are shown. As the NN is different for each signal region, the presented spectrum is not necessarily smooth.
The top plots (a),(b) show the result without injected signal, and the bottom plots (c),(d) present the same results but with signals injected
only for the NN training at mA ¼ 3 TeV (signal 1) and mA ¼ 5 TeV (signal 2), each with mB ¼ mC ¼ 200 GeV. The injected cross
section for each signal is just below the limit from the inclusive dijet search [100].

PHYSICAL REVIEW LETTERS 125, 131801 (2020)

131801-4

CWoLa Hunting

ATLAS, PRL 125 131801 (2020)

CWoLa Hunting

RNN VAE

ATLAS-CONF-2022-045

• Beginning of a big wave? 


• Many more analyses from ATLAS and CMS on the way!


• Enormous discovery potential about to be tapped!

Model-agnostic NP Searches @ LHC



Two modes of anomaly detection
a. Outlier detection (“point anomalies”)

9

b. Overdensity detection (“group anomalies”)

low p(x) high 
pdata(x)
pbg(x)

2

m

a.u.

SB SR SB

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

x

pdata(x|m 2 SR)

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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2a. Outlier detection
• Pros: 


• can be fully unsupervised 

• can potentially find very rare anomalies


• Cons: 


• “low p(x)” is coordinate dependent! An event can be anomalous 
or not depending on parametrization of features  
[Le Lan & Dinh 2012.03808, DS+ Kasieczka et al 2209.06225]
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Different hypotheses have been formulated to explain that discrepancy, ranging from the curse
of dimensionality [31] to a significant mismatch between p(q)X and p⇤X [26,32–36].

In this work, we propose a new perspective on this discrepancy and challenge the
expectation that density estimation should always enable anomaly detection. We show that
the aforementioned discrepancy persists even with perfect density models, and therefore
goes beyond issues of estimation, approximation, or optimization errors [37]. We highlight
that this issue is pervasive as it occurs even in low-dimensional settings and for a variety of
density-based methods for anomaly detection. Focusing on the continuous input case, we
make the following contributions:
• Similar to classification, we propose in Section 3 a principle of invariance to formalize the

underlying assumptions behind the current practice of (deep) density-based methods.
• We use the well-known change of variables formula for probability density to show

in Section 4 how these density-based methods are not invariant to reparametrization
(see Figure 1) and contradict this principle. We demonstrate the extent of the issues
with current practices by building adversarial cases, even under strong distributional
constraints.

• Given the resulting tension between the use of these anomaly detection methods and their
lack of invariance, we focus in Section 5 on the importance of explicitly incorporating
prior knowledge into (density-based) anomaly detection methods as a more promising
avenue to reconcile this tension.

x

p⇤ X
(x
)

(a)

x

z
=

f(
x)

(b)

z

p⇤ Z
(z
)

(c)

Figure 1. An invertible change of representation can affect the relative density between two points A and B, which has been
interpreted as their relative regularity. (a) An example of a distribution density p⇤X . (b) Example of an invertible function f from
[0, 1] to [0, 1]. (c) Resulting density p⇤Z as a function of the new axis z = f (x). In (a,c) points with high original density p⇤X(x) are
in blue and red for low original density.

2. Density-Based Anomaly Detection
In this section, we present existing density-based anomaly detection approaches that

are central to our analysis. Seen as methods without explicit prior knowledge, they aim at
unambiguously defining outliers and inliers.

2.1. Unsupervised Anomaly Detection: Problem Statement
Unsupervised anomaly detection is a classification problem [38–40], where one aims

at distinguishing between regular points (inliers) and irregular points (outliers). However,
as opposed to the usual classification task, labels distinguishing inliers and outliers are not
provided for training, if outliers are even provided at all. Given an input space X ✓ RD, the

https://arxiv.org/abs/2012.03808%5D
https://arxiv.org/abs/2209.06225
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Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino

2

Latent layer

An autoencoder maps an input into a “latent representation” and then 
attempts to reconstruct the original input from it.   

The encoding is lossy, so the reconstruction is not perfect. 

Many real world applications of autoencoders, including anomaly detection, fraud 
detection, denoising, compression, generation, density estimation
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[See Maria’s talk next for other ways to use 
(variational) autoencoders for anomaly detection]
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13Figure 2: Distribution of reconstruction error computed with a CNN autoencoder on test samples of
QCD background (gray) and two signals: tops (blue) and 400GeV gluinos (orange).

We see that the autoencoder works as advertised: it learns to reconstruct the QCD

background that it has been trained on (to be precise, we train on 100k QCD jets and

then we evaluate the autoencoder on a separate sample of QCD jets), and it fails to

reconstruct the signals that it has never seen before. This is further illustrated in Fig. 3,

which shows the average QCD, top and gluino jet image before and after autoencoder

reconstruction. We see by eye that the QCD images are reconstructed well on average,

while the others contain more errors.

By sliding the reconstruction loss threshold L > LS around, we can turn the his-

tograms in Fig. 2 into ROC curves. The ROC curves for the di↵erent autoencoder

architectures are shown in Fig. 4 for the top and gluino signals. For comparison we have

also included the ROC curve obtained by cutting on jet mass as an anomaly threshold.

While the three architectures have comparable performances it is clear there are some

important di↵erences. For tops, the CNN outperforms the others, while for gluinos the

situation is largely reversed. Surprisingly, for gluinos, the CNN is even outperformed

by the humble PCA autoencoder at all but the lowest signal e�ciencies! We will ex-

plore this in more detail in section 4.2, but a clue as to what’s going on is shown in

the comparison of the PCA ROC curve with the jet mass ROC curve. For gluinos,

they track each other extremely closely, suggesting that the PCA reconstruction error is

highly correlated with jet mass. We will confirm this in section 4.2. Evidently, the PCA

autoencoder (and to a lesser extent the dense autoencoder) has learned to reconstruct

7

Train the AE on QCD jets only.   
Can detect top and gluino jets as anomalous!

from 1808.08992

Example: searching for NP with autoencoders

We showed that the AE could detect 
interesting physics anomalies.

background (QCD) signal (tops and 400 GeV RPV gluinos)
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Challenges:
• Uncontrolled, not very sensitive, optimality not guaranteed — the AE will find what it finds…

• The AE can fail to detect outliers if they are “simpler” than the background  
T. Weber MSc Thesis [G. Kasieczka]; Dillon et al 2104.08291; Finke et al 2104.09051

Figure 7. Left: ROC curve of our direct (dark blue) and inverse (purple) tagger. For comparison
we also show the performance of a supervised CNN tagger (red), the results of Ref. [30] for the
direct tagger, and a random tagger (grey dashed). Right: Loss distribution for QCD (solid) and
top (dashed) images for the direct (blue) and inverse (purple) taggers.

direct AE tagger reproduces the results for the direct unsupervised AE tagger in Ref. [30],

which has used a similar setup. As expected, it performs worse than a supervised tagger,

but much better than random guessing. A similar performance for the unsupervised AE

tagger has also been obtained in Ref. [31] in a slightly di↵erent setup. Hence, our direct

tagger works as expected.

As can be seen from Fig. 7, the inverse tagger performs worse than randomly tagging

jets as anomalous. Our inverse autoencoder fails to tag an anomaly (QCD jets in this case)

that is simpler than the background. Through its training on top jets, the inverse tagger

learns to reconstruct top jets better than the direct tagger (see right plot in Fig. 7), and its

performance for the reconstruction of QCD jets is diminished. However, this is not enough

to overcome the complexity bias.

To summarize, even with a limited reconstruction capability, an autoencoder can be

a good anomaly tagger if there is a bias to reconstruct the background better. However,

if the bias works against anomaly detection, the learning capabilities of the AE may not

be su�cient to overcome the bias. Only a powerful AE with a background specific data

compression in the latent space could potentially be able to overcome such a bias. Im-

provements of our setup to partly achieve these goals are discussed in Section 3.

It should be noted that a perfect AE, which is always able to perfectly reconstruct the

input via the identity mapping regardless of the input data, would be useless as a tagger

as it would always interpolate perfectly from the learned data to the anomalies.

3 Improving the autoencoder performance

Given the limited performance of the AE setup described in Section 2.1, we investigate

possible improvements. One approach would be to change the AE architecture. There

are unlimited possibilities which are worth investigating. However, here we want to point

out some generic improvements concerning the complexity bias and the limited learning

– 10 –

from 2104.09051

Top jets (more complex) are identified as anomalous 
when AE trained on QCD jets (simpler)


But not vice versa

Autoencoders: challenges
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Normalized autoencoders
Yoon et al 2105.05735, Dillon et al 2206.14225
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Figure 3: Distribution of the energy or MSE after training on QCD jets (left) and on
top jets (right). We show the energy for QCD jets (blue) and top jets (orange) in both
cases.

the respective backgrounds and signals.

To see the difference in the two-directional training we can also look at the respective
energy distributions. In the left panel of Fig. 3 we first see the result after training the NAE on
QCD jets. The energy values for the background are peaked strongly, cut off below 4⇥ 10�5

and with a smooth tail towards larger energy values. The energy distribution for top jets is
peaked at larger values, and again with an unstructured tail into the QCD region. We can
then evaluate the performance of anomalous top tagging in terms of the ROC curve, the AUC
score, and the inverse mistag at low efficiency (✏s = 0.2) in Fig. 4. This choice of working
point is motivated by possible applications of autoencoders requiring significant background
rejection. The orange ROC curves show how the performance increases after the additional
AE training to the NAE training in the self-constructed latent-space geometry. The AUC value
of 0.914 quoted in the corresponding table is significantly above the AE setup and our earlier
studies.

Next, we can see what happens when we train on top jets and search for the simpler QCD
jets as an anomaly. In the right panel of Fig. 3 the background energy is much broader, with a
significant tail also towards small energy values. The QCD distribution develops two distinct
peaks, an expected peak in the tail of the top distribution and an additional peak under the
top peak. The fact that the NAE manages to push the QCD jets towards larger energy values
indicates that the NAE works beyond the compressibility ordering of the simple AE. However,
the second peak shows that a fraction of QCD jets look just like top jets to the NAE. The ROC
curves in Fig. 4 first confirm that training a regular AE to search for QCD jets in a top sample
makes little sense, leading to an AUC value of 0.579. After the additional NAE training step we
reach an ROC value of almost 0.9, close to the corresponding value for top tagging. However,
the shape of the ROC curve does not exactly follow our expectations. We can start with large
✏S ! 1 in the right panel of Fig. 3. Here the working point is in the small-energy tails of
the signal and background distributions, and because of the tails in the top jet distribution
the performance of the classification network starts poorly. Moving towards smaller ✏S the
network performance drastically improves, until we pass the background peak, corresponding
to ✏S ⇠ 0.6. Below this value, the QCD tagging improves, again, but more slowly than the

11

from 2206.14225
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model is trained. The training focuses on minimizing the negative log-likelihood of the data
given the network parameters, but evaluating a probability distribution. This means that NAE
is a probabilistic model which samples from the model distribution and penalizes modes ab-
sent from the training data. For phase space regions with such modes the NAE training adjusts
the energy as the underlying structure of the latent space, such that the autoencoder gets more
powerful and model-agnostic. Two Langevin Markov Chains in the latent and phase spaces
probe the poor-reconstruction regions and penalize them. Combining this with the minimiza-
tion of the training reconstruction error, we define a minmax loss function that converges when
the training and model distributions match each other.

In Sec. 2 we first introduce energy-based models as an alternative to reconstruction losses
like an MSE or a likelihood ratio. We then describe the NAE setup, with its efficient way of
sampling the background data manifold in phase space and latent space. In Sec. 3 we apply
the NAE to the top tagging dataset [62–64] and show that, for the first time, the NAE identifies
anomalous top jets and anomalous QCD jets symmetrically and with high efficiency. Next, we
target two challenging dark jet signals [15] and confirm the excellent performance of the NAE
and its relative independence of the jet image preprocessing in Sec. 4. In the Appendix we
provide additional details about the NAE and our implementation.

2 Network and dataset

The normalized autoencoder [61] we will use for this study is an energy-based modification
of a standard AE, as applied in Ref. [1]. We will first introduce energy-based models, mention
their challenges, and then describe the way the NAE modifies the AE training. As input data
we use jet images with standard preprocessing.

2.1 Energy-based networks

Energy-Based Models (EBMs) are a class of probability density estimation models appealing for
their flexibility. They are defined through a normalizable energy function, which is minimized
during training. This energy function can be chosen as any non-linear function mapping a
point to a scalar value [65],

E✓ (x) : RD! R , (1)

where D is the dimensionality of the phase space. The EBM uses this energy function to define
a probabilistic loss, assuming a Boltzmann or Gibbs distribution as its probability density over
phase space,

p✓ (x) =
e�E✓ (x)

Z✓
with Z✓ =
Z

x
d xe�E✓ (x) , (2)

with the partition function Z✓ . We omit an explicit normalization of the energy by a temper-
ature or some other constant in this formula. The main feature of a Boltzmann distribution is
that low-energy states have the highest probability. The EBM loss is the negative logarithmic
probability evaluated as a likelihood over the model parameters,

L(x) = � log p✓ (x) = E✓ (x) + log Z✓ ) L=
⌦
E✓ (x) + log Z✓
↵

x⇠pdata
, (3)

where we define the total loss as the expectation over the per-sample loss. The difference to
typical likelihood losses is that the second, normalization term is unknown.

4

Add additional normalization term to usual AE loss to further penalize 
outliers during training

Now performance of AE is “symmetrical”!


• Tops are identified as anomalous 
when AE trained on QCD


• QCD are identified as anomalous 
when AE trained on Tops

https://arxiv.org/abs/2105.05735
https://arxiv.org/abs/2206.14225
https://arxiv.org/abs/2206.14225
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• Train two autoencoders and force them to be statistically independent of one another

Autoencoders: challenges

2

to design model independent strategies for saving anoma-
lous events.

Autoencoders can be run online because they do not re-
quire comparing data to a reference sample [28–31]. How-
ever, no autoencoder-based trigger proposal so far has
been complete in the sense introduced above. Many con-
ventional triggers are complemented by support triggers
which provide the context needed for data-driven back-
ground estimation o✏ine. Our method provides the first
complete anomaly detection strategy in a similar way to
these conventional methods. By using two decorrelated
autoencoders, we can trigger on potentially anomalous
events and then additionally save (at a reduced rate)
anti-tagged events in a way that background estimation
is possible o✏ine.

This paper is organized as follows. First, we introduce
the technique of decorrelated autoencoders in Sec. II. Nu-
merical results with the ADC2021 dataset are presented
in Sec. III. By definition, this demonstration highlights
an o✏ine application of our approach. Section IV pro-
vides a discussion about the online-compatibility of our
technique for experimental integration online. The paper
ends with conclusions and outlook in Sec. V.

II. DECORRELATED AUTOENCODERS

A vanilla autoencoder is a composition of two func-
tions, an encoder g and a decoder f . These two functions
are parameterized as neural networks and are optimized
to minimize the reconstruction loss:

L[f, g] =
X

i

(f(g(xi))� xi)
2 , (1)

where x 2 Rn, g : Rn ! Rm, and f : Rm ! Rn. In
order to encourage compression, the latent space dimen-
sion is chosen such that m < n. A popular variation on
this setup is the variational autoencoder [80, 81], whereby
the encoding and decoding are probabilistic and the la-
tent space has well-defined statistical properties. The
methods proposed here are compatible with variational
autoencoders, and while preliminary studies indicate that
the results are similar, we leave a full exploration to fu-
ture work.

Instead of training a single autoencoder as in Eq. 1,
we propose to train two (or more) statistically indepen-

dent autoencoders at the same time, in order to enable
data-driven background estimation. Following [68, 75],
we achieve the decorrelation of the autoencoders by in-
cluding in the training a regularizer term based on the
distance correlation (DisCo) measure of statistical depen-
dence. Focusing on the case of two autoencoders (f1, g1)
and (f2, g2) for simplicity, we consider the following loss

function:

L[f1, f2, g1, g2] =
X

i

R1(xi)
2 +

X

i

R2(xi)
2

+ �DisCo2[R1(X), R2(X)] , (2)

where Ri(x) = (fi(gi(x)) � x)2, � > 0 is a hyperpa-
rameter, and DisCo is the distance correlation [82–85].
DisCo is between 0 and 1 and is zero if and only if
its arguments are independent. The capital X is used
in the last term of Eq. 2 to indicate that the distance
correlation is computed at the level of a batch of ex-
amples x, which are realizations of the random variable
X. Given autoencoders trained via Eq. 2, we can de-
fine counts N7,7(~c) =

P
i I[R1(xi) 7 c1] I[R2(xi) 7 c2],

where ~c = (c1, c2) are given thresholds and I[·] is the in-
dicator function that is zero when its argument is false
and one otherwise. The signal sensitive region is N>,>(~c)
and the other three regions can be used to estimate the
background:

Npredicted
>,> (~c) =

N>,<(~c)N<,>(~c)

N<,<(~c)
. (3)

Equation 3 is known as the ABCD method and the
N>,>(~c) is exactly the background in the signal-sensitive
region if there are enough events and if the two dimen-
sions are e↵ective at rejecting the background.

III. EMPIRICAL RESULTS

The performance of the double autoencoder and decor-
relation strategy is tested on the ADC2021 dataset,
which was created for unsupervised anomaly detec-
tion [31, 86]. In the dataset, proton-proton collisions
at the LHC are simulated at center-of-mass energy of
13 TeV. Collision events are required to contain at least
one electron (e) or muon (µ) with transverse momenta
pT > 23 GeV. A set of various Standard Model processes
are generated with Pythia 8.240 generator [87, 88] with
detector response modeled by Delphes 3.3.2 [89–91] us-
ing the Phase-II CMS detector card. During the training,
2 million events are used while results are reported using
an independent validation set containing 800k SM events.
Four benchmark scenarios containing new physics pro-

cesses are used to evaluate the performance of the algo-
rithm: a leptoquark (LQ) with 80 GeV mass decaying
to a b-quark and a ⌧ lepton, a neutral scalar boson (A)
of 50 GeV mass decaying to a pair of o↵-shell Z bosons,
which in turn are forced to decay to leptons (A ! 4l),
a scalar boson h0 of 60 GeV mass decaying to a pair
of ⌧ leptons (h0 ! ⌧⌧), and a charged scalar boson h±

with 60 GeV mass, decaying to a ⌧ lepton and a neu-
trino (h± ! ⌧⌫). In the performance evaluation, each
new physics scenario is considered independently, with
total amount of events fixed to 0.1% of the total sample
size.

“DisCo Decorrelation”
Kasieczka & DS 2001.05310

Szekely et al 0803.4101 et seq
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• Train two autoencoders and force them to be statistically independent of one another

• Use ABCD method for fully data-driven background estimation

Autoencoders: challenges

2

to design model independent strategies for saving anoma-
lous events.

Autoencoders can be run online because they do not re-
quire comparing data to a reference sample [28–31]. How-
ever, no autoencoder-based trigger proposal so far has
been complete in the sense introduced above. Many con-
ventional triggers are complemented by support triggers
which provide the context needed for data-driven back-
ground estimation o✏ine. Our method provides the first
complete anomaly detection strategy in a similar way to
these conventional methods. By using two decorrelated
autoencoders, we can trigger on potentially anomalous
events and then additionally save (at a reduced rate)
anti-tagged events in a way that background estimation
is possible o✏ine.

This paper is organized as follows. First, we introduce
the technique of decorrelated autoencoders in Sec. II. Nu-
merical results with the ADC2021 dataset are presented
in Sec. III. By definition, this demonstration highlights
an o✏ine application of our approach. Section IV pro-
vides a discussion about the online-compatibility of our
technique for experimental integration online. The paper
ends with conclusions and outlook in Sec. V.

II. DECORRELATED AUTOENCODERS

A vanilla autoencoder is a composition of two func-
tions, an encoder g and a decoder f . These two functions
are parameterized as neural networks and are optimized
to minimize the reconstruction loss:

L[f, g] =
X

i

(f(g(xi))� xi)
2 , (1)

where x 2 Rn, g : Rn ! Rm, and f : Rm ! Rn. In
order to encourage compression, the latent space dimen-
sion is chosen such that m < n. A popular variation on
this setup is the variational autoencoder [80, 81], whereby
the encoding and decoding are probabilistic and the la-
tent space has well-defined statistical properties. The
methods proposed here are compatible with variational
autoencoders, and while preliminary studies indicate that
the results are similar, we leave a full exploration to fu-
ture work.

Instead of training a single autoencoder as in Eq. 1,
we propose to train two (or more) statistically indepen-

dent autoencoders at the same time, in order to enable
data-driven background estimation. Following [68, 75],
we achieve the decorrelation of the autoencoders by in-
cluding in the training a regularizer term based on the
distance correlation (DisCo) measure of statistical depen-
dence. Focusing on the case of two autoencoders (f1, g1)
and (f2, g2) for simplicity, we consider the following loss

function:

L[f1, f2, g1, g2] =
X

i

R1(xi)
2 +

X

i

R2(xi)
2

+ �DisCo2[R1(X), R2(X)] , (2)

where Ri(x) = (fi(gi(x)) � x)2, � > 0 is a hyperpa-
rameter, and DisCo is the distance correlation [82–85].
DisCo is between 0 and 1 and is zero if and only if
its arguments are independent. The capital X is used
in the last term of Eq. 2 to indicate that the distance
correlation is computed at the level of a batch of ex-
amples x, which are realizations of the random variable
X. Given autoencoders trained via Eq. 2, we can de-
fine counts N7,7(~c) =

P
i I[R1(xi) 7 c1] I[R2(xi) 7 c2],

where ~c = (c1, c2) are given thresholds and I[·] is the in-
dicator function that is zero when its argument is false
and one otherwise. The signal sensitive region is N>,>(~c)
and the other three regions can be used to estimate the
background:

Npredicted
>,> (~c) =

N>,<(~c)N<,>(~c)

N<,<(~c)
. (3)

Equation 3 is known as the ABCD method and the
N>,>(~c) is exactly the background in the signal-sensitive
region if there are enough events and if the two dimen-
sions are e↵ective at rejecting the background.

III. EMPIRICAL RESULTS

The performance of the double autoencoder and decor-
relation strategy is tested on the ADC2021 dataset,
which was created for unsupervised anomaly detec-
tion [31, 86]. In the dataset, proton-proton collisions
at the LHC are simulated at center-of-mass energy of
13 TeV. Collision events are required to contain at least
one electron (e) or muon (µ) with transverse momenta
pT > 23 GeV. A set of various Standard Model processes
are generated with Pythia 8.240 generator [87, 88] with
detector response modeled by Delphes 3.3.2 [89–91] us-
ing the Phase-II CMS detector card. During the training,
2 million events are used while results are reported using
an independent validation set containing 800k SM events.
Four benchmark scenarios containing new physics pro-

cesses are used to evaluate the performance of the algo-
rithm: a leptoquark (LQ) with 80 GeV mass decaying
to a b-quark and a ⌧ lepton, a neutral scalar boson (A)
of 50 GeV mass decaying to a pair of o↵-shell Z bosons,
which in turn are forced to decay to leptons (A ! 4l),
a scalar boson h0 of 60 GeV mass decaying to a pair
of ⌧ leptons (h0 ! ⌧⌧), and a charged scalar boson h±

with 60 GeV mass, decaying to a ⌧ lepton and a neu-
trino (h± ! ⌧⌫). In the performance evaluation, each
new physics scenario is considered independently, with
total amount of events fixed to 0.1% of the total sample
size.
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to design model independent strategies for saving anoma-
lous events.

Autoencoders can be run online because they do not re-
quire comparing data to a reference sample [28–31]. How-
ever, no autoencoder-based trigger proposal so far has
been complete in the sense introduced above. Many con-
ventional triggers are complemented by support triggers
which provide the context needed for data-driven back-
ground estimation o✏ine. Our method provides the first
complete anomaly detection strategy in a similar way to
these conventional methods. By using two decorrelated
autoencoders, we can trigger on potentially anomalous
events and then additionally save (at a reduced rate)
anti-tagged events in a way that background estimation
is possible o✏ine.

This paper is organized as follows. First, we introduce
the technique of decorrelated autoencoders in Sec. II. Nu-
merical results with the ADC2021 dataset are presented
in Sec. III. By definition, this demonstration highlights
an o✏ine application of our approach. Section IV pro-
vides a discussion about the online-compatibility of our
technique for experimental integration online. The paper
ends with conclusions and outlook in Sec. V.

II. DECORRELATED AUTOENCODERS

A vanilla autoencoder is a composition of two func-
tions, an encoder g and a decoder f . These two functions
are parameterized as neural networks and are optimized
to minimize the reconstruction loss:

L[f, g] =
X

i

(f(g(xi))� xi)
2 , (1)

where x 2 Rn, g : Rn ! Rm, and f : Rm ! Rn. In
order to encourage compression, the latent space dimen-
sion is chosen such that m < n. A popular variation on
this setup is the variational autoencoder [80, 81], whereby
the encoding and decoding are probabilistic and the la-
tent space has well-defined statistical properties. The
methods proposed here are compatible with variational
autoencoders, and while preliminary studies indicate that
the results are similar, we leave a full exploration to fu-
ture work.

Instead of training a single autoencoder as in Eq. 1,
we propose to train two (or more) statistically indepen-

dent autoencoders at the same time, in order to enable
data-driven background estimation. Following [68, 75],
we achieve the decorrelation of the autoencoders by in-
cluding in the training a regularizer term based on the
distance correlation (DisCo) measure of statistical depen-
dence. Focusing on the case of two autoencoders (f1, g1)
and (f2, g2) for simplicity, we consider the following loss

function:

L[f1, f2, g1, g2] =
X

i

R1(xi)
2 +

X

i

R2(xi)
2

+ �DisCo2[R1(X), R2(X)] , (2)

where Ri(x) = (fi(gi(x)) � x)2, � > 0 is a hyperpa-
rameter, and DisCo is the distance correlation [82–85].
DisCo is between 0 and 1 and is zero if and only if
its arguments are independent. The capital X is used
in the last term of Eq. 2 to indicate that the distance
correlation is computed at the level of a batch of ex-
amples x, which are realizations of the random variable
X. Given autoencoders trained via Eq. 2, we can de-
fine counts N7,7(~c) =

P
i I[R1(xi) 7 c1] I[R2(xi) 7 c2],

where ~c = (c1, c2) are given thresholds and I[·] is the in-
dicator function that is zero when its argument is false
and one otherwise. The signal sensitive region is N>,>(~c)
and the other three regions can be used to estimate the
background:

Npredicted
>,> (~c) =

N>,<(~c)N<,>(~c)

N<,<(~c)
. (3)

Equation 3 is known as the ABCD method and the
N>,>(~c) is exactly the background in the signal-sensitive
region if there are enough events and if the two dimen-
sions are e↵ective at rejecting the background.

III. EMPIRICAL RESULTS

The performance of the double autoencoder and decor-
relation strategy is tested on the ADC2021 dataset,
which was created for unsupervised anomaly detec-
tion [31, 86]. In the dataset, proton-proton collisions
at the LHC are simulated at center-of-mass energy of
13 TeV. Collision events are required to contain at least
one electron (e) or muon (µ) with transverse momenta
pT > 23 GeV. A set of various Standard Model processes
are generated with Pythia 8.240 generator [87, 88] with
detector response modeled by Delphes 3.3.2 [89–91] us-
ing the Phase-II CMS detector card. During the training,
2 million events are used while results are reported using
an independent validation set containing 800k SM events.
Four benchmark scenarios containing new physics pro-

cesses are used to evaluate the performance of the algo-
rithm: a leptoquark (LQ) with 80 GeV mass decaying
to a b-quark and a ⌧ lepton, a neutral scalar boson (A)
of 50 GeV mass decaying to a pair of o↵-shell Z bosons,
which in turn are forced to decay to leptons (A ! 4l),
a scalar boson h0 of 60 GeV mass decaying to a pair
of ⌧ leptons (h0 ! ⌧⌧), and a charged scalar boson h±

with 60 GeV mass, decaying to a ⌧ lepton and a neu-
trino (h± ! ⌧⌫). In the performance evaluation, each
new physics scenario is considered independently, with
total amount of events fixed to 0.1% of the total sample
size.
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Double Decorrelated AE
Mikuni, Nachman & DS 2111.06417

The method works!

First complete strategy for unsupervised, non-resonant anomaly detection


Can also be used online as an anomaly trigger

4

FIG. 2. Closure test of the ABCD estimation method for dif-
ferent SM e�ciencies and benchmark scenarios. Di↵erent se-
lection combinations yielding the same background e�ciency
are shown as independent entries.

prior to the application of the method. As pointed out in
Ref. [75], unaccounted contamination from the signal of
interest in the ABCD sidebands may result in di↵erent
significance values when compared to the correct estima-
tion of the background. While this issue can be accounted
when performing model specific exclusion limits, we also
show in Fig. 3 (top) the significance obtained using the
ABCD method with and without correcting the number
of background events. To avoid fine tuning, the thresh-
old applied to each autoencoder reconstruction loss is the
one where both autoencoders have the same SM rejection
e�ciency.

In all new physics benchmark scenarios, the uncor-
rected significance for SM e�ciencies above 1.5% is lower
than the corrected for SM e�ciencies. Nevertheless, all
new physics scenarios show significance between 1 to 4
while the SM only sample has a maximum deviation be-
low 1. We have also probed the stability of the method
by performing five independent trainings with di↵erent
random weight initialization. The standard variation of
the average significance was below 6% for all benchmark
scenarios tested.

The additional distance correlation loss leads to in-
creased reconstruction loss in the background training
sample, resulting in decreased performance compared to
a single autoencoder training. This di↵erence is illus-
trated in Fig. 3 (bottom) where the significance is com-
pared with the values obtained from training a single
autoencoder with same network architecture. Since the
ABCD method is only applicable in the double autoen-
coder case, no background estimation method is used
in the comparison. In all cases, the di↵erence in sig-
nificance of the double and single autoencoders is less
than 30%. While the single autoencoder consistently out-
performs the double autoencoder, the lack of dedicated
background estimation might lead to unattainable per-

formances when applied to real particle collisions.

FIG. 3. Signal significance for each benchmark scenario (top)
when the ABCD method is used to predict the background
level (solid lines) compared to the real significance value
(dashed lines). In the bottom panel, the comparison of the
significance between a single autoencoder (dashed lines) and
the double autoencoder (solid lines) is shown. In this case,
no background estimation method is used.

IV. ANOMALY DETECTION ONLINE

The discussion so far has demonstrated that the decor-
related autoencoder protocol is an e↵ective tool for
simulation-free, non-resonant anomaly detection. This
section briefly describes how this technique is also online
compatible. We envision that in an actual trigger system,
we would save all events in the signal sensitive region
defined by the two autoencoders and then save a ran-
dom fraction (‘prescale’) of events in the three other re-
gions for o✏ine background estimation (similar to exist-
ing ‘support triggers’ for certain background processes).
The prescale would be set so that the statistical uncer-
tainty on the background prediction is smaller than the

(Initial NP significance: 0.8σ)

ADC2021 1-lepton dataset 
Govorkova et al 2107.02157
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FIG. 2. Closure test of the ABCD estimation method for dif-
ferent SM e�ciencies and benchmark scenarios. Di↵erent se-
lection combinations yielding the same background e�ciency
are shown as independent entries.

prior to the application of the method. As pointed out in
Ref. [75], unaccounted contamination from the signal of
interest in the ABCD sidebands may result in di↵erent
significance values when compared to the correct estima-
tion of the background. While this issue can be accounted
when performing model specific exclusion limits, we also
show in Fig. 3 (top) the significance obtained using the
ABCD method with and without correcting the number
of background events. To avoid fine tuning, the thresh-
old applied to each autoencoder reconstruction loss is the
one where both autoencoders have the same SM rejection
e�ciency.

In all new physics benchmark scenarios, the uncor-
rected significance for SM e�ciencies above 1.5% is lower
than the corrected for SM e�ciencies. Nevertheless, all
new physics scenarios show significance between 1 to 4
while the SM only sample has a maximum deviation be-
low 1. We have also probed the stability of the method
by performing five independent trainings with di↵erent
random weight initialization. The standard variation of
the average significance was below 6% for all benchmark
scenarios tested.

The additional distance correlation loss leads to in-
creased reconstruction loss in the background training
sample, resulting in decreased performance compared to
a single autoencoder training. This di↵erence is illus-
trated in Fig. 3 (bottom) where the significance is com-
pared with the values obtained from training a single
autoencoder with same network architecture. Since the
ABCD method is only applicable in the double autoen-
coder case, no background estimation method is used
in the comparison. In all cases, the di↵erence in sig-
nificance of the double and single autoencoders is less
than 30%. While the single autoencoder consistently out-
performs the double autoencoder, the lack of dedicated
background estimation might lead to unattainable per-

formances when applied to real particle collisions.

FIG. 3. Signal significance for each benchmark scenario (top)
when the ABCD method is used to predict the background
level (solid lines) compared to the real significance value
(dashed lines). In the bottom panel, the comparison of the
significance between a single autoencoder (dashed lines) and
the double autoencoder (solid lines) is shown. In this case,
no background estimation method is used.

IV. ANOMALY DETECTION ONLINE

The discussion so far has demonstrated that the decor-
related autoencoder protocol is an e↵ective tool for
simulation-free, non-resonant anomaly detection. This
section briefly describes how this technique is also online
compatible. We envision that in an actual trigger system,
we would save all events in the signal sensitive region
defined by the two autoencoders and then save a ran-
dom fraction (‘prescale’) of events in the three other re-
gions for o✏ine background estimation (similar to exist-
ing ‘support triggers’ for certain background processes).
The prescale would be set so that the statistical uncer-
tainty on the background prediction is smaller than the
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• reparametrization invariant


• asymptotically optimal
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• Requires more precise knowledge of background 

(reference) distribution


• Performance suffers when signal is too rare
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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Idea: assume signal is localized in some feature (usually invariant mass) while 
background is smooth. 


Interpolate from sidebands into signal region (eg window in invariant mass), search 
for an excess. 

Used in many discoveries!
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Learn model-agnostic anomaly score  from dataR(x)

Cut on 
anomaly score 


R(x)

S/ B ∼ 1

S/ B ≫ 1

: additional features where NP could be localizedx

NP hidden

NP discovered!
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Claim: the optimal model-agnostic discriminant would be (Neyman & Pearson) 

“Idealized Anomaly Detector”R(x) =
pdata(x)
pbg(x)
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Claim: the optimal model-agnostic discriminant would be (Neyman & Pearson) 

“Idealized Anomaly Detector”

Proof:

R(x) =
pdata(x)
pbg(x)

pdata(x) = ϵsigpsig(x) + (1 − ϵsig)pbg(x)

R(x) = (1 − ϵsig) + ϵsig
psig(x)
pbg(x)



Idealized Anomaly Detector
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Claim: the optimal model-agnostic discriminant would be (Neyman & Pearson) 

“Idealized Anomaly Detector”

 is monotonic with signal-to-background likelihood 
ratio regardless of unknown, arbitrary signal strength 
and probability density

R(x)

Proof:

R(x) =
pdata(x)
pbg(x)

pdata(x) = ϵsigpsig(x) + (1 − ϵsig)pbg(x)

R(x) = (1 − ϵsig) + ϵsig
psig(x)
pbg(x)



Idea: data vs simulation classifier
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Train a neural network to classify data vs MC simulation of the SM. 


If the NN classifier is optimal, its output should be (monotonic with) 
the data vs MC likelihood ratio (Neyman-Pearson).

Rclassifier(x) =
pdata(x)
pMC(x)
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Train a neural network to classify data vs MC simulation of the SM. 


If the NN classifier is optimal, its output should be (monotonic with) 
the data vs MC likelihood ratio (Neyman-Pearson).

“The likelihood-ratio trick”Rclassifier(x) =
pdata(x)
pMC(x)
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D’Agnolo et al 
2111.13633

Train a neural network to classify data vs MC simulation of the SM. 


If the NN classifier is optimal, its output should be (monotonic with) 
the data vs MC likelihood ratio (Neyman-Pearson).

This can work if simulations are reliable and their systematic uncertainties are 
well-understood.


“The likelihood-ratio trick”Rclassifier(x) =
pdata(x)
pMC(x)



Idea: data vs simulation classifier

22

D’Agnolo et al 
2111.13633

Train a neural network to classify data vs MC simulation of the SM. 


If the NN classifier is optimal, its output should be (monotonic with) 
the data vs MC likelihood ratio (Neyman-Pearson).

This can work if simulations are reliable and their systematic uncertainties are 
well-understood.


“The likelihood-ratio trick”

Alternatively, can we get  and  in a data-driven way?pdata(x) pbg(x)

Rclassifier(x) =
pdata(x)
pMC(x)



Idea: data vs sideband classifier
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Collins, Howe & Nachman 1805.02664,1902.02634
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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If  [i.e. features  are independent 
of  in the background] then the classifier gives the 
desired likelihood ratio.

pbg,SB(x) = pbg,SR(x) x
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Rclassifier(x) →
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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If  [i.e. features  are independent 
of  in the background] then the classifier gives the 
desired likelihood ratio.

pbg,SB(x) = pbg,SR(x) x
m

Rclassifier(x) →
pdata,SR(x)
pbg,SR(x)

Rclassifier(x) ≈
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=
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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as it has consistently resulted in sub-optimal anomaly
detection performance.
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C. Classifier

The third step of the Cathode method is to train
a classifier to distinguish the generated sample events
(that should follow the background distribution in the
SR) from the mock data (that follow the background plus
signal distribution in the SR). For all the variations we
will explore (including CWoLa Hunting), we will use the
same classifier architecture. This consists of 3 hidden

layers with 64 nodes each and a binary cross-entropy loss.

The binary classifier, also implemented with Py-
Torch [93], is trained for 100 epochs, using the Adam [94]
optimizer with a learning rate of 10�3. When the classes
are imbalanced (as will be the case when we oversam-
ple the background model), they are reweighted in the
loss computation accordingly, such that they contribute
equally. Note that here classes refer to the sampled
events and the mock data, not signal and background
events.

For this step, we divide the mock data in the SR in half,
reserving 60,000 events for training the classifier and the
remaining 60,000 events for validation (model selection).
In a real-life application one would want to perform k-
fold cross validation so as to not throw away half of the
events. However, as this is a proof of concept we do not
employ this here.

Unless stated otherwise, we sample in total 400,000
events from the MAF generative model (so N = 40, 000
in the description of Section III B), which are distributed
equally (200,000 each) into the training and validation set
for the classifier. Di↵erent choices will then be compared
in Section IVD.

During training, the loss is recorded on the validation
set, as shown in Fig. 5. The model states of the 10 epochs
with the lowest validation losses are used to construct an
ensemble prediction. As in the density estimator ensem-
ble, these epochs do not need to be consecutive. In the
ensembling, the individual predictions of each data point
are averaged. Since the loss is defined with respect to
labels indicating whether a data point is from mock data
or sampled events, this approach does not rely on any
truth information pertaining to the anomaly.

FIG. 5. Training and validation loss of the classifier (dotted
lines) and the 5 epoch moving average (solid lines) during
training. The accuracy is also shown, which in the case of
low signal contamination should oscillate around 0.5 if the
two classes are indistinguishable.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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signal distribution in the SR). For all the variations we
will explore (including CWoLa Hunting), we will use the
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layers with 64 nodes each and a binary cross-entropy loss.

The binary classifier, also implemented with Py-
Torch [93], is trained for 100 epochs, using the Adam [94]
optimizer with a learning rate of 10�3. When the classes
are imbalanced (as will be the case when we oversam-
ple the background model), they are reweighted in the
loss computation accordingly, such that they contribute
equally. Note that here classes refer to the sampled
events and the mock data, not signal and background
events.

For this step, we divide the mock data in the SR in half,
reserving 60,000 events for training the classifier and the
remaining 60,000 events for validation (model selection).
In a real-life application one would want to perform k-
fold cross validation so as to not throw away half of the
events. However, as this is a proof of concept we do not
employ this here.

Unless stated otherwise, we sample in total 400,000
events from the MAF generative model (so N = 40, 000
in the description of Section III B), which are distributed
equally (200,000 each) into the training and validation set
for the classifier. Di↵erent choices will then be compared
in Section IVD.

During training, the loss is recorded on the validation
set, as shown in Fig. 5. The model states of the 10 epochs
with the lowest validation losses are used to construct an
ensemble prediction. As in the density estimator ensem-
ble, these epochs do not need to be consecutive. In the
ensembling, the individual predictions of each data point
are averaged. Since the loss is defined with respect to
labels indicating whether a data point is from mock data
or sampled events, this approach does not rely on any
truth information pertaining to the anomaly.

FIG. 5. Training and validation loss of the classifier (dotted
lines) and the 5 epoch moving average (solid lines) during
training. The accuracy is also shown, which in the case of
low signal contamination should oscillate around 0.5 if the
two classes are indistinguishable.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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labels indicating whether a data point is from mock data
or sampled events, this approach does not rely on any
truth information pertaining to the anomaly.

FIG. 5. Training and validation loss of the classifier (dotted
lines) and the 5 epoch moving average (solid lines) during
training. The accuracy is also shown, which in the case of
low signal contamination should oscillate around 0.5 if the
two classes are indistinguishable.
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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these were the parameters used by the density estimator).
Before the mock data and sampled events are passed on
to the classifier, the features are re-standardized, this
time using the mean and standard deviation of the SR
data features. Here, a logit transformation is not used
as it has consistently resulted in sub-optimal anomaly
detection performance.

The resulting distributions of the sampled events and
the mock data background in the validation dataset are
shown in Fig. 4. One can see that there is a notable over-
lap between the two distributions in all auxiliary features,
as well as on the mJJ distribution drawn from the KDE
fit.

FIG. 4. Normalized distributions of the features of the actual
background and of the synthetic samples.

C. Classifier

The third step of the Cathode method is to train
a classifier to distinguish the generated sample events
(that should follow the background distribution in the
SR) from the mock data (that follow the background plus
signal distribution in the SR). For all the variations we
will explore (including CWoLa Hunting), we will use the
same classifier architecture. This consists of 3 hidden

layers with 64 nodes each and a binary cross-entropy loss.

The binary classifier, also implemented with Py-
Torch [93], is trained for 100 epochs, using the Adam [94]
optimizer with a learning rate of 10�3. When the classes
are imbalanced (as will be the case when we oversam-
ple the background model), they are reweighted in the
loss computation accordingly, such that they contribute
equally. Note that here classes refer to the sampled
events and the mock data, not signal and background
events.

For this step, we divide the mock data in the SR in half,
reserving 60,000 events for training the classifier and the
remaining 60,000 events for validation (model selection).
In a real-life application one would want to perform k-
fold cross validation so as to not throw away half of the
events. However, as this is a proof of concept we do not
employ this here.

Unless stated otherwise, we sample in total 400,000
events from the MAF generative model (so N = 40, 000
in the description of Section III B), which are distributed
equally (200,000 each) into the training and validation set
for the classifier. Di↵erent choices will then be compared
in Section IVD.

During training, the loss is recorded on the validation
set, as shown in Fig. 5. The model states of the 10 epochs
with the lowest validation losses are used to construct an
ensemble prediction. As in the density estimator ensem-
ble, these epochs do not need to be consecutive. In the
ensembling, the individual predictions of each data point
are averaged. Since the loss is defined with respect to
labels indicating whether a data point is from mock data
or sampled events, this approach does not rely on any
truth information pertaining to the anomaly.

FIG. 5. Training and validation loss of the classifier (dotted
lines) and the 5 epoch moving average (solid lines) during
training. The accuracy is also shown, which in the case of
low signal contamination should oscillate around 0.5 if the
two classes are indistinguishable.
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events. However, as this is a proof of concept we do not
employ this here.
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events from the MAF generative model (so N = 40, 000
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in Section IVD.
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set, as shown in Fig. 5. The model states of the 10 epochs
with the lowest validation losses are used to construct an
ensemble prediction. As in the density estimator ensem-
ble, these epochs do not need to be consecutive. In the
ensembling, the individual predictions of each data point
are averaged. Since the loss is defined with respect to
labels indicating whether a data point is from mock data
or sampled events, this approach does not rely on any
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training. The accuracy is also shown, which in the case of
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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Before the mock data and sampled events are passed on
to the classifier, the features are re-standardized, this
time using the mean and standard deviation of the SR
data features. Here, a logit transformation is not used
as it has consistently resulted in sub-optimal anomaly
detection performance.

The resulting distributions of the sampled events and
the mock data background in the validation dataset are
shown in Fig. 4. One can see that there is a notable over-
lap between the two distributions in all auxiliary features,
as well as on the mJJ distribution drawn from the KDE
fit.
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The third step of the Cathode method is to train
a classifier to distinguish the generated sample events
(that should follow the background distribution in the
SR) from the mock data (that follow the background plus
signal distribution in the SR). For all the variations we
will explore (including CWoLa Hunting), we will use the
same classifier architecture. This consists of 3 hidden

layers with 64 nodes each and a binary cross-entropy loss.

The binary classifier, also implemented with Py-
Torch [93], is trained for 100 epochs, using the Adam [94]
optimizer with a learning rate of 10�3. When the classes
are imbalanced (as will be the case when we oversam-
ple the background model), they are reweighted in the
loss computation accordingly, such that they contribute
equally. Note that here classes refer to the sampled
events and the mock data, not signal and background
events.

For this step, we divide the mock data in the SR in half,
reserving 60,000 events for training the classifier and the
remaining 60,000 events for validation (model selection).
In a real-life application one would want to perform k-
fold cross validation so as to not throw away half of the
events. However, as this is a proof of concept we do not
employ this here.

Unless stated otherwise, we sample in total 400,000
events from the MAF generative model (so N = 40, 000
in the description of Section III B), which are distributed
equally (200,000 each) into the training and validation set
for the classifier. Di↵erent choices will then be compared
in Section IVD.

During training, the loss is recorded on the validation
set, as shown in Fig. 5. The model states of the 10 epochs
with the lowest validation losses are used to construct an
ensemble prediction. As in the density estimator ensem-
ble, these epochs do not need to be consecutive. In the
ensembling, the individual predictions of each data point
are averaged. Since the loss is defined with respect to
labels indicating whether a data point is from mock data
or sampled events, this approach does not rely on any
truth information pertaining to the anomaly.

FIG. 5. Training and validation loss of the classifier (dotted
lines) and the 5 epoch moving average (solid lines) during
training. The accuracy is also shown, which in the case of
low signal contamination should oscillate around 0.5 if the
two classes are indistinguishable.
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with the lowest validation losses are used to construct an
ensemble prediction. As in the density estimator ensem-
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FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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• CWoLa Hunting: classifier between SB and SR 
data


• ANODE: two conditional density estimators on 
SB and SR data; interpolate SB density 
estimator into SR


• CATHODE: single conditional density estimator 
on SB data; sample interpolated SB density 
estimator in SR; classifier between sampled 
events and data in SR


• Many other approaches also proposed!


• CURTAINS: invertible NN for SB->SB interpolation [Raine et al 
2203.09470]


• Simulation assisted resonant anomaly detection: SALAD 
[Andreassen, Nachman & DS 2001.05001], SA-CWoLa 
[Benkendorfer et al 2009.02205], FETA [Golling et al 2212.11285]
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Figure 2. Histograms for the invariant mass of the leading two jets for the Standard Model background
as well as the injected signal. There are 1 million background events and 1000 signal events.

epochs results in a stable result. Averaging over more epochs does not further improve the
stability. All results with ANODE present the SB density estimator with this averaging scheme
for the last 10 epochs.

Figure 4 shows a scatter plot of R(x|m) versus log pbackground(x|m) for the test set in the
SR. As desired, the background is mostly concentrated around R(x|m) = 1, while there is a long
tail for signal events at higher values of R(x|m) and between ≠2 < log pbackground(x|m) < 2.
This is exactly what is expected for this signal: it is an over-density (R > 1) in a region of
phase space that is relatively rare for the background (pbackground(x|m) π 1).

The background density in Fig. 4 also shows that the R(x|m) is narrower around 1 when
pbackground(x|m) is large and more spread out when pbackground(x|m) π 1. This is evidence
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21 (bottom right). These histograms are inclusive in mJJ . There are 1 million background
events and 1000 signal events for the mass histograms.

background (40,000) and signal (400) numbers in the SR window and the fiducial window.
Starting from low S/B and S/

Ô
B one can achieve S/B > 1 and a high S/

Ô
B with a threshold

requirement on R. Figure 6 shows that the signal is clearly visible in the x distribution after
applying such a threshold requirement.

The performance of R as an anomaly detector is further quantified by the Receiver
Operating Characteristic (ROC) and Significance Improvement Characteristic (SIC) curves in
Fig. 7. These metrics are obtained by scanning R and computing the signal e�ciency (true
positive rate) and background e�ciency (false positive rate) after a threshold requirement
on R. The Area Under the Curve (AUC) for ANODE is 0.82. For comparison, the CWoLa
hunting approach is also shown in the same plots. The CWoLa classifier is trained using
sideband regions that are 200 GeV wide on either side of the SR. The sidebands are weighted
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FIG. 6. Background rejection (left) and significance improvement (right) of the various anomaly classifiers as a function of
the signal e�ciency. The solid lines are deduced from a median value of 10 fully independent trainings on the same training,
validation and evaluation set. The uncertainty bands quantify the variance from retraining the NNs on the same, fixed dataset
and are defined such that they contain 68% of the runs around the median.

FIG. 7. Left: Median maximum significance improvement of each method with 10 di↵erent signal injections (leading to a
di↵erent split of training, validation and evaluation sets in each run) at each decreasing value of signal/background ratios.
Here, the 68% hatched uncertainty bands quantify the variance (around the median) from both retrainings of the NN and

random realizations of the training and validation data, including di↵erent realizations of the 1,000 injected signal events.
Right: Achieved maximum significance, which is computed by multiplying the uncut significance by the maximum significance
improvement. Both plots feature the significance without any cut applied in the upper horizontal axis. The dotted lines on the
right hand side denote 3 and 5 sigma significance values.

and the simulation-dependent methods. The fact
that Cathode is only marginally worse than the
idealized anomaly detector (in fact, they are over-
lapping within their respective error bands al-
most everywhere) is truly striking. The idealized
anomaly detector is meant to provide an upper
bound on the performance of any data vs. back-
ground anomaly detection method. The fact that
the Cathode method is nearly saturating it in-
dicates that Cathode is achieving close to opti-
mal performance on the LHCO R&D dataset. Evi-

dently, the background in the SR is being extremely
well modeled by the interpolated conditional den-
sity estimator.

• Finally, we see from Fig. 6 that while Cathode and
the idealized anomaly detector are outperformed
by the supervised classifier at higher signal e�cien-
cies, at lower signal e�ciencies their performances
are all increasingly comparable. The behavior at
high signal e�ciency may be explained by the fact
that there is simply too much background to find
the signal; meanwhile, at low signal e�ciency, the

Significance 
improvement 
characteristic 
(SIC): ϵS / ϵB

DS+ Hallin et al 2109.00546

For further comparisons of these 
methods and more, see 2307.11157!
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CATHODE outperforms CWoLa and ANODE and nearly saturates the idealized anomaly detector!
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Initial significance was ~2.2σ  

=> a ~30σ anomaly could be hiding in the data right now!
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Robustness

Full phase space Interpretability

DS+ Finke et al 2309.13111

Das, Kasieczka & DS, 2311.nnnnnDS+ Buhmann et al 2310.06897



3. Anomaly Detection from 
LHC to Astro
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Searching for Stellar Streams in Gaia

• We realized the same ML-enhanced bump hunt methods developed for LHC 
could be applied to Gaia data to search for stellar streams 

An example of power of ML to cut across domains!

33

Gaia satellite: 

• Launched in 2013; ongoing 


• Angular positions, proper motions, color and magnitude of over 1 
billion stars in our Galaxy


• Distances and radial velocities for a smaller subset of nearby stars



Gaia data

• Angular positions  of stars on the sky (very precise)


• Through repeated observations: 

• proper motions  (generally well-measured)


• parallax (well-measured only for nearby stars) 

• Magnitude in 3 passbands (colors)


• Radial velocities (using spectrometer)

(α, δ)

(μα, μδ)
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Gaia data

This is not a picture, but a catalog!



Gaia data
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Gaia data

1.5B stars with 5d information (angular 
positions, proper motions, parallax)
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Gaia data

1.5B stars with 5d information (angular 
positions, proper motions, parallax)

(much smaller subset of nearby stars 
with “well-measured” parallaxes)
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Gaia data

1.5B stars with 5d information (angular 
positions, proper motions, parallax)

(much smaller subset of nearby stars 
with “well-measured” parallaxes)

“only” 33M stars with full 6d information 
(5d+radial velocities)

36



Stellar Streams

Stellar streams are the very old remnants of tidally disrupted globular clusters and 
dwarf galaxies.

37

Unique probes into the formation history and gravitational potential of 
the Galaxy, and into dark matter substructure.

Collection of stars moving together along a common orbit — concentrated 
spatially and in velocity.
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Stellar Streams

Stellar streams are the very old remnants of tidally disrupted globular clusters and 
dwarf galaxies.

37

Unique probes into the formation history and gravitational potential of 
the Galaxy, and into dark matter substructure.

dynamical evidence of a dark halo substructure 3

Figure 1. (Top) Likely members of the GD-1 stellar stream, cleanly selected using Gaia proper motions and PanSTARRS
photometry, reveal two significant gaps located at �1 ⇡ �20� and �1 ⇡ �40�, and dubbed G-20 and G-40, respectively. There
is a long, thin spur extending for ⇡ 10� from the G-40 gap. (Bottom) An idealized model of GD-1, whose progenitor disrupted
at �1 ⇡ �20� to produce the G-20 gap, and which has been perturbed by a compact, massive object to produce the G-40 gap.
The orbital structure of stars closest to the passing perturber is distorted into a loop of stars that after 0.5Gyr appears as an
underdensity coinciding with the observed gap, and extends out of the stream similar to the observed spur.

To highlight the complex structure of the GD-1
stream, we present the distribution of likely stream
members at the top of Figure 1. As a first step in find-
ing likely members, we followed Price-Whelan & Bonaca
(2018) in selecting stars consistent with an old and
metal-poor population at a distance of 8 kpc, and mov-
ing retrograde with respect to the Galactic disk, with
proper motions in the GD-1 reference frame (µ�1 , µ�2) ⇡
(�7, 0) mas yr�1. The spatial distribution of these stars
in the �2 direction (i.e. perpendicular to the stream) is
modeled as a combination of a constant background, a
stream component at the location of the main stream
track, and one additional Gaussian component on ei-
ther side of the main stream to capture stream features
beyond the main track. We solved for the normaliza-
tion, position and width of every component by explor-
ing the parameter space with an ensemble MCMC sam-
pler (Foreman-Mackey et al. 2013). We used 256 walkers
that ran for a total of 1280 steps, and kept the final 256
steps to generate posterior samples in these parameters.
The above procedure is a full-stream generalization of
the calculation in (Price-Whelan & Bonaca 2018) that
quantified the fraction of stars in the additional compo-
nents at the locations of the spur and the blob. Finally,
we define a stream membership probability, pmem, as
the joint probability of a star belonging either to the
main stream or the additional feature, evaluate these
probabilities using MCMC samples and apply them to
every star. The upper panel of Figure 1 shows stars with

pmem > 0.5, with larger and darker points representing
stars with a higher membership probability.
Most likely GD-1 members trace a thin stream, whose

width varies between � ⇡ 100 and 300. As noted by
Price-Whelan & Bonaca (2018), the stellar density along
the stream is not uniform, and there are two signifi-
cant underdensities, or gaps, located at �1 ⇡ �40� and
�1 ⇡ �20�, which we refer to as G-40 and G-20, respec-
tively. The main focus of this work are structures related
to the G-40 gap, so if not specified, the gap refers to G-
40. The additional, feature components are above the
background density in the spur region, �1 ⇡ �35�, and
the blob region, �1 ⇡ �15�, and consistent with zero
along the rest of the stream. In the following section we
present a model of GD-1 that simultaneously explains
the gap in the stream and the spur extending from the
stream.

3. MODELING THE PERTURBED GD-1 STREAM

3.1. Setup and the fiducial model

Unlike the observed GD-1, a globular cluster disrupt-
ing on the GD-1 orbit in a simple — analytic and smooth
— galaxy creates a stream that is also smooth (Price-
Whelan & Bonaca 2018). This model follows stars as
they leave the progenitor, and accounts for their epicylic
motion relative to the progenitor’s orbit (Küpper et al.
2008, 2010; Fardal et al. 2015). The resulting pattern
of over- and underdensities is much more uniform than
the observed stream, so the full extent of density varia-

Bonaca et al 2019

Collection of stars moving together along a common orbit — concentrated 
spatially and in velocity.



Known Stellar Streams of the Milky Way

https://github.com/cmateu/galstreams
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.

the stream-like structures recovered by the algorithm are not
associated with the extinction correction. In Figures 7 and
8, we present our summary plots made by combining the dis-
tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
in this multi-parameter space.

Our aim in this contribution is not to present a thorough
or complete census of halo streams (since it would require

considerable more processing time to examine the necessary
parameter space), but rather to present a preview of the
large-scale stream structure of our Galaxy. Nevertheless, we
have selected by hand a small number of structures that
appear clearly in our maps, with kinematic properties that
distinguish them from the contaminating Galactic popula-
tion, and that are clearly not artefacts produced by Gaia’s
scanning law. A large number of other stream candidates
have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
confident of their nature.

The locations of the five structures we selected are
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using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
in this multi-parameter space.

Our aim in this contribution is not to present a thorough
or complete census of halo streams (since it would require
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parameter space), but rather to present a preview of the
large-scale stream structure of our Galaxy. Nevertheless, we
have selected by hand a small number of structures that
appear clearly in our maps, with kinematic properties that
distinguish them from the contaminating Galactic popula-
tion, and that are clearly not artefacts produced by Gaia’s
scanning law. A large number of other stream candidates
have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.

the stream-like structures recovered by the algorithm are not
associated with the extinction correction. In Figures 7 and
8, we present our summary plots made by combining the dis-
tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
in this multi-parameter space.

Our aim in this contribution is not to present a thorough
or complete census of halo streams (since it would require

considerable more processing time to examine the necessary
parameter space), but rather to present a preview of the
large-scale stream structure of our Galaxy. Nevertheless, we
have selected by hand a small number of structures that
appear clearly in our maps, with kinematic properties that
distinguish them from the contaminating Galactic popula-
tion, and that are clearly not artefacts produced by Gaia’s
scanning law. A large number of other stream candidates
have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
confident of their nature.

The locations of the five structures we selected are

MNRAS 000, 1–15 (2018)

6 Malhan, Ibata & Martin

Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
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distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.

the stream-like structures recovered by the algorithm are not
associated with the extinction correction. In Figures 7 and
8, we present our summary plots made by combining the dis-
tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
in this multi-parameter space.
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parameter space), but rather to present a preview of the
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appear clearly in our maps, with kinematic properties that
distinguish them from the contaminating Galactic popula-
tion, and that are clearly not artefacts produced by Gaia’s
scanning law. A large number of other stream candidates
have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
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rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
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motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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using the measured Gaia proper motions combined with the
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
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& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
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using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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tance and metallicity samples for the north and south hemi-
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the estimate of the distances of these structures (provided
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mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
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& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.

the stream-like structures recovered by the algorithm are not
associated with the extinction correction. In Figures 7 and
8, we present our summary plots made by combining the dis-
tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
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tion, and that are clearly not artefacts produced by Gaia’s
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have a clearly-defined stream-like morphology, but possess
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Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
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the stream-like structures recovered by the algorithm are not
associated with the extinction correction. In Figures 7 and
8, we present our summary plots made by combining the dis-
tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
in this multi-parameter space.

Our aim in this contribution is not to present a thorough
or complete census of halo streams (since it would require

considerable more processing time to examine the necessary
parameter space), but rather to present a preview of the
large-scale stream structure of our Galaxy. Nevertheless, we
have selected by hand a small number of structures that
appear clearly in our maps, with kinematic properties that
distinguish them from the contaminating Galactic popula-
tion, and that are clearly not artefacts produced by Gaia’s
scanning law. A large number of other stream candidates
have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
confident of their nature.

The locations of the five structures we selected are
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distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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appear clearly in our maps, with kinematic properties that
distinguish them from the contaminating Galactic popula-
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red-giant branch due to the trimming of the data sample below G = 19.5.
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red-giant branch due to the trimming of the data sample below G = 19.5.
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Figure 3. Upper row: Angular position in (q, _) coordinates (left), proper motion in (`⇤

q , `_) coordinates (center), and photometry (right) of all stars in the
patch centered on (U, X) = (148.6�, 24.2�) . (Note the streaking in angular position due to non-uniform coverage in Gaia DR2.) Bottom row: As above, with
stars identified by PWB18 as likely GD-1 stars shown in red, along with an example search region `_ 2 [�17, �11] mas/yr in proper motion.

Each of these choices of (U0, X0, `
min
_ ) furnishes a search region

and control region pair for the ANODE training step. Overlapping
the SRs in this way allows us to fully capture potential streams in at
least one `_ window when performing a blind search – if the SRs
were not overlapping, then a stream could easily fall at the edge of
two SRs, diluting the signal in each. By selecting SRs which are wide
enough in proper motion to fully contain a kinematically cold stream
and overlapping them by shifts which are smaller than the proper
motion width of a typical stream, we minimize the possibility of this
dilution.

SRs with fewer than 20k stars or more than 1M stars (before the
fiducial cuts) are rejected for ANODE training. The former require-
ment is because too few stars in the SR results in poor density estima-
tion performance, and the latter requirement is to avoid overly-long
training times. In addition, SRs that contained a GC candidate (iden-
tified using a simple algorithm described in App. B) were cut from
the analysis, as the presence of the GC would completely overwhelm
the training (i.e. in an SR containing a GC, the GC would correspond
to such a large, delta-function-like overdensity, that ANODE would
be unable to identify any other overdensity in the SR, such as one
coming from a stream). In the end, we are left with a total of 545 SRs
across the 21 patches of the sky containing GD-1.

To provide an example of an SR, we turn to our sam-
ple GD-1 patch defined in the previous section, centered on
(U0, X0) = (148.6�, 24.2�). We select the SR defined by `_ 2

[�17,�11] mas/yr, which encompasses the majority of the GD-1
stars contained within this patch. This SR is shown in Fig. 3 and

contains 34,823 stars in total, of which 252 are tagged by PWB18 as
possible GD-1 members.

3.2 ANODE: Density estimation

Having defined the search regions, we turn to the probability density
estimation step of the ANODE algorithm. As discussed in Sec. 2,
the stars in our dataset are characterized by two position coordinates,
two proper motion coordinates, color, and magnitude. Having set
aside one of the proper motion coordinates `_ to define the search
regions with, the remaining features (q, _, `⇤q , 1 � A, 6) we will refer
to collectively as ÆG.

Suppose the stars in a patch consist of “signal stars" coming
from a cold stellar stream, and “background stars" coming from
the stellar halo. Let the conditional probability density of the back-
ground stars be %bg (ÆG |`_), and the conditional density for the
data (consisting of background stars plus signal stream stars) be
%data (ÆG |`_) = (1�U)%bg (ÆG |`_) +U%sig (ÆG |`_) where U is a measure
of the signal strength. Then the optimal test statistic for distinguishing
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Figure 3. Upper row: Angular position in (q, _) coordinates (left), proper motion in (`⇤

q , `_) coordinates (center), and photometry (right) of all stars in the
patch centered on (U, X) = (148.6�, 24.2�) . (Note the streaking in angular position due to non-uniform coverage in Gaia DR2.) Bottom row: As above, with
stars identified by PWB18 as likely GD-1 stars shown in red, along with an example search region `_ 2 [�17, �11] mas/yr in proper motion.

Each of these choices of (U0, X0, `
min
_ ) furnishes a search region

and control region pair for the ANODE training step. Overlapping
the SRs in this way allows us to fully capture potential streams in at
least one `_ window when performing a blind search – if the SRs
were not overlapping, then a stream could easily fall at the edge of
two SRs, diluting the signal in each. By selecting SRs which are wide
enough in proper motion to fully contain a kinematically cold stream
and overlapping them by shifts which are smaller than the proper
motion width of a typical stream, we minimize the possibility of this
dilution.

SRs with fewer than 20k stars or more than 1M stars (before the
fiducial cuts) are rejected for ANODE training. The former require-
ment is because too few stars in the SR results in poor density estima-
tion performance, and the latter requirement is to avoid overly-long
training times. In addition, SRs that contained a GC candidate (iden-
tified using a simple algorithm described in App. B) were cut from
the analysis, as the presence of the GC would completely overwhelm
the training (i.e. in an SR containing a GC, the GC would correspond
to such a large, delta-function-like overdensity, that ANODE would
be unable to identify any other overdensity in the SR, such as one
coming from a stream). In the end, we are left with a total of 545 SRs
across the 21 patches of the sky containing GD-1.

To provide an example of an SR, we turn to our sam-
ple GD-1 patch defined in the previous section, centered on
(U0, X0) = (148.6�, 24.2�). We select the SR defined by `_ 2

[�17,�11] mas/yr, which encompasses the majority of the GD-1
stars contained within this patch. This SR is shown in Fig. 3 and

contains 34,823 stars in total, of which 252 are tagged by PWB18 as
possible GD-1 members.

3.2 ANODE: Density estimation

Having defined the search regions, we turn to the probability density
estimation step of the ANODE algorithm. As discussed in Sec. 2,
the stars in our dataset are characterized by two position coordinates,
two proper motion coordinates, color, and magnitude. Having set
aside one of the proper motion coordinates `_ to define the search
regions with, the remaining features (q, _, `⇤q , 1 � A, 6) we will refer
to collectively as ÆG.

Suppose the stars in a patch consist of “signal stars" coming
from a cold stellar stream, and “background stars" coming from
the stellar halo. Let the conditional probability density of the back-
ground stars be %bg (ÆG |`_), and the conditional density for the
data (consisting of background stars plus signal stream stars) be
%data (ÆG |`_) = (1�U)%bg (ÆG |`_) +U%sig (ÆG |`_) where U is a measure
of the signal strength. Then the optimal test statistic for distinguishing
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Figure 3. Upper row: Angular position in (q, _) coordinates (left), proper motion in (`⇤

q , `_) coordinates (center), and photometry (right) of all stars in the
patch centered on (U, X) = (148.6�, 24.2�) . (Note the streaking in angular position due to non-uniform coverage in Gaia DR2.) Bottom row: As above, with
stars identified by PWB18 as likely GD-1 stars shown in red, along with an example search region `_ 2 [�17, �11] mas/yr in proper motion.

Each of these choices of (U0, X0, `
min
_ ) furnishes a search region

and control region pair for the ANODE training step. Overlapping
the SRs in this way allows us to fully capture potential streams in at
least one `_ window when performing a blind search – if the SRs
were not overlapping, then a stream could easily fall at the edge of
two SRs, diluting the signal in each. By selecting SRs which are wide
enough in proper motion to fully contain a kinematically cold stream
and overlapping them by shifts which are smaller than the proper
motion width of a typical stream, we minimize the possibility of this
dilution.

SRs with fewer than 20k stars or more than 1M stars (before the
fiducial cuts) are rejected for ANODE training. The former require-
ment is because too few stars in the SR results in poor density estima-
tion performance, and the latter requirement is to avoid overly-long
training times. In addition, SRs that contained a GC candidate (iden-
tified using a simple algorithm described in App. B) were cut from
the analysis, as the presence of the GC would completely overwhelm
the training (i.e. in an SR containing a GC, the GC would correspond
to such a large, delta-function-like overdensity, that ANODE would
be unable to identify any other overdensity in the SR, such as one
coming from a stream). In the end, we are left with a total of 545 SRs
across the 21 patches of the sky containing GD-1.

To provide an example of an SR, we turn to our sam-
ple GD-1 patch defined in the previous section, centered on
(U0, X0) = (148.6�, 24.2�). We select the SR defined by `_ 2

[�17,�11] mas/yr, which encompasses the majority of the GD-1
stars contained within this patch. This SR is shown in Fig. 3 and

contains 34,823 stars in total, of which 252 are tagged by PWB18 as
possible GD-1 members.

3.2 ANODE: Density estimation

Having defined the search regions, we turn to the probability density
estimation step of the ANODE algorithm. As discussed in Sec. 2,
the stars in our dataset are characterized by two position coordinates,
two proper motion coordinates, color, and magnitude. Having set
aside one of the proper motion coordinates `_ to define the search
regions with, the remaining features (q, _, `⇤q , 1 � A, 6) we will refer
to collectively as ÆG.

Suppose the stars in a patch consist of “signal stars" coming
from a cold stellar stream, and “background stars" coming from
the stellar halo. Let the conditional probability density of the back-
ground stars be %bg (ÆG |`_), and the conditional density for the
data (consisting of background stars plus signal stream stars) be
%data (ÆG |`_) = (1�U)%bg (ÆG |`_) +U%sig (ÆG |`_) where U is a measure
of the signal strength. Then the optimal test statistic for distinguishing
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Figure 4. Left: ' distribution for the SR `_ = [�17, �11] mas/yr in the patch centered at (U, X) = (148.6�, 24.2�) . Stars identified as likely members of GD-1
by PWB18 are shown in red, while the “background" stars (those not tagged as likely GD-1 members by PWB18) are in blue. Right: Significance Improvement
Characteristic (SIC) curve for the same SR, showing the signal e�ciency n( and the significance improvement (signal e�ciency over square root of background
e�ciency, n(/

p
n⌫) as the cut on ' is varied. The vertical lines in both plots designate the ' value that maximizes the SIC curve.
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Figure 5. Upper row: Angular position in (q, _) coordinates (left), proper motion in (`⇤

q , `_) coordinates (center), and photometry (right) of all stars (blue)
in the `_ 2 [�17, �11] mas/yr SR of our example patch centered on (U, X) = (148.6�, 24.2�) . Bottom row: As the upper row, applying the ' > 'cut cut on
the stars in the SR (purple). The GD-1 stream becomes immediately apparent. See text for details.

are anomalous compared to the interpolation into the SR of the CR
density estimate. Stars with proper motion near zero are predomi-
nantly distant stars; this population is not well-represented in a CR
that does not contain (`⇤q , `_) ⇠ (0, 0) mas/yr. An example can be
seen in Fig. 6. If the SR contains this zero point, the distant stars
are (correctly) identified as anomalous relative to the population in
the control regions, but their sheer number completely overwhelms

any other signal in the SR, requiring their removal after training is
complete.

• Cold stellar streams, produced by tidally stripped globular clus-
ters or dwarf galaxies, are predominantly composed of old, low metal-
licity stars. Many existing stream-finding algorithms leverage this by
fitting stars in the stream candidate to isochrones appropriate to this
assumption (see e.g. Malhan & Ibata (2018)). Although the ANODE
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q , `_) coordinates (center), and photometry (right) of all stars in the
patch centered on (U, X) = (148.6�, 24.2�) . (Note the streaking in angular position due to non-uniform coverage in Gaia DR2.) Bottom row: As above, with
stars identified by PWB18 as likely GD-1 stars shown in red, along with an example search region `_ 2 [�17, �11] mas/yr in proper motion.

Each of these choices of (U0, X0, `
min
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and control region pair for the ANODE training step. Overlapping
the SRs in this way allows us to fully capture potential streams in at
least one `_ window when performing a blind search – if the SRs
were not overlapping, then a stream could easily fall at the edge of
two SRs, diluting the signal in each. By selecting SRs which are wide
enough in proper motion to fully contain a kinematically cold stream
and overlapping them by shifts which are smaller than the proper
motion width of a typical stream, we minimize the possibility of this
dilution.

SRs with fewer than 20k stars or more than 1M stars (before the
fiducial cuts) are rejected for ANODE training. The former require-
ment is because too few stars in the SR results in poor density estima-
tion performance, and the latter requirement is to avoid overly-long
training times. In addition, SRs that contained a GC candidate (iden-
tified using a simple algorithm described in App. B) were cut from
the analysis, as the presence of the GC would completely overwhelm
the training (i.e. in an SR containing a GC, the GC would correspond
to such a large, delta-function-like overdensity, that ANODE would
be unable to identify any other overdensity in the SR, such as one
coming from a stream). In the end, we are left with a total of 545 SRs
across the 21 patches of the sky containing GD-1.

To provide an example of an SR, we turn to our sam-
ple GD-1 patch defined in the previous section, centered on
(U0, X0) = (148.6�, 24.2�). We select the SR defined by `_ 2

[�17,�11] mas/yr, which encompasses the majority of the GD-1
stars contained within this patch. This SR is shown in Fig. 3 and

contains 34,823 stars in total, of which 252 are tagged by PWB18 as
possible GD-1 members.

3.2 ANODE: Density estimation

Having defined the search regions, we turn to the probability density
estimation step of the ANODE algorithm. As discussed in Sec. 2,
the stars in our dataset are characterized by two position coordinates,
two proper motion coordinates, color, and magnitude. Having set
aside one of the proper motion coordinates `_ to define the search
regions with, the remaining features (q, _, `⇤q , 1 � A, 6) we will refer
to collectively as ÆG.

Suppose the stars in a patch consist of “signal stars" coming
from a cold stellar stream, and “background stars" coming from
the stellar halo. Let the conditional probability density of the back-
ground stars be %bg (ÆG |`_), and the conditional density for the
data (consisting of background stars plus signal stream stars) be
%data (ÆG |`_) = (1�U)%bg (ÆG |`_) +U%sig (ÆG |`_) where U is a measure
of the signal strength. Then the optimal test statistic for distinguishing
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Figure 5. Upper row: Angular position in (q, _) coordinates (left), proper motion in (`⇤

q , `_) coordinates (center), and photometry (right) of all stars (blue)
in the `_ 2 [�17, �11] mas/yr SR of our example patch centered on (U, X) = (148.6�, 24.2�) . Bottom row: As the upper row, applying the ' > 'cut cut on
the stars in the SR (purple). The GD-1 stream becomes immediately apparent. See text for details.

are anomalous compared to the interpolation into the SR of the CR
density estimate. Stars with proper motion near zero are predomi-
nantly distant stars; this population is not well-represented in a CR
that does not contain (`⇤q , `_) ⇠ (0, 0) mas/yr. An example can be
seen in Fig. 6. If the SR contains this zero point, the distant stars
are (correctly) identified as anomalous relative to the population in
the control regions, but their sheer number completely overwhelms

any other signal in the SR, requiring their removal after training is
complete.

• Cold stellar streams, produced by tidally stripped globular clus-
ters or dwarf galaxies, are predominantly composed of old, low metal-
licity stars. Many existing stream-finding algorithms leverage this by
fitting stars in the stream candidate to isochrones appropriate to this
assumption (see e.g. Malhan & Ibata (2018)). Although the ANODE
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ANODE on Gaia data

6 Malhan, Ibata & Martin

Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.

the stream-like structures recovered by the algorithm are not
associated with the extinction correction. In Figures 7 and
8, we present our summary plots made by combining the dis-
tance and metallicity samples for the north and south hemi-
spheres, respectively. The top panels of these diagrams show
the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
distance estimates. Many structures are beautifully resolved
in this multi-parameter space.

Our aim in this contribution is not to present a thorough
or complete census of halo streams (since it would require

considerable more processing time to examine the necessary
parameter space), but rather to present a preview of the
large-scale stream structure of our Galaxy. Nevertheless, we
have selected by hand a small number of structures that
appear clearly in our maps, with kinematic properties that
distinguish them from the contaminating Galactic popula-
tion, and that are clearly not artefacts produced by Gaia’s
scanning law. A large number of other stream candidates
have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
confident of their nature.

The locations of the five structures we selected are
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the estimate of the distances of these structures (provided
by the algorithm), while the bottom panels show an esti-
mate of the magnitude of the tangential velocity calculated
using the measured Gaia proper motions combined with the
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Our aim in this contribution is not to present a thorough
or complete census of halo streams (since it would require

considerable more processing time to examine the necessary
parameter space), but rather to present a preview of the
large-scale stream structure of our Galaxy. Nevertheless, we
have selected by hand a small number of structures that
appear clearly in our maps, with kinematic properties that
distinguish them from the contaminating Galactic popula-
tion, and that are clearly not artefacts produced by Gaia’s
scanning law. A large number of other stream candidates
have a clearly-defined stream-like morphology, but possess
proper motions distributions that are similar to that of the
halo, and we deem that they require further follow-up to be
confident of their nature.

The locations of the five structures we selected are

MNRAS 000, 1–15 (2018)

42



ANODE on Gaia data
• How to set the cut on R(x)?

• We found a defining a single threshold on R(x) across 
all SRs was insufficient to find other known streams 
besides GD-1. 

• What worked instead was to further subdivide SRs 
into slices by the orthogonal proper motion => “ROIs”

• In each ROI, take the 100 highest R stars

6 Malhan, Ibata & Martin

Figure 4. Properties of a sample of previously-discovered streams, as recovered by the STREAMFINDER. The first, second, third and fourth
rows show the properties of the GD-1, Jhelum, Indus and Orphan streams, respectively. The columns reproduce, from left to right, the
equatorial coordinates of the structures, the distance solutions found by the algorithm (for representative metallicity values), the proper
motion distribution (with observations in red, model solutions in blue, and the full DR2 sample in grey), and the colour-magnitude
distribution of the stars (with observations in red and template model in blue) selected by STREAMFINDER. The distance solutions found
by the algorithm match closely the distance values that have been previously derived for these streams: D� ⇠ 8 kpc for GD-1 (Grillmair
& Dionatos 2006), D� ⇠ 13.2 kpc and ⇠ 16.6 kpc for Jhelum and Indus, respectively (Shipp et al. 2018) and D� = [33 � 38] kpc for
Orphan (Newberg et al. 2010). The CMD template models, shown in blue in the last column, have been plotted at the appropriate
distance for the respective streams. The colour-magnitude diagram of the Orphan stream might seem peculiar, but here we only see the
red-giant branch due to the trimming of the data sample below G = 19.5.
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ANODE on Gaia data
• How to set the cut on R(x)?

• We found a defining a single threshold on R(x) across 
all SRs was insufficient to find other known streams 
besides GD-1. 

• What worked instead was to further subdivide SRs 
into slices by the orthogonal proper motion => “ROIs”

• In each ROI, take the 100 highest R stars

• Increases the sensitivity to real streams, but at the 
cost of a bigger look elsewhere effect.
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Building streams from fragments

• We end up with ~10  ROIs —> need an automated way to scan them for 
potential streams and a way to cut down on trials factor!


• Hough transform for line finding => significance


• Cluster together ROIs from independent runs of ANODE => build stream 
fragments in each patch and cut down on LEE


• Cluster together significant stream fragments in different patches to build 
full stream candidate

5
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Galaxia false positive rate
To quantify our false positive rate, we ran our 
full method on a semi-realistic Gaia mock 
catalog called Galaxia (Rybizki et al 2018) 
which does not have stellar streams

2

Figure 1. Stellar source density map of GDR1 (top) and our

mock catalog (bottom) in Galactic coordinates using Aito↵

projection. The Galactic center is in the middle and Galactic

longitude ` increasing towards the left. The color represents

the density of star counts down to G = 20.7mag in each

healpix (NSIDE = 128, 1 healpix ⇡ 0.21deg2) and saturates

at both ends to enhance Galactic structures.

Galaxia is a tool that allows one to sample stars from
the Besançon Galactic model (Robin et al. 2003), us-
ing a specific set of stellar isochrones to obtain their
astrophysical parameters. The Galactic warp was
switched on during the simulations and the solar zero-
point was set to (X,Y, Z) = (�8.0, 0.0, 0.015) kpc and
the velocities to (U, V,W ) = (11.1, 239.08, 7.25) km

s .
Transformations from phase-space to observable coor-
dinates on the sky (ra, dec, pm ra cosdec, pm dec and
radial velocity) were done using astropy4 (The As-
tropy Collaboration et al. 2018). And we used the latest
PARSEC isochrones5 – PARSEC v1.2S+ COLIBRI PR16
(Bressan et al. 2012; Marigo et al. 2017; Rosenfield
et al. 2016; Marigo et al. 2013) – which also provide
photometric values for each star using the nominal Gaia
DR1 photometric bands G, BP, and RP (Jordi et al.
2010). GDR2 passbands where not available during the
construction of this catalog.
At this stage, we were already able to account for the

magnitude limit of Gaia and only selected stars with
apparent magnitude brighter than G = 20.7mag, which
preliminarily resulted in over six billion sources.

2.2. Dust-attenuated photometry

4
http://www.astropy.org

5
PARSEC = Padova Trieste evolution code (including the pre-

main sequence phase); http://stev.oapd.inaf.it/cgi-bin/cmd

A crucial step in transforming a Galaxia simulation
into a catalog resembling actual observations is the ap-
plication of a dust distribution, which will change the
apparent colors and luminosities of the stars.
Since the Gaia photometric bands span a broad wave-

length range (⇠ 300 nm), the simple conversion of ex-
tinction coe�cients from e.g. Schlafly & Finkbeiner
(2011, tab. 6) to reddening and extinction into the Gaia
bands, e.g. AG, is only a poor approximation and may
lead to significant inconsistency across the broad range
of stellar spectra. Instead we must account for non-
linearities in particular with respect to the stars’ col-
ors. Fortunately, the PARSEC isochrones also provide
dust attenuated photometry in various photometric sys-
tems, including the Gaia passbands (DR1, nominal pass-
bands).
To include a realistic dust distribution on the Galaxia

model, we used the combined 3D extinction map from
Bovy et al. (2016), through its python package mwdust6,
which is capable of returning line-of-sight extinctions
when provided with sky coordinates and distances. This
3D dust map combines the results of Marshall et al.
(2006), Green et al. (2015), and Drimmel et al. (2003)
and it provides E(B-V)SFD values on the scale defined
in Schlegel et al. (1998)7. As discussed in Schlafly &
Finkbeiner (2011), the E(B-V)SFD scale overestimates
the extinction by 14% with respect to their own find-
ings. Hence we corrected for this overestimation and
adopted the prescription associated with the PARSEC
isochrones of Cardelli et al. (1989); O’Donnell (1994)
with R0 = 3.1 to derive the monochromatic extinction
(in mag) at wavelength � = 547.7 nm as

A0 = 3.1⇥ E(B�V)SFD ⇥ 0.86 (1)

Matching each star from Galaxia to an isochrone and
a proper amount of extinction is a challenging task for
6 billion stars. Instead, we approximated each star to
its closest match from a precomputed collection of dust
attenuated stellar isochrones. The grid spans A0 values
ranging from 0 to 15mag with in steps of 0.025mag (for
stars with even higher extinction we linearly extrapo-
lated the extinction values) and [Fe/H] values from -2 to
0.5 dex in steps of 0.25 dex. We further bin in log(Te↵)
in 0.02 dex steps and log(lum) in 0.2 dex steps on a
star-by-star basis. Each star in our catalog is associated
with an index parsec number that records this match-
ing step and maps each star onto the grid of isochrones
and thus allows us to query photometric measurements
in other bands from the supplementary parsec photom-
etry and extinction table. Figure 2 shows the resulting
color magnitude and absolute magnitude diagrams of

6
https://github.com/jobovy/mwdust

7
For a few 3D positions the map returns negative extinctions,

but we truncated these to zero.

We find 100 stream candidates with a 95% UL on fpr of 11%! 44



Results: known streams

We confirm 6 previously discovered stream candidates 

Others are either too wide, or have too few stars
45



Results: known streams

46

We also recover fragments of the Sagittarius Stream, despite it generally 
being much too wide for our narrow stream search



New stream candidates from Gaia DR2

47

[DS, Buckley, Necib 2303.01529]

Applied to Gaia DR2: many (~ 80-90) new streams potentially discovered!

(Follow-up studies ongoing to confirm)

https://arxiv.org/abs/2303.01529


3. Bonus: unsupervised ML for 
measuring DM density with 

Gaia data

48



Mapping the local density of DM in 3d

• We realized that training density estimators on the Gaia dataset could have other 
interesting applications


• The full 6D phase space density  of all the stars in the Galaxy (or at least all 
the nearby ones) carries a wealth of information about Galactic dynamics.


• In particular, we can directly infer the mass density  of the Galaxy from 
knowledge of , and from that the mass density  of the dark matter.

p( ⃗x, ⃗v)

ρ( ⃗x)
p( ⃗x, ⃗v) ρDM( ⃗x)

49

Buckley, Lim, Putney & DS 2205.01129, 2305.13358

Green et al 2011.04673, 2205.02244, Naik et al 2112.07657, An et al 2106.05981

https://arxiv.org/abs/2205.01129
https://arxiv.org/abs/2305.13358


Local dark matter density
Knowing the local dark matter density  is very important for many reasons:ρDM(x)

50

Assumes ρDM = 0.3 GeV/cm3

from 2104.07634

from 1812.00044

from 2001.05503

Could potentially resolve the 
presence of dark matter substructure

Input to direct detection 
experiments

Make contact with models (NFW, Einasto, etc) 
and simulations, learn more about Galaxy 

formation and nature of dark matter




The Collisionless Boltzmann Equation
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The Collisionless Boltzmann Equation

• Baryons+DM source the galactic potential . Gravitational tracers (stars) 
drawn from  accelerate in response to . 

Φ(x)
p( ⃗x, ⃗v, t) Φ(x)
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The Collisionless Boltzmann Equation

• Baryons+DM source the galactic potential . Gravitational tracers (stars) 
drawn from  accelerate in response to . 

Φ(x)
p( ⃗x, ⃗v, t) Φ(x)

• Over many dynamic timescales,   equilibrates p( ⃗x, ⃗v, t) → p( ⃗x, ⃗v)

• We can use a snapshot of  today to infer the acceleration field p( ⃗x, ⃗v) a⃗( ⃗x)
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From phase space density to mass density
Buckley, Lim, Putney & DS 2205.01129, 2305.13358

Green et al 2011.04673, 2205.02244, Naik et al 2112.07657, An et al 2106.05981

https://arxiv.org/abs/2205.01129
https://arxiv.org/abs/2305.13358


Comparison with previous approaches

• Existing measurements typically use Jean’s equation 
(second moment of Boltzmann equation) or rotation curves 

• They make many assumptions (axisymmetry, reflection 
symmetry, simple parametric models…) and bin the data 

• Results can seem precise but might not be accurate 
(biased)

53Figure 1: Summary of recent ⇢DM,� estimates. The marker type indicates the main observa-
tion of the analyses: triangles for local observations, squares for circular velocities, a diamond
for disc stars in an extended local region, and circles for halo stars. From top to bottom:
the brown triangles correspond to the local studies presented in section 4.1.1; the dark blue
squares to the circular velocity analyses from section 4.2; the red triangles to the Galactic
mass models based on local observations, discussed in section 4.3.1; the pink diamond to the
Jeans anisotropic modelling of disc stars presented in section 4.3.2; the cyan squares to the
circular-velocity-based Galactic mass models included in section 4.3.3; and the green circles
to the analyses of halo stars from section 4.3.4. We do not include the very local analyses
from section 4.1.2 because of their large error bars.

estimates of vc(R) within R ⇠ 5–25 kpc are currently available [47]. However, without a corre-
spondingly precise knowledge of how baryons are distributed, it is not possible to disentangle
the contribution to vc(R) from baryons and dark matter. Therefore, the uncertainty of the
resulting ⇢DM,� is dominated by the uncertainties in the baryonic distribution (e.g., [82]).

The results of recent global mass models (section 4.3) are also included in figure 1. Some
studies focused on fitting the distribution function of disc stars—section 4.3.1 and estimates
in figure 1 shown in red with triangular markers—complementing their analyses with other

– 22 –

From de Salas & Widmark 2012.11477

https://arxiv.org/abs/2012.11477
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Our approach using normalizing flows is model-free, does not 
assume symmetries, and is unbinned

https://arxiv.org/abs/2012.11477
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First ever fully 3d measurement of dark matter density 
in the solar neighborhood

https://arxiv.org/abs/2012.11477


From proof-of-concept to real data

• After validating our method with a realistic 
hydrodynamical cosmological simulation, we 
applied it to Gaia DR3.


• Selected stars in Gaia DR3 within 4 kpc with 


• full 6d features


• brightness cut to ensure completeness


• dominated by “red clump” stars which are 
supposed to be a good equilibrium tracer 
population => 5.8M stars 
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“red clump”

Buckley, Lim, Putney & DS 2205.01129, 2305.13358


https://arxiv.org/abs/2205.01129
https://arxiv.org/abs/2305.13358


Results: density estimation
Lim, Putney, Buckley & DS 2305.13358




Results: accelerations

Symmetries to ~10% level:

• north-south

• azimuthal (phi)

=> Expected from 
dynamical equilibrium

Lim, Putney, Buckley & DS 2305.13358




Results: mass density

Result is consistent with nonzero, 
spherically symmetric DM density!

• Gaia measurement error
Error bars include:

• MAF training variance • Finite training statistics

Lim, Putney, Buckley & DS 2305.13358




Results: mass density

Excellent agreement with 
previous measurements, 

with hopefully more 
realistic error bars

Our result:  
   ρDM(r⊙) = 0.47 ± 0.05 GeV/cm3

Lim, Putney, Buckley & DS 2305.13358
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Results: mass density
Lim, Putney, Buckley & DS 2305.13358


Radial profile broadly consistent with recent NFW fits



Summary and Outlook
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• While countless searches for new physics have been performed at the LHC, nearly 
all of them are highly model-specific. 


• This represents a huge opportunity for a new paradigm of model-agnostic search 
strategies.


• Motivated in part by community data challenges (LHCO2020, DarkMachines, 
ADC2022), theorists, experimentalists (and others!) have developed many new and 
exciting model-agnostic methods using the tools of modern ML.


• Some of these ideas are beginning to be ported over to ATLAS and CMS and 
implemented as actual analyses on real data, but much work remains to be done!


• Methods are also being ported over to the Astro domain — highlights the cross-
cutting power of ML tools!



Thanks for your attention!
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