Intro to Unsupervised ML and Anomaly Detection

COFI Winter School 2023 Old San Juan, Puerto Rico

David Shih December 11, 2023

Outline

- 1. Motivation: new physics and the LHC
- 2. Model-agnostic new physics searches with modern ML
 - Outlier detection
 - Overdensities
- Astro

3. Common tools, cross-cutting domains: Anomaly Detection from LHC to

	Ily 2019 Model	S	ignatur	e ∫	<i>Ĺdt</i> [fb⁻]	Mass limit				$\sqrt{s} = 13 \text{ TeV}$
	$\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}^0_1$	0 <i>e</i> , μ mono-jet	2-6 jets 1-3 jets	$E_T^{ m miss} \ E_T^{ m miss}$	36.1 36.1	\tilde{q} [2×, 8× Degen.] \tilde{q} [1×, 8× Degen.]	0.43	0.9	l 1.55	$m(\tilde{\chi}_1^0) < 100 \text{ GeV}$ $m(\tilde{q}) - m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	1712.02332 1711.03301
rches	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$	0 <i>e</i> , <i>µ</i>	2-6 jets	E_T^{miss}	36.1	ε σ σ		Forbidden	0.95-1.6	2.0 $m(\tilde{\chi}_1^0) < 200 \text{ GeV}$ $m(\tilde{\chi}_1^0) = 900 \text{ GeV}$	1712.02332 1712.02332
Inclusive Searches	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 e,μ ee,μμ	4 jets 2 jets	$E_T^{\rm miss}$	36.1 36.1	°50 °50			1.2		1706.03731 1805.11381
clusiv	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 e, μ SS e, μ	7-11 jets 6 jets	E_T^{miss}	36.1 139	ర్ రా రా రా రా రా రా రా రా రా రా రా రా రా			1.15		1708.02794 ATLAS-CONF-2019-015
In	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ SS <i>e</i> ,μ	3 <i>b</i> 6 jets	$E_T^{ m miss}$	79.8 139	õõ õõ			1.25	2.25 $m(\tilde{\chi}_1^0) < 200 \text{ GeV}$ $m(\tilde{g}) \cdot m(\tilde{\chi}_1^0) = 300 \text{ GeV}$	ATLAS-CONF-2018-041 ATLAS-CONF-2019-015
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$		Multiple Multiple Multiple		36.1 36.1 139	$egin{array}{ccc} egin{array}{ccc} eta_1 & Forbido \\ eta_1 & eba_1 & $	den Forbidden Forbidden	0.9 0.58-0.82 0.74		$\begin{array}{c} m(\tilde{\chi}^0_1){=}300{\rm GeV},BR(b\tilde{\chi}^0_1){=}1\\ m(\tilde{\chi}^0_1){=}300{\rm GeV},BR(b\tilde{\chi}^0_1){=}BR(t\tilde{\chi}^\pm_1){=}0.5\\ m(\tilde{\chi}^0_1){=}200{\rm GeV},m(\tilde{\chi}^\pm_1){=}300{\rm GeV},BR(t\tilde{\chi}^\pm_1){=}1 \end{array}$	1708.09266, 1711.03301 1708.09266 ATLAS-CONF-2019-015
rks ion	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	6 <i>b</i>	$E_T^{\rm miss}$	139	$ar{b}_1$ Forbidden $ar{b}_1$	0.23-0.48		0.23-1.35	$ \Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, \ m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV} \\ \Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, \ m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV} $	SUSY-2018-31 SUSY-2018-31
gen. squarks ect production	$\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0} \text{ or } t\tilde{\chi}_{1}^{0}$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0}$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow \tilde{\tau}_{1}b\nu, \tilde{\tau}_{1} \rightarrow \tau\tilde{G}$	0-2 <i>e</i> , μ 1 <i>e</i> , μ 1 τ + 1 <i>e</i> ,μ,τ	0-2 jets/1-2 3 jets/1 <i>b</i>	1	36.1 139 36.1	τ̃ ₁ τ̃ ₁ τ̃.	0.44-0		1.16	m($ ilde{\chi}_{1}^{0}$)=1 GeV m($ ilde{\chi}_{1}^{0}$)=400 GeV m($ ilde{\tau}_{1}$)=800 GeV	1506.08616, 1709.04183, 1711.11520 ATLAS-CONF-2019-017 1803.10178
3 rd g direc	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 <i>e</i> , μ	2 c mono-jet	E_T^{miss} E_T^{miss}	36.1 36.1	č č t ₁ ž	0.46 0.43	0.85		$m(\tilde{x}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{t}_{1},\tilde{c})-m(\tilde{\chi}_{1}^{0})=50 \text{ GeV}$ $m(\tilde{t}_{1},\tilde{c})-m(\tilde{\chi}_{1}^{0})=50 \text{ GeV}$	1805.01649 1805.01649 1711.03301
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 <i>e</i> , <i>µ</i>	4 <i>b</i>	E_T^{miss}	36.1	τ ₁ τ ₂		0.32-0.88		$m(\tilde{\chi}_1^0)=0 \text{ GeV}, m(\tilde{\iota}_1)-m(\tilde{\chi}_1^0)=180 \text{ GeV}$	1706.03986
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \text{ via } WZ$	3 e, μ 2-3 e, μ	1 <i>b</i>	E_T^{miss} E_{π}^{miss}	139 36.1	\tilde{t}_2 $\tilde{\chi}^{\pm}_{-}/\tilde{\chi}^0_{-}$	Forbidden	0.86	_	$m(\tilde{\chi}_{1}^{0})=360 \text{ GeV}, m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=0$	ATLAS-CONF-2019-016 1403.5294, 1806.02293
		ee,µµ	≥ 1	$E_T^{ m miss}$ $E_T^{ m miss}$	139	$ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} $ $ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} $ 0.205				$m(\tilde{\chi}_1^{\pm})$ - $m(\tilde{\chi}_1^0)$ =5 GeV	ATLAS-CONF-2019-014
t	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}$ via WW $ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via Wh	2 <i>e</i> ,μ 0-1 <i>e</i> ,μ	2 <i>b</i> /2 γ	$E_T^{ m miss}$ $E_T^{ m miss}$	139		0.42	0.74		$\begin{array}{c} m(\tilde{\chi}^0_1) {=} 0 \\ m(\tilde{\chi}^0_1) {=} 70 \ GeV \end{array}$	ATLAS-CONF-2019-008 ATLAS-CONF-2019-019, ATLAS-CONF-2019-XY
EW direc	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_L / \tilde{\nu}$	2 <i>e</i> , <i>µ</i>		E_T^{miss}	139	$\tilde{\chi}_1^{\pm}$		1.0		$m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	ATLAS-CONF-2019-008
<u>G</u> III	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$	2 τ	0	E_T^{miss}	139	$\tilde{\tau}$ [$\tilde{\tau}_{L}, \tilde{\tau}_{R,L}$] 0.16-	0.12-0.39			$m(\tilde{\chi}_1^0)=0$	ATLAS-CONF-2019-018
	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \ \tilde{\ell} {\rightarrow} \ell \tilde{\chi}_1^0$	2 e, μ 2 e, μ	0 jets ≥ 1	E_T^{miss} E_T^{miss}	139 139	$\widetilde{\ell}$ 0.256		0.7		$\begin{array}{c} m(\tilde{\chi}_1^0) = 0 \\ m(\tilde{\ell}) - m(\tilde{\chi}_1^0) = 10 ~GeV \end{array}$	ATLAS-CONF-2019-008 ATLAS-CONF-2019-014
	$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	0 e,μ 4 e,μ	$\geq 3 b$ 0 jets	$E_T^{ m miss} \ E_T^{ m miss}$	36.1 36.1	<i>Н</i> 0.13-0.23 <i>Н</i>	0.3	0.29-0.88		$ \begin{array}{l} BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 \end{array} $	1806.04030 1804.03602
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	36.1	$\begin{array}{cc} { ilde \chi}_1^\pm & \\ { ilde \chi}_1^\pm & 0.15 \end{array}$	0.46			Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
-Jg-	Stable \tilde{g} R-hadron		Multiple		36.1	ĝ				2.0	1902.01636,1808.04095
Loi	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple		36.1	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$				2.05 2.4 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1710.04901,1808.04095
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	$e\mu,e au,\mu au$			3.2	ν _τ				1.9 $\lambda'_{311} = 0.11, \lambda_{132/133/233} = 0.07$	1607.08079
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	4 <i>e</i> , <i>µ</i>	0 jets	$E_T^{\rm miss}$	36.1	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$		0.82	1.33	$m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1804.03602
>	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	4	-5 large- <i>R</i> je Multiple	ets	36.1 36.1]	1.(1.9 Large λ_{112}'' 2.0 m($\tilde{\chi}_1^0$)=200 GeV, bino-like	1804.03568 ATLAS-CONF-2018-003
RPV	$\tilde{t}\tilde{t}, \tilde{t} \to t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \to tbs$		Multiple 2 jets + 2 <i>l</i>		36.1	$\tilde{g} = [\lambda_{323}'' = 2e-4, 1e-2]$	0.5)5	m($\widetilde{\chi}^0_1){=}200$ GeV, bino-like	ATLAS-CONF-2018-003
	$ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell $	2 <i>e</i> , μ 1 μ	2 jets + 2 t 2 b DV	,	36.7 36.1 136	$\tilde{t}_1 [qq, bs]$ \tilde{t}_1 $\tilde{t}_1 [1e-10 < \lambda'_{23k} < 1e-8, 3e-10 < 1e-10 < 1e-8, 3e-10 < 1e-10 $		0.61	0.4-1.45	$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$ $BR(\tilde{t}_1 \rightarrow q\mu) = 100\%, \cos\theta_t = 1$	1710.07171 1710.05544 ATLAS-CONF-2019-006

ATLAS SUSY Searches* - 95% CL Lower Limits

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

 10^{-1}

ATLAS Preliminary

Mass scale [TeV]

	TLAS S	SUSY Searches* - 95% CL Lo	ower Limits
_	$\frac{\mathbf{Model}}{\tilde{q}\tilde{q},\tilde{q}\rightarrow q\tilde{\chi}_{1}^{0}}$		CMS (pr
earches	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$		Overview $36/137 \text{ fb}^{-1}$
Inclusive Searches	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ$	~ ~0	$\mathbf{pp} ightarrow \mathbf{ ilde{gg}}$ $0\ell: \ \mathrm{SUS-19-005};$
	$\tilde{g}\tilde{g}, \tilde{g} \to t \tilde{\chi}_1^0$ $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \to b \tilde{\chi}$	${f ilde g} o {f tt} {f ilde \chi}_1^{f 0}$	0ℓ: SUS-19-005; 1ℓ: arXiv:1705.0
arks tion	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{\chi}$	$ ilde{\mathbf{g}} ightarrow \mathbf{t} ilde{\mathbf{t}} ightarrow \mathbf{t} ilde{\mathbf{\chi}_1^{0}}$	2ℓ same-sign,0ℓ: arXiv:1710.1
3 rd gen. squarks direct production	$ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \hat{\lambda} \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \hat{\lambda} \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_0 b \nu $		1ℓ: arXiv:1705.02ℓ same-sign,
3 ^{ra} dir	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 +$	$ ilde{\mathbf{g}} ightarrow \mathbf{t} ilde{\mathbf{t}} ightarrow \mathbf{t} \mathbf{c} ilde{\chi}_{1}^{0}$	0ℓ: arXiv:1710.1 2ℓ same-sign:
	$\frac{\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \text{ via } WZ}{\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \text{ via } WZ}$	$ ilde{\mathbf{g}} ightarrow extbf{tb} ilde{\chi}_{1}^{\pm} ightarrow extbf{tb} extbf{tf}' ilde{\chi}_{1}^{0}$	
EW irect	$ \widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp} \text{ via } WW $ $ \widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{2}^{0} \text{ via } Wh $ $ \widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp} \text{ via } \widetilde{\ell}_{L}/2 $	$ ilde{\mathbf{g}} ightarrow (\mathbf{tt} ilde{\chi}_1^0 / \mathbf{bb} ilde{\chi}_1^0 / \mathbf{tb} ilde{\chi}_1^\pm ightarrow \mathbf{tb} \mathbf{f}' ilde{\chi}_1^0)$ $ ilde{\mathbf{g}} ightarrow \mathbf{bb} ilde{\chi}_1^0$	0 ℓ: arXiv:1704.0
9	$\begin{aligned} &\tau\tau, \ \tau \to \tau \chi_1 \\ &\tilde{\ell}_{\mathrm{L,R}} \tilde{\ell}_{\mathrm{L,R}}, \ \tilde{\ell} \to \iota \\ &\tilde{H} \tilde{H}, \ \tilde{H} \to h \tilde{G}_\ell \end{aligned}$	$ ilde{\mathbf{g}} o \mathbf{q} \mathbf{q} ilde{\chi}_1^{0}$	0ℓ: SUS-19-005;
pe s	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$	$\tilde{\mathbf{g}} \to \mathbf{q}\mathbf{q}(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^{0}) \to \mathbf{q}\mathbf{q}(\mathbf{W}/\mathbf{Z})\tilde{\chi}_1^{0}$	
Long-lived particles	Stable \tilde{g} R-h Metastable \tilde{g}	$ ilde{\mathbf{g}} ightarrow \mathbf{q} \mathbf{q} ilde{\chi}_{1}^{\pm} ightarrow \mathbf{q} \mathbf{q} \mathbf{W} ilde{\chi}_{1}^{0}$	2ℓ same-sign,1ℓ: arXiv:1709.0
	$ \begin{array}{c} LFV \ pp \to \tilde{v}_{\tau} \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} / \tilde{\chi}_{2}^{0} \to 1 \\ \tilde{g} \tilde{g}, \ \tilde{g} \to qq \tilde{\chi}_{1}^{0}, \end{array} $	$ ilde{\mathbf{g}} ightarrow \mathbf{q} \mathbf{q} ilde{\chi}_{2}^{0} ightarrow \mathbf{q} \mathbf{q} \mathbf{H} ilde{\chi}_{1}^{0}$	2ℓ same-sign,0ℓ: arXiv:1712.0
RPV	$\begin{aligned} &\tilde{t}\tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \\ &\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs \\ &\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell \end{aligned}$	$ ilde{\mathbf{g}} ightarrow \mathbf{q} \mathbf{q} ilde{\chi}_{2}^{0} ightarrow \mathbf{q} \mathbf{q} \mathbf{H} / \mathbf{Z} ilde{\chi}_{1}^{0}$	0 ℓ: arXiv:1712.0
	$\iota_1\iota_1, \iota_1 \rightarrow q\iota$	()

*Only a selection (phenomena is sł simplified models Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe up to the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

ATLAS Preliminary

ATLA July 201

019	SUSY Searches*	- 95%	6 CL	Lowe	er Li	imits				$\sqrt{s} = 13 \text{ TeV}$
$\int \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d}$	—			\mathbf{C}	\mathbf{MS}	6 (preliminary)		May 20	1712.023	332
$\tilde{g} ightarrow q \bar{q} \tilde{\chi}$	0 1			0	ver	view of SUSY r	esults: gluino	pair product	1711.033 1712.023 1712.023	332
	ATLAS Exotics Se Status: May 2019	earche	es* - 9	95% C	L U	pper Exclusion Limit			AS Preliminary	
	Model	<i>ℓ</i> ,γ	Jets† E	miss ⊤∫£o	lt[fb ⁻¹]	Limit	$\int \mathcal{L} dt$	= (3.2 – 139) fb ⁻¹	$\sqrt{s} = 8$, 13 TeV Reference	9-015
	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ m Bulk RS $G_{KK} \rightarrow WW \rightarrow qqqq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP		$1 - 4 j$ $- 2 j$ $\geq 2 j$ $\geq 3 j$ $- 2 J$ $1 b, \geq 1 J/2 j$ $\geq 2 b, \geq 3 j$.7 М ₅ .0 М _t .2 М _t .6 М _t .7 G _K .1 G _K .9 G _K	1s 1th 1th	7.7 TeV 7.7 TeV 8.6 Te 8.9 T 8.2 Te' 9.55 4.1 TeV 2.3 TeV 1.6 TeV 3.8 TeV 1.8 TeV	n = 3 HLZ NLO n = 6	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678	8-041 9-015 03301 9-015 1 1 , 1711.11520 9-017
	SSM $Z' \rightarrow \ell\ell$ SSM $Z' \rightarrow \tau\tau$ Leptophobic $Z' \rightarrow bb$ Leptophobic $Z' \rightarrow tt$ SSM $W' \rightarrow \ell\nu$ SSM $W' \rightarrow \tau\nu$ HVT $V' \rightarrow WZ \rightarrow qqqq$ model B HVT $V' \rightarrow WH/ZH$ model B m	2 e, μ 2 τ -	- 2 b 1 b, ≥ 1J/2j - 2 J 1 J	- 13 - 36 - 36 Yes 36 Yes 13 Yes 36 - 13 36 36	39 Z' .1 Z' .1 Z' .1 Z' .1 Z' .1 Z' .9 W' .1 W' .9 V' .1 V' .1 V' .1 V' .1 V'	' mass ' mass ' mass ' mass '' mass V' mass '' mass '' mass V _R mass V _R mass	5.1 TeV 2.42 TeV 2.1 TeV 3.0 TeV 6.0 TeV 3.7 TeV 3.6 TeV 2.93 TeV 3.25 TeV 5.0 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679	9-016
č	$\begin{array}{c} \text{Cl } qqqq \\ \text{Cl } \ell \ell qq \\ \text{Cl } tttt \end{array}$	2 e, μ	2 j _	- 37 - 36 Yes 36	.0 <mark>^</mark> .1 ^	R mass	2.57 TeV	$\begin{array}{c} m(n_R) = 0.3 \ \text{IeV}, \ g_L = g_R \\ \hline \\ \hline \\ 21.8 \ \text{TeV} \\ \hline \\ 40.0 \ \text{TeV} \\ \eta_{LL} \\ \hline \\ C_{4t} = 4\pi \end{array}$	1703.09127 1707.02424 1811.02305	9-008 S-CONF-2019-XYZ 9-008
	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac DM) $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM)	0 e, µ	1 - 4 j 1 - 4 j $1 J, \le 1 j$ 1 b, 0-1 J	Yes 36 Yes 36 Yes 3 Yes 36	.1 <mark>m</mark> m .2 <mark>M</mark> *		1.55 TeV 1.67 TeV 3.4 TeV	$g_q=0.25, g_{\chi}=1.0, m(\chi) = 1 \text{ GeV}$ $g=1.0, m(\chi) = 1 \text{ GeV}$ $m(\chi) < 150 \text{ GeV}$ $y = 0.4, \lambda = 0.2, m(\chi) = 10 \text{ GeV}$	1711.03301 1711.03301 1608.02372 1812.09743	9-018 9-008 9-014
0	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e, μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes 36 Yes 36 - 36 Yes 36	.1 LQ .1 LQ	Q mass Q mass Q ⁴ mass 1.03 Q ⁴ mass 970 (1.4 TeV 1.56 TeV 3 TeV GeV	$egin{aligned} eta &= 1\ eta &= 1\ \mathcal{B}(\mathrm{LQ}_3^u o b au) &= 1\ \mathcal{B}(\mathrm{LQ}_3^d o t au) &= 0 \end{aligned}$	1902.00377 1902.00377 1902.08103 1902.08103	17-019
Heavv	VLQ $BB \rightarrow Wt/Zb + X$ m VLQ $T_{5/3}T_{5/3} T_{5/3} \rightarrow Wt + X$ 2 VLQ $Y \rightarrow Wb + X$	nulti-channel nulti-channel $2(SS)/\geq 3 e, \mu \geq 1 e, \mu \geq 2 \gamma \geq 1 e, \mu \geq 1 e, \mu$	≥ 1 b, ≥ 1j		.1 Br .1 T _{5/} .1 Yr .8 Br	mass mass _{5/3} mass mass mass 1 mass 690 GeV	1.37 TeV 1.34 TeV 1.64 TeV 1.85 TeV .21 TeV	SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ $\kappa_B = 0.5$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261	04095 04095
Fxcited	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j - -	- 13 - 36 - 36 - 20 - 20	.7 q* 1 .1 b* 1 .3 <i>ℓ</i> * 1	* mass * mass * mass * mass * mass	6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921	8-003 8-003 9-006
÷	Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	1 e, μ 2 μ 3,4 e, μ (SS) 3 e, μ, τ - - : 13 TeV	≥ 2 j 2 j - - - - -	Yes 79 - 36 - 36 - 20 - 36 - 34 FeV	.1 N _R .1 H [±] .3 H [±] .1 mu .4 mo	nonopole mass	3.2 TeV 22 TeV 2.37 TeV	$m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130	
	to - o to t	ial data	فماه البية			10 ⁻¹	1	10		

to dibosons ($\sqrt{s} = 13$ TeV)

Model-agnostic NP searches?

TABLE I. Existing two-body exclusive final state resonance searches at $\sqrt{s} = 8$ TeV. The \emptyset symbol indicates no existing search at the LHC.

	e	μ	au	γ	j	b	t	W	Z	h
0)	$\pm \mp [4], \pm \pm [5]$	$\pm \pm [5, 6] \pm \mp [6, 7]$	[7]	Ø	Ø	Ø	Ø	Ø	Ø	Ø
l		$\pm \mp [4], \pm \pm [5]$	[7]	Ø	Ø	Ø	Ø	Ø	Ø	Ø
-			[8]	Ø	Ø	Ø	[9]	Ø	Ø	Ø
γ				[10]	[11 - 13]	Ø	Ø	[14]	[14]	Ø
;					[15]	[16]	[17]	[18]	[18]	Ø
)						[16]	[19]	Ø	Ø	Ø
							[20]	[21]	Ø	Ø
V								[22 - 25]	[23, 24, 26, 27]	[28 - 30]
Ζ									[23, 25, 31]	[28, 30, 32, 33]
h										[34-37]

From Craig, Draper, Kong, Ng & Whiteson 1610.09392

	$e \mu$			a /a	b	+		Z/W	Н	В	$\mathrm{SM} \to \mathrm{SN}$	$M_1 \times SM_1$	BSM	$\rightarrow \mathrm{SM}$	$_1 \times \mathrm{SM}_2$	$\text{BSM} \to \text{complex}$			
	e	μ	au	q/g	0	l	γ	Z / VV	Π	q/g	γ/π^0 's	b	$\cdot tZ/H$	bH		au qq'	eqq'	$\mu q q'$	
e	[37, 38]	[39, 40]	[39]	Ø	Ø	Ø	[41]	[42]	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	[43, 44]	Ø	
μ		[37, 38]	[39]	Ø	Ø	Ø	[41]	[42]	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	[43, 44]	
au			[45, 46]	Ø	[47]	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	[48, 49]	Ø	Ø	
q/g				$\left[29, 30, 50, 51\right]$	[52]	Ø	[53, 54]	[55]	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	
b					$\left[29, 52, 56\right]$	[57]	[54]	[58]	[59]	Ø	Ø	Ø	[60]	Ø	Ø	Ø	Ø	Ø	
t						[61]	Ø	[62]	[63]	Ø	Ø	Ø	[64]	[60]	Ø	Ø	Ø	Ø	
γ							$\left[65, 66 ight]$	[67-69]	[68, 70]	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	
Z/W								[71]	[71]	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	
Н									[72, 73]	[74]	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	
q/g										Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	
$\begin{bmatrix} \prod_{i=1}^{n} & q/g \\ \sum_{i=1}^{n} & \gamma/\pi^{0} \cdot s \end{bmatrix}$											[75]	Ø	Ø	Ø	Ø	Ø	Ø	Ø	
\times b												$\left[76,77 ight]$	Ø	Ø	Ø	Ø	Ø	Ø	
SM1																			
\uparrow									Ero	mK	im Ka	na Na	chmar		A/hita	on IC		4450	
BSM									ΓΙΟ		111, INC	ong, Na	CIIIIUI		viiles		07.00	1057	

What if NP is not like any of the models we have searched for?

There are a lot of NP scenarios that are not covered by existing searches!

Model-agnostic NP searches?

Why aren't there more model-agnostic new physics searches?

Modern ML can help!

- model-specific ~ supervised ML
- model-agnostic ~ less-than-supervised ML
- unbinned analysis of high dimensional feature spaces (100s or 1000s of features)
- (nearly) optimal classifiers
- density estimation

 $\bullet \bullet \bullet$

generative modeling

2. Model-agnostic NP searches with modern ML

Model-agnostic NP Searches @ LHC

The LHC Olympics 2020

A Community Challenge for Anomaly Detection in High Energy Physics

Gregor Kasieczka (ed),¹ Benjamin Nachman (ed),^{2,3} David Shih (ed),⁴ Oz Amram,⁵ Anders Andreassen,⁶ Kees Benkendorfer,^{2,7} Blaz Bortolato,⁸ Gustaaf Brooijmans,⁹ Florencia Canelli,¹⁰ Jack H. Collins,¹¹ Biwei Dai,¹² Felipe F. De Freitas,¹³ Barry M. Dillon,^{8,14} Ioan-Mihail Dinu,⁵ Zhongtian Dong,¹⁵ Julien Donini,¹⁶ Javier Duarte,¹⁷ D. A. Faroughy¹⁰ Julia Gonski,⁹ Philip Harris,¹⁸ Alan Kahn,⁹ Jernej F. Kamenik,^{8,19} Charanjit K. Khosa,^{20,30} Patrick Komiske,²¹ Luc Le Pottier,^{2,22} Pablo Martín-Ramiro,^{2,23} Andrej Matevc,^{8,19} Eric Metodiev,²¹ Vinicius Mikuni,¹⁰ Inês Ochoa,²⁴ Sang Eon Park,¹⁸ Maurizio Pierini,²⁵ Dylan Rankin,¹⁸ Veronica Sanz,^{20,26} Nilai Sarda,²⁷ Uroš Seljak,^{2,3,12} Aleks Smolkovic,⁸ George Stein,^{2,12} Cristina Mantilla Suarez,⁵ Manuel Szewc,²⁸ Jesse Thaler,²¹ Steven Tsan,¹⁷ Silviu-Marian Udrescu,¹⁸ Louis Vaslin,¹⁶ Jean-Roch Vlimant,²⁹ Daniel Williams,⁹ Mikaeel Yunus¹⁸

https://arxiv.org/abs/2101.08320

https://arxiv.org/abs/2105.14027

The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider

T. Aarrestad^a M. van Beekveld^b M. Bona^c A. Boveia^e S. Caron^d J. Davies^c A. De Simone^{f,g} C. Doglioni^h J. M. Duarteⁱ A. Farbin^j H. Gupta^k L. Hendriks^d L. Heinrich^a J. Howarth^l P. Jawahar^{m,a} A. Jueidⁿ J. Lastow^h A. Leinweber^o J. Mamuzic^{*p*} E. Merényi^{*q*} A. Morandini^{*r*} P. Moskvitina^{*d*} C. Nellist^{*d*} J. Ngadiuba^{*s*,*t*} B. Ostdiek^{u,v} M. Pierini^a B. Ravina^l R. Ruiz de Austri^p S. Sekmen^w M. Touranakou^{x,a} M. Vaškevičiūte^l R. Vilalta^y J.-R. Vlimant^t R. Verheyen^z M. White^o E. Wulff^h E. Wallin^h K.A. Wozniak^{α,a} Z. Zhang^d

A lot of new ideas for model-agnostic searches!

Model-agnostic NP Searches @ LHC

Proofs-of-concept are becoming actual LHC searches!

Model-agnostic NP Searches @ LHC

Proofs-of-concept are becoming actual LHC searches!

Two modes of anomaly detection

a. Outlier detection ("point anomalies")

low p(x)

<u>Autoencoders</u> Farina, Nakai & **DS** <u>1808.08992</u> Heimel et al <u>1808.08979</u> Cerri et al <u>1811.10276</u>

Density estimation Caron, Hendriks, Verheyen <u>2106.10164</u>

. . .

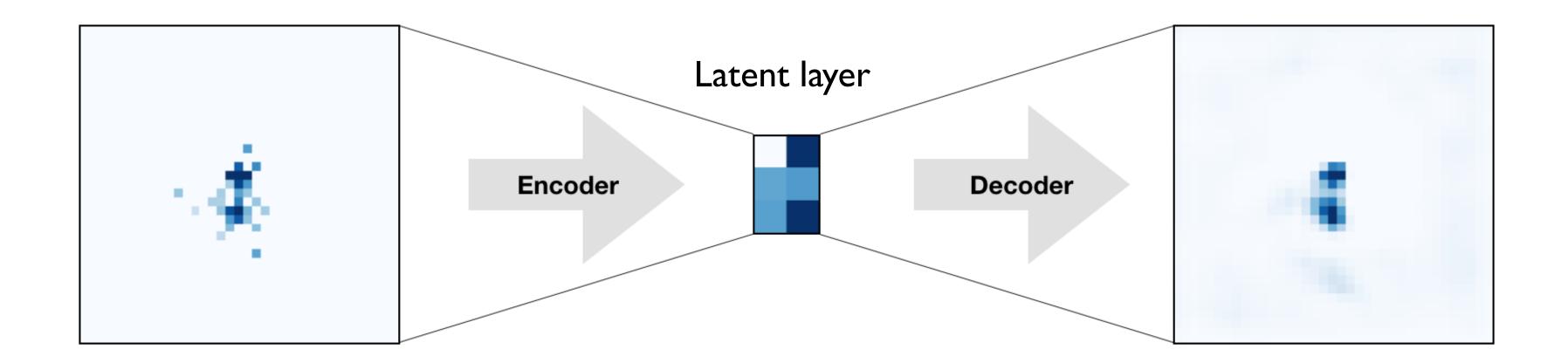
b. Overdensity detection ("group anomalies")

Data vs bg test statistic D'Agnolo et al <u>1806.02350,1912.12155</u>, <u>2111.13633</u>

Enhanced bump hunts CWoLa Hunting [Collins, Howe & Nachman <u>1805.02664</u>, <u>1902.02634</u>] ANODE [Nachman & **DS** <u>2001.04990</u>] CATHODE [**DS+** Hallin et al <u>2109.00546</u>, <u>2210.14924</u>] CURTAINS [Raine et al <u>2203.09470</u>]

2a. Outlier detection

- Pros:
 - can be fully unsupervised
 - can potentially find very rare anomalies \bullet
- Cons:
 - "low p(x)" is coordinate dependent! An event can be anomalous or not depending on parametrization of features


low p(x)

[Le Lan & Dinh 2012.03808, DS+ Kasieczka et al 2209.06225]

Farina, Nakai & **DS** 1808.08992; Heimel, Kasieczka, Plehn & Thompson 1808.08979; Cerri et al 1811.10276; and many more...

An autoencoder maps an input into a "latent representation" and then attempts to reconstruct the original input from it.

The encoding is lossy, so the reconstruction is not perfect.

Many real world applications of autoencoders, including anomaly detection, fraud detection, denoising, compression, generation, density estimation

Farina, Nakai & **DS** 1808.08992; Heimel, Kasieczka, Plehn & Thompson 1808.08979; Cerri et al 1811.10276; and many more...

Farina, Nakai & **DS** 1808.08992; Heimel, Kasieczka, Plehn & Thompson 1808.08979; Cerri et al 1811.10276; and many more...

"reconstruction error"

Farina, Nakai & **DS** 1808.08992; Heimel, Kasieczka, Plehn & Thompson 1808.08979; Cerri et al 1811.10276; and many more...

"reconstruction error"

Farina, Nakai & **DS** 1808.08992; Heimel, Kasieczka, Plehn & Thompson 1808.08979; Cerri et al 1811.10276; and many more...

Loss function for autoencoder: L =

$$= \frac{1}{N} \sum_{i=1}^{N} (x_i^{in} - x_i^{out})^2$$

"reconstruction error"

2.0

Then when the autoencoder encounters "anomalous" outlier events, its performance should be worse.

Farina, Nakai & **DS** 1808.08992; Heimel, Kasieczka, Plehn & Thompson 1808.08979; Cerri et al 1811.10276; and many more...

Loss function for autoencoder: L =

$$= \frac{1}{N} \sum_{i=1}^{N} (x_i^{in} - x_i^{out})^2$$

"reconstruction error"

2.0

Then when the autoencoder encounters "anomalous" outlier events, its performance should be worse.

> Can use reconstruction error as an anomaly score!

Farina, Nakai & DS 1808.08992; Heimel, Kasieczka, Plehn & Thompson 1808.08979; Cerri et al 1811.10276; and many more...

"reconstruction error"

[See Maria's talk next for other ways to use (variational) autoencoders for anomaly detection]

Then when the autoencoder encounters "anomalous" outlier events, its performance should be worse.

> Can use reconstruction error as an anomaly score!

2.0

Farina, Nakai & DS 1808.08992; Heimel, Kasieczka, Plehn & Thompson 1808.08979; Cerri et al 1811.10276; and many more...

Challenges:

Challenges:

• Uncontrolled, not very sensitive, optimality not guaranteed — the AE will find what it finds...

Challenges:

- T. Weber MSc Thesis [G. Kasieczka]; Dillon et al 2104.08291; Finke et al 2104.09051

Uncontrolled, not very sensitive, optimality not guaranteed — the AE will find what it finds...

• The AE can fail to detect outliers if they are "simpler" than the background

Top jets (more complex) are identified as anomalous when AE trained on QCD jets (simpler)

But not vice versa

Normalized autoencoders

Yoon et al <u>2105.05735</u>, Dillon et al <u>2206.14225</u>

Add additional normalization term to usual AE loss to further penalize outliers during training

 $\mathcal{L}(x) = -\log p_{\theta}(x) = E_{\theta}(x) + \log Z_{\theta}$

Figure 3: Distribution of the energy or MSE after training on QCD jets (left) and on top jets (right). We show the energy for QCD jets (blue) and top jets (orange) in both cases.

$$\Rightarrow \qquad \mathcal{L} = \left\langle E_{\theta}(x) + \log Z_{\theta} \right\rangle_{x \sim p_{\text{data}}}$$

Now performance of AE is "symmetrical"!

- Tops are identified as anomalous when AE trained on QCD
- QCD are identified as anomalous when AE trained on Tops

Challenges:

Background estimation with outlier anomaly detection

Challenges:

- Background estimation with outlier anomaly detection ullet
 - Can combine with bump hunt at cost of model-independence • Farina, Nakai & DS 1808.08992; Heimel, Kasieczka, Plehn & Thompson 1808.08979

Challenges:

- Background estimation with outlier anomaly detection •
 - Can combine with bump hunt at cost of model-independence • Farina, Nakai & DS 1808.08992; Heimel, Kasieczka, Plehn & Thompson 1808.08979
 - New idea: Double Decorrelated AE Mikuni, Nachman & **DS** 2111.06417

Challenges:

- Background estimation with outlier anomaly detection
 - Can combine with bump hunt at cost of model-independence Farina, Nakai & DS 1808.08992; Heimel, Kasieczka, Plehn & Thompson 1808.08979
 - New idea: Double Decorrelated AE Mikuni, Nachman & **DS** 2111.06417
 - Train two autoencoders and force them to be statistically independent of

$$\mathcal{L}[f_1, f_2, g_1, g_2] = \sum_i R_1(x_i)^2 + \sum_i R_i$$

of one another $+\lambda \operatorname{DisCo}^2[R_1(X), X_i]$

"DisCo Decorrelation" Kasieczka & **DS** 2001.05310

Szekely et al 0803.4101 et seq

Challenges:

- Background estimation with outlier anomaly detection
 - Can combine with bump hunt at cost of model-independence Farina, Nakai & DS 1808.08992; Heimel, Kasieczka, Plehn & Thompson 1808.08979
 - New idea: Double Decorrelated AE Mikuni, Nachman & **DS** 2111.06417
 - Train *two* autoencoders and force them to be statistically independent of one another •
 - Use ABCD method for fully data-driven background estimation

$$\Sigma[f_1, f_2, g_1, g_2] = \sum_i R_1(x_i)^2 + \sum_i R_2(x_i)^2$$

of one another $+\lambda \operatorname{DisCo}^2[R_1(X), R_2(X)]$

"DisCo Decorrelation" Kasieczka & **DS** 2001.05310

Szekely et al 0803.4101 et seq

$$\sum_{s>}^{\text{redicted}}(\vec{c}) = \frac{N_{>,<}(\vec{c})N_{<,>}(\vec{c})}{N_{<,<}(\vec{c})}$$

Double Decorrelated AE

Mikuni, Nachman & **DS** 2111.06417

The method works!

First complete strategy for unsupervised, non-resonant anomaly detection

Can also be used online as an anomaly trigger

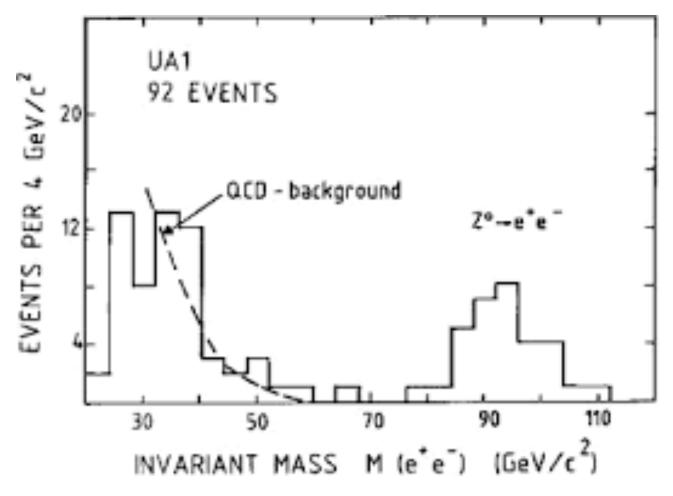
2b. Overdensity detection

Pros:

 \bullet

- reparametrization invariant
- asymptotically optimal

Cons:


- Requires more precise knowledge of background (reference) distribution
- Performance suffers when signal is too rare

Classic Overdensity Search 1D Bump Hunt

Idea: assume signal is localized in some feature (usually invariant mass) while background is smooth.

Interpolate from sidebands into signal region (eg window in invariant mass), search for an excess.

Used in many discoveries!

x: *additional* features where NP could be localized

 \bigcirc

 \bigcirc

 \bigcirc

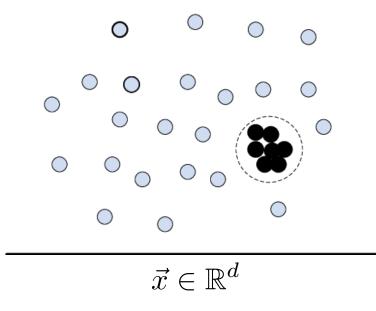
 \bigcirc

 \bigcirc

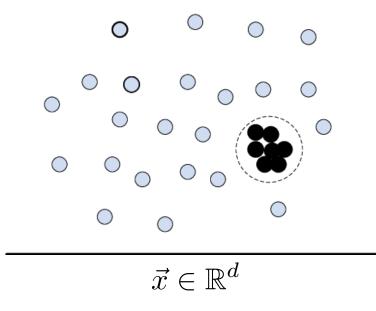
 $\vec{x} \in \mathbb{R}^d$

 \bigcirc

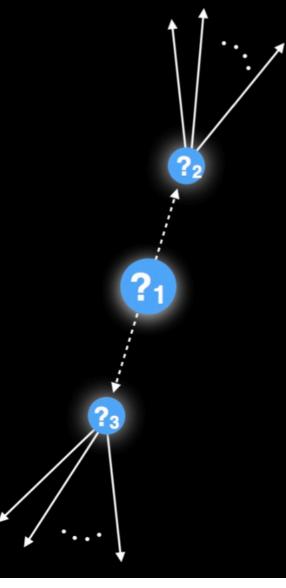
 \bigcirc


Learn model-agnostic **anomaly score** R(x) from data

x: *additional* features where NP could be localized


x: *additional* features where NP could be localized

Learn model-agnostic **anomaly score** R(x) from data



x: additional features where NP could be localized

Learn model-agnostic **anomaly score** R(x) from data

Idealized Anomaly Detector

 $R(x) = \frac{p_{data}(x)}{p_{bg}(x)}$

<u>Claim</u>: the optimal model-agnostic discriminant would be (Neyman & Pearson)

"Idealized Anomaly Detector"

Idealized Anomaly Detector

Claim: the optimal model-agnostic discriminant would be (Neyman & Pearson)

$$R(x) = \frac{p_{data}(x)}{p_{bg}(x)}$$

Proof:

 $p_{data}(x) = \epsilon_{sig} p_{sig}(x) + (1 - \epsilon_{sig}) p_{bg}(x)$

$$R(x) = (1 - \epsilon_{sig}) + \epsilon_{sig} \frac{p_{sig}(x)}{p_{bg}(x)}$$

"Idealized Anomaly Detector"

Idealized Anomaly Detector

<u>Claim</u>: the optimal model-agnostic discriminant would be (Neyman & Pearson)

$$R(x) = \frac{p_{data}(x)}{p_{bg}(x)}$$

Proof:

$$p_{data}(x) = \epsilon_{sig} p_{sig}(x) + (1 - \epsilon_{sig}) p_{bg}(x)$$

$$R(x) = (1 - \epsilon_{sig}) + \epsilon_{sig} \frac{p_{sig}(x)}{p_{bg}(x)}$$

"Idealized Anomaly Detector"

(x)

R(x) is monotonic with signal-to-background likelihood ratio regardless of unknown, arbitrary signal strength and probability density

Train a neural network to classify data vs MC simulation of the SM.

the data vs MC likelihood ratio (Neyman-Pearson).

 $R_{classifier}(x) = \frac{p_{data}(x)}{p_{MC}(x)}$

- If the NN classifier is optimal, its output should be (monotonic with)

Train a neural network to classify data vs MC simulation of the SM.

the data vs MC likelihood ratio (Neyman-Pearson).

- If the NN classifier is optimal, its output should be (monotonic with)
 - $R_{classifier}(x) = \frac{p_{data}(x)}{p_{MC}(x)}$ "The likelihood-ratio trick"

the data vs MC likelihood ratio (Neyman-Pearson).

This can work if simulations are reliable and their systematic uncertainties are well-understood.

- Train a neural network to classify data vs MC simulation of the SM.
- If the NN classifier is optimal, its output should be (monotonic with)

 $R_{classifier}(x) = \frac{p_{data}(x)}{p_{MC}(x)}$ "The likelihood-ratio trick"

> D'Agnolo et al 2111.13633

the data vs MC likelihood ratio (Neyman-Pearson).

This can work if simulations are reliable and their systematic uncertainties are well-understood.

Alternatively, can we get $p_{data}(x)$ and $p_{bg}(x)$ in a data-driven way?

- Train a neural network to classify data vs MC simulation of the SM.
- If the NN classifier is optimal, its output should be (monotonic with)

 $R_{classifier}(x) = \frac{p_{data}(x)}{p_{MC}(x)}$ "The likelihood-ratio trick"

> D'Agnolo et al 2111.13633

Collins, Howe & Nachman 1805.02664,1902.02634

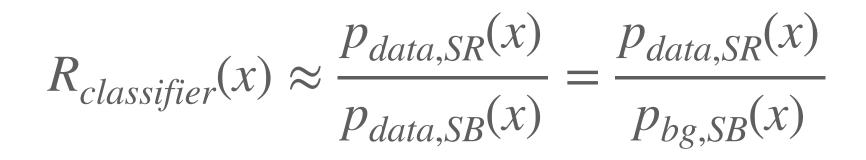
from <u>2109.00546</u>

Collins, Howe & Nachman 1805.02664,1902.02634

from <u>2109.00546</u>

Train a NN classifier on SR vs SB data, learn

 $R_{classifier}(x) \approx \frac{p_{data,SR}(x)}{p_{data,SB}(x)} = \frac{p_{data,SR}(x)}{p_{bg,SB}(x)}$



Collins, Howe & Nachman 1805.02664,1902.02634

from 2109.00546

Train a NN classifier on SR vs SB data, learn

If $p_{bg,SB}(x) = p_{bg,SR}(x)$ [i.e. features x are independent of *m* in the background] then the classifier gives the desired likelihood ratio.

$$R_{classifier}(x) \rightarrow \frac{p_{data,SR}(x)}{p_{bg,SR}(x)}$$

Collins, Howe & Nachman 1805.02664,1902.02634

from 2109.00546

Train a NN classifier on SR vs SB data, learn

If $p_{bg,SB}(x) = p_{bg,SR}(x)$ [i.e. features x are independent of *m* in the background] then the classifier gives the desired likelihood ratio.

$$R_{classifier}(x) \rightarrow \frac{p_{data,SR}(x)}{p_{bg,SR}(x)}$$

"CWoLa Hunting"

Nachman & **DS** 2001.04990

from <u>2109.00546</u>

Tight connection between generative models and anomaly detection!

Nachman & **DS** 2001.04990

from 2109.00546

Train two separate *normalizing flows* on SR and SB events to learn $p_{data}(x \mid m \in SR)$ and $p_{data}(x \mid m \in SB) = p_{bg}(x \mid m \in SB).$

Nachman & **DS** 2001.04990

from 2109.00546

Train two separate *normalizing flows* on SR and SB events to learn $p_{data}(x \mid m \in SR)$ and $p_{data}(x \mid m \in SB) = p_{bg}(x \mid m \in SB).$

The SB NF automatically interpolates into the SR, giving an estimate of $p_{bg}(x \mid m \in SR)$.

Nachman & **DS** 2001.04990

from 2109.00546

Train two separate *normalizing flows* on SR and SB events to learn $p_{data}(x \mid m \in SR)$ and $p_{data}(x \mid m \in SB) = p_{bg}(x \mid m \in SB).$

The SB NF automatically interpolates into the SR, giving an estimate of $p_{bg}(x \mid m \in SR)$.

Construct likelihood ratio explicitly.

Nachman & **DS** 2001.04990

from 2109.00546

Train two separate *normalizing flows* on SR and SB events to learn $p_{data}(x \mid m \in SR)$ and $p_{data}(x \mid m \in SB) = p_{bg}(x \mid m \in SB).$

The SB NF automatically interpolates into the SR, giving an estimate of $p_{bg}(x \mid m \in SR)$.

Construct likelihood ratio explicitly.

Pros: robust against correlations!

Nachman & **DS** 2001.04990

from 2109.00546

Train two separate *normalizing flows* on SR and SB events to learn $p_{data}(x \mid m \in SR)$ and $p_{data}(x \mid m \in SB) = p_{bg}(x \mid m \in SB).$

The SB NF automatically interpolates into the SR, giving an estimate of $p_{bg}(x \mid m \in SR)$.

Construct likelihood ratio explicitly.

- Pros: robust against correlations!
- Cons: density estimation much harder than classification

Nachman & **DS** 2001.04990

from 2109.00546

Train two separate *normalizing flows* on SR and SB events to learn $p_{data}(x \mid m \in SR)$ and $p_{data}(x \mid m \in SB) = p_{bg}(x \mid m \in SB).$

The SB NF automatically interpolates into the SR, giving an estimate of $p_{bg}(x \mid m \in SR)$.

Construct likelihood ratio explicitly.

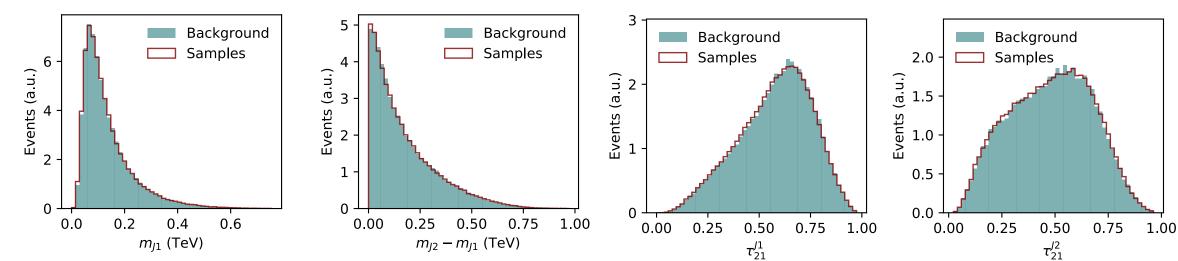
- Pros: robust against correlations!
- Cons: density estimation much harder than classification

DS+ Hallin et al 2109.00546, 2210.14924

from <u>2109.00546</u>

DS+ Hallin et al 2109.00546, 2210.14924

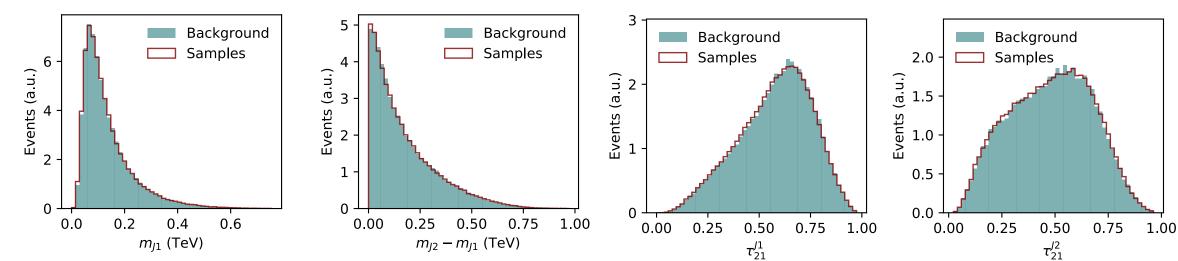
from <u>2109.00546</u>


Can also sample *synthetic bg events* from the interpolated SB model!

DS+ Hallin et al 2109.00546, 2210.14924

from <u>2109.00546</u>

Can also sample *synthetic bg events* from the interpolated SB model!

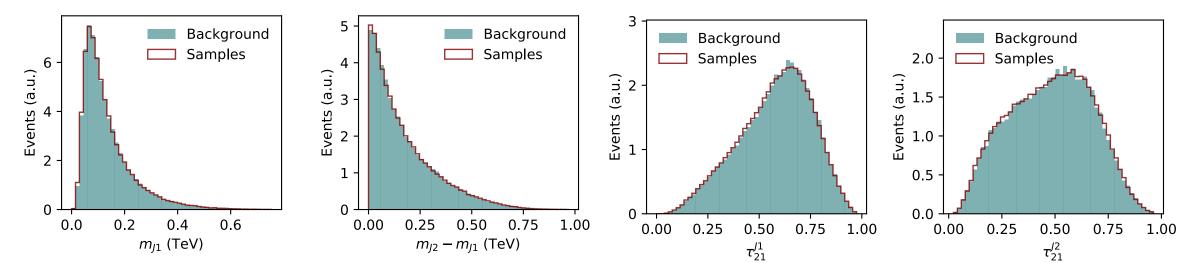

Then learn data-vs-bg classifier as in CWoLa Hunting.

DS+ Hallin et al 2109.00546, 2210.14924

from <u>2109.00546</u>

Can also sample *synthetic bg events* from the interpolated SB model!

Then learn data-vs-bg classifier as in CWoLa Hunting.


• Robust against correlations *and* don't have to learn separate density estimator for $p_{data}(x \mid m \in SR)$

DS+ Hallin et al 2109.00546, 2210.14924

from <u>2109.00546</u>

Can also sample *synthetic bg events* from the interpolated SB model!

Then learn data-vs-bg classifier as in CWoLa Hunting.

• Robust against correlations **and** don't have to learn separate density estimator for $p_{data}(x \mid m \in SR)$

"Classifying Anomalies THrough Outer Density Estimation (CATHODE)"

Summary of methods

from <u>2109.00546</u>

- <u>CWoLa Hunting</u>: classifier between SB and SR data
- ANODE: two conditional density estimators on SB and SR data; interpolate SB density estimator into SR
- <u>CATHODE</u>: single conditional density estimator on SB data; sample interpolated SB density estimator in SR; classifier between sampled events and data in SR
- Many other approaches also proposed!
 - CURTAINS: invertible NN for SB->SB interpolation [Raine et al <u>2203.09470</u>]
 - Simulation assisted resonant anomaly detection: SALAD [Andreassen, Nachman & **DS** <u>2001.05001</u>], SA-CWoLa [Benkendorfer et al <u>2009.02205</u>], FETA [Golling et al <u>2212.11285</u>]

We compared the methods on a common toy dataset:

LHC Olympics 2020 R&D dataset [https://doi.org/10.5281/zenodo.2629072]

No explicit search at the LHC for this scenario!

- Simulated with Pythia8 + Delphes
- pT(J1)>1.2 TeV trigger
- 4-vectors of every reconstructed particle in the event

Background: QCD dijets (1M events)

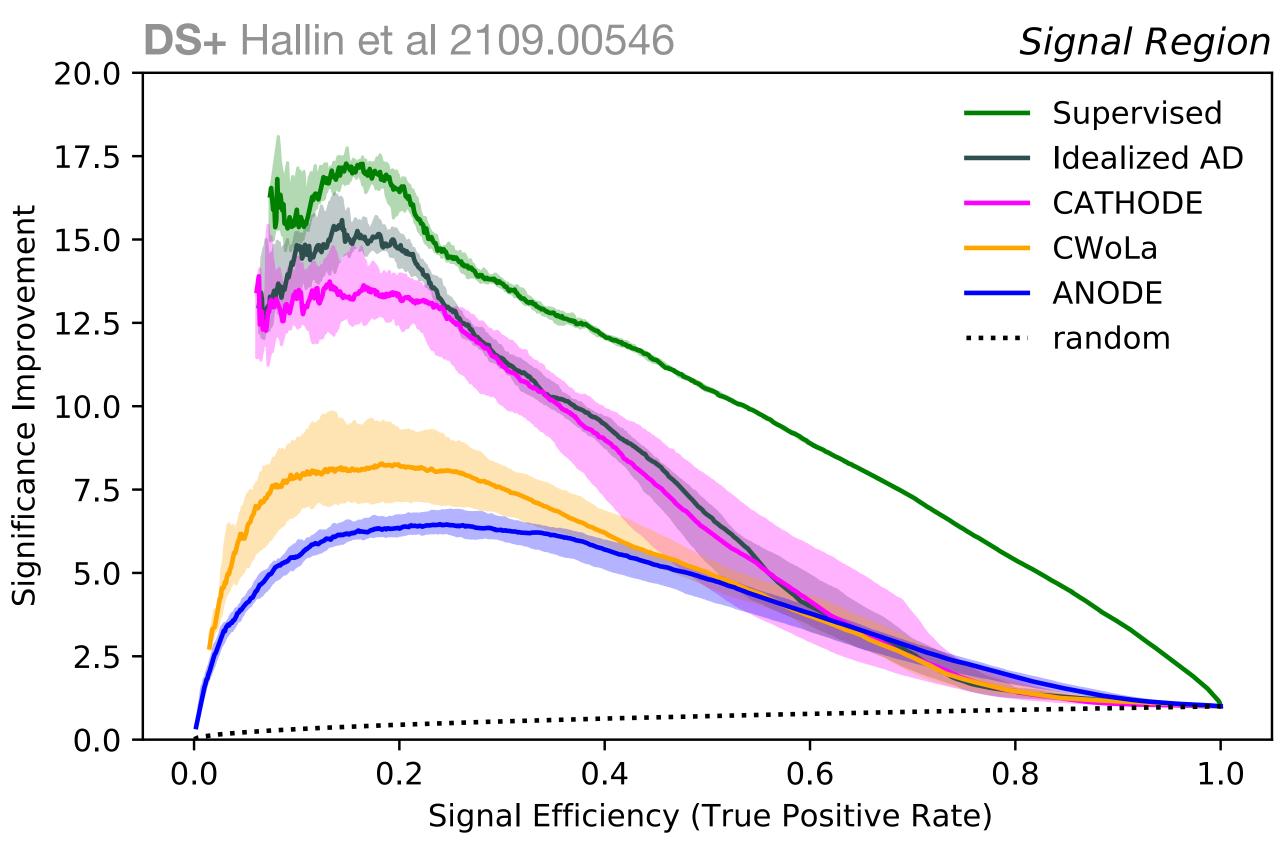
LHCO2020 R&D Dataset

 $m = m_{JJ}$

Benchmark signal strength:

SSR/BSR~0.6%, SSR/JBSR~2.2

Additional features



Significance improvement characteristic (SIC): $\epsilon_S / \sqrt{\epsilon_B}$

Significance improvement characteristic (SIC): $\epsilon_S / \sqrt{\epsilon_B}$

CATHODE outperforms CWoLa and ANODE and nearly saturates the idealized anomaly detector!

CATHODE outperforms CWoLa and ANODE and nearly saturates the idealized anomaly detector!

Initial significance was ~2.20

= <u>a ~30 σ anomaly could be hiding in the data right now!</u>

Current frontiers of resonant anomaly detection

Robustness

DS+ Buhmann et al 2310.06897

Das, Kasieczka & **DS**, 2311.nnnnn

3. Anomaly Detection from LHC to Astro

Searching for Stellar Streams in Gaia

- could be applied to Gaia data to search for stellar streams
 - An example of power of ML to cut across domains!

• We realized the same ML-enhanced bump hunt methods developed for LHC

Gaia satellite:

- Launched in 2013; ongoing
- Angular positions, proper motions, color and magnitude of over **1 billion stars** in our Galaxy
- Distances and radial velocities for a smaller subset of nearby stars

- Radial velocities (using spectrometer)

Spectroscopic Radial Velocity = -68.89 +- 3.17 km/s

Flux

→ GAIA'S HERTZSPRUNG-RUSSELL DIAGRAM

Luminosity (L

Total number of sources

Number of sources with full astrometry

Number of 5-parameter sources

Number of 6-parameter sources

Number of 2-parameter sources

Gaia-CRF sources

Sources with mean G magnitude

Sources with mean G_{BP}-band photometry

Sources with mean G_{RP}-band photometry

Sources with radial velocities

Sources with mean G_{RVS}-band magnitudes

Sources with rotational velocities

Mean BP/RP spectra

Mean RVS spectra

Variable-source analysis

	# sources in Gaia DR3	# sources in Gaia DR2
	1,811,709,771	1,692,919,135
	Gaia Early Data Release 3	
	1,467,744,818	1,331,909,727
	585,416,709	
	882,328,109	
	343,964,953	361,009,408
	1,614,173	556,869
	1,806,254,432	1,692,919,135
	1,542,033,472	1,381,964,755
	1,554,997,939	1,383,551,713
	New in Gaia Data Release 3	Gaia DR2
	33,812,183	7,224,631
	32,232,187	-
	3,524,677	-
	219,197,643	-
	999,645	-
	10,509,536	550,737
이 중요즘 것이 같은 것은 것이 같은 것은 것이 같은 것은 것이 같은 것은 것이 같은 것이 같이	이 같은 것은 것이 있는 것이 같은 것이 같은 것은 것이 같은 것은 것이 같은 것이 같은 것으로 가지 않는 것은 것이 같은	그는 가까 신한 것이 많아 있다. 신한 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같이 같이 있다. 것이 같은 것이 같은 것이 같은 것이 같은 것이 같이 같이 없다.

Total number of sources

Number of sources with full astrometry

Number of 5-para Number of 6-para Number of 2-parameter sources

Gaia-CRF sources

Sources with mean G magnitude

Sources with mean G_{BP}-band photometry

Sources with mean G_{RP}-band photometry

Sources with radial velocities

Sources with mean G_{RVS}-band magnitudes

Sources with rotational velocities

Mean BP/RP spectra

Mean RVS spectra

Variable-source analysis

	# sources in Gaia DR3	# sources in Gaia DR2
	1,811,709,771	1,692,919,135
	Gaia Early Data Release 3	
	1,467,744,818	1,331,909,727
angular	585,416,709	
rallax)	882,328,109	
	343,964,953	361,009,408
	1,614,173	556,869
	1,806,254,432	1,692,919,135
	1,542,033,472	1,381,964,755
	1,554,997,939	1,383,551,713
	New in Gaia Data Release 3	Gaia DR2
	33,812,183	7,224,631
	32,232,187	-
	3,524,677	-
	219,197,643	-
	999,645	-
	10,509,536	550,737
이 동네는 것이 같은 동네를 것이 같은 동네.	아이들은 동네에 가지 않는 것이 같은 것이 같은 동네 가지만 않는 것이 같은 동네 가지만 동네 가지만 동네 것이 같은 동네 가지만 동네 가지만 동네 가지만 동네 것이 같이 했다.	

Total number of sources

Number of sources with full astrometry

Number of 5-para 1.5B stars with 5d information (a Number of 6-para positions, proper motions, para

Number of 2-parameter sources

Gaia-CRF sources (much smaller subset of nearby Sources with mean G

with "well-measured" parallax

Sources with mean G_{BP}-band photometry

Sources with mean G_{RP}-band photometry

Sources with radial velocities

Sources with mean G_{RVS}-band magnitudes

Sources with rotational velocities

Mean BP/RP spectra

Mean RVS spectra

Variable-source analysis

	# sources in Gaia DR3	# sources in Gaia DR2
	1,811,709,771	1,692,919,135
	Gaia Early Data Release 3	
	1,467,744,818	1,331,909,727
angular	585,416,709	
rallax)	882,328,109	
ana <i>x</i>)	343,964,953	361,009,408
y stars	1,614,173	556,869
xes)	1,806,254,432	1,692,919,135
	1,542,033,472	1,381,964,755
	1,554,997,939	1,383,551,713
	New in Gaia Data Release 3	Gaia DR2
	33,812,183	7,224,631
	32,232,187	-
	3,524,677	-
	219,197,643	-
	999,645	-
	10,509,536	550,737
이 동네는 것이 같아 좋아 같아? 같아 있어? 것이 같아 있어? 것이 있어? 것이 것이 있어? 것이 것이 같아?	이 같은 것으로 가지 않는 것은 것은 것은 것은 것으로 가지 않는 것이 않는 것이 않는 것이 않는 것이 없다.	

Total number of sources				
Number of sources with full astrometry				
Number of 5-part 1.5B stars with 5d information (a				
Number of 6-para positions, proper motions, par				
Number of 2-parameter sources				
Gaia-CRF sources (much smaller subset of nearby				
Sources with mean G with "well-measured" paralla				
Sources with mean G _{BP} -band photometry				
Sources with mean G _{RP} -band photometry				
Sources with radial velocities				
Sources with mean G _{RVC} -hand magnitudes				
Sources with rotationa "only" 33M stars with full 6d inf				
Mean BP/RP spectra (5d+radial velocities)				
Mean RVS spectra				
Variable-source analysis				

	# sources in Gaia DR3	# sources in Gaia DR2
	1,811,709,771	1,692,919,135
	Gaia Early Data Release 3	
	1,467,744,818	1,331,909,727
angular rallax)	585,416,709	
	882,328,109	
	343,964,953	361,009,408
y stars	1,614,173	556,869
xes)	1,806,254,432	1,692,919,135
	1,542,033,472	1,381,964,755
	1,554,997,939	1,383,551,713
	New in Gaia Data Release 3	Gaia DR2
	33,812,183	7,224,631
ormation	32,232,187	-
	3,524,677	-
	219,197,643	-
	999,645	-
	10,509,536	550,737
아이들은 것은 것이 있는 것이 있는 것이 없는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 같이 있다.		

Stellar Streams

Stellar streams are the very old remnants of tidally disrupted globular clusters and dwarf galaxies.

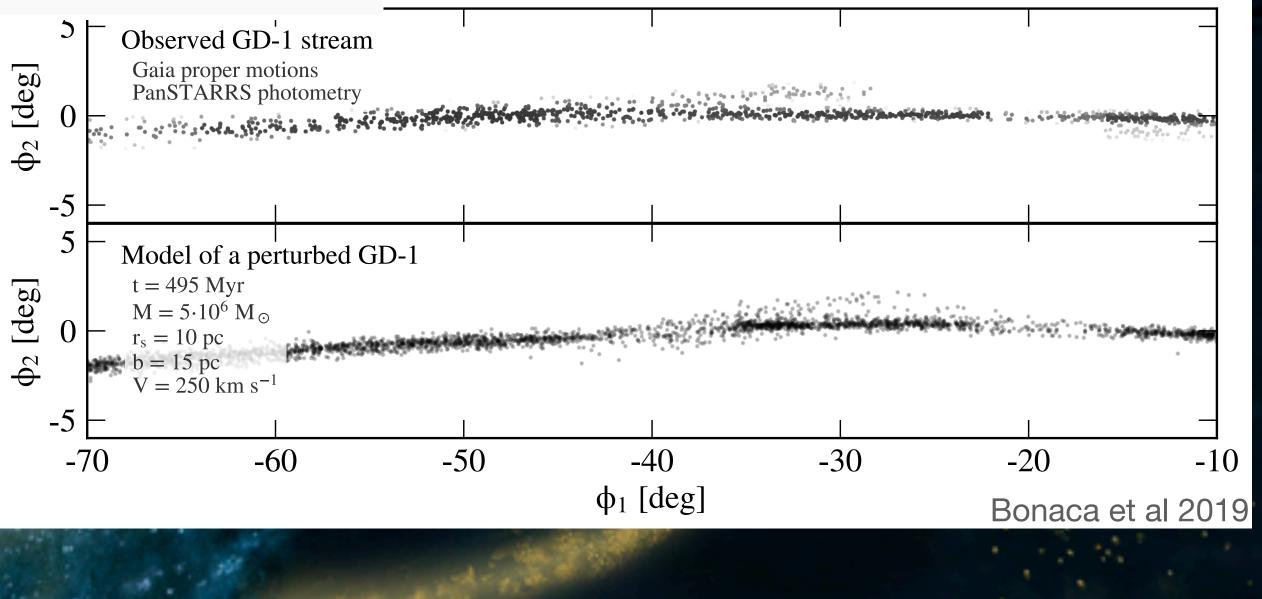
Collection of stars moving together along a common orbit — concentrated spatially and in velocity.

Unique probes into the formation history and gravitational potential of the Galaxy, and into dark matter substructure.

Stellar Streams

Unique probes into the formation history and gravitational potential of the Galaxy, and into dark matter substructure.

ally disrupted globular clusters and


Bonaca et al. (2014)

mmon orbit — concentrated

Stellar Streams

Unique probes into the formation the Galaxy, and into dark matter

ally disrupted globular clusters and

mmon orbit — concentrated

Bonaca et al. (2014)

Known Stellar Streams of the Milky Way

[DS, Buckley, Necib '23] [DS, Buckley, Necib, Tamanas '21]

[DS, Buckley, Necib '23] [DS, Buckley, Necib, Tamanas '21]

Streams are local overdensities in multiple features — ideal for enhanced bump hunt methods!

[DS, Buckley, Necib '23] [DS, Buckley, Necib, Tamanas '21]

- Choose either proper motion coordinate as resonant feature lacksquare

Streams are local overdensities in multiple features — ideal for enhanced bump hunt methods!

[DS, Buckley, Necib '23] [DS, Buckley, Necib, Tamanas '21]

- Streams are local overdensities in multiple features ideal for enhanced bump hunt methods!
- Choose either proper motion coordinate as resonant feature
- Use ANODE method to learn anomaly score with remaining five features

[DS, Buckley, Necib '23] [DS, Buckley, Necib, Tamanas '21]

- Streams are local overdensities in multiple features ideal for enhanced bump hunt methods!
- Choose either proper motion coordinate as resonant feature
- Use ANODE method to learn anomaly score with remaining five features see also: DS+ Pettee et al (2305.03761) [CWoLa], DS+ Hallin et al (23xx.xxxx) [CATHODE]

[DS, Buckley, Necib, Tamanas '21]

Fully data driven, simulation independent!

All stars in a patch of the sky containing (part of) GD-1 (ra,dec)=(148.6,24.2)

[DS, Buckley, Necib, Tamanas '21]

Fully data driven, simulation independent!

All stars in a patch of the sky containing (part of) GD-1 (ra,dec)=(148.6,24.2)

[DS, Buckley, Necib, Tamanas '21]

Fully data driven, simulation independent!

All stars in a patch of the sky containing (part of) GD-1 (ra,dec)=(148.6,24.2)

Stars in SR after cut on R(x)obtained from ANODE

[DS, Buckley, Necib, Tamanas '21]

Fully data driven, simulation independent!

All stars in a patch of the sky containing (part of) GD-1 (ra,dec)=(148.6,24.2)

Stars in SR after cut on R(x)obtained from ANODE

The method works!

So the method works!

- So the method works!
- How do we apply this to the entire sky?

- So the method works!
- How do we apply this to the entire sky?
 - Divide sky up into overlapping 15° circular patches ullet

- So the method works!
- How do we apply this to the entire sky?
 - Divide sky up into overlapping 15° circular patches lacksquare
 - lacksquare

Exclude patches too close to the disk (too many stars) and overlapping with the LMC and SMC

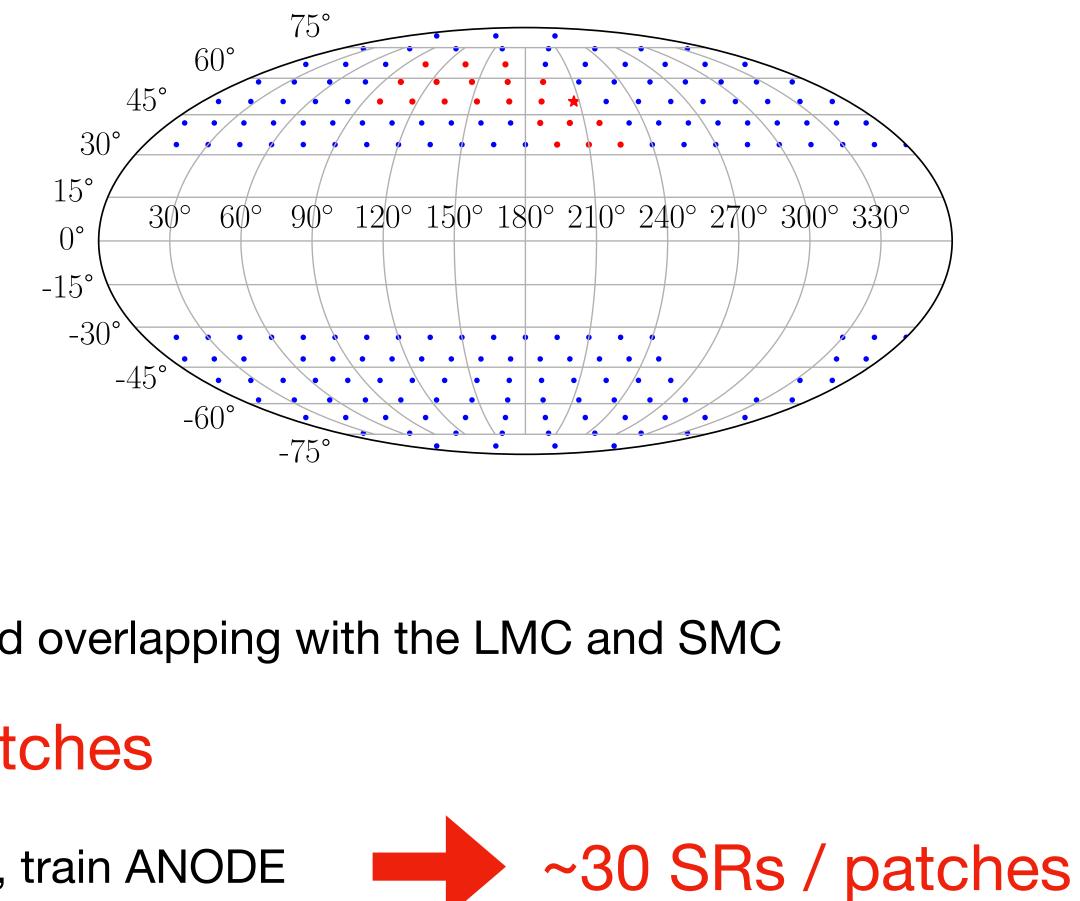
- So the method works!
- How do we apply this to the entire sky?
 - Divide sky up into overlapping 15° circular patches
 - Exclude patches too close to the disk (too many stars) and overlapping with the LMC and SMC

Sity .

200 patches

- So the method works!
- How do we apply this to the entire sky?
 - Divide sky up into overlapping 15° circular patches ●
 - lacksquare

Divide up each patch into overlapping SRs (width 6) in μ_{α} , train ANODE

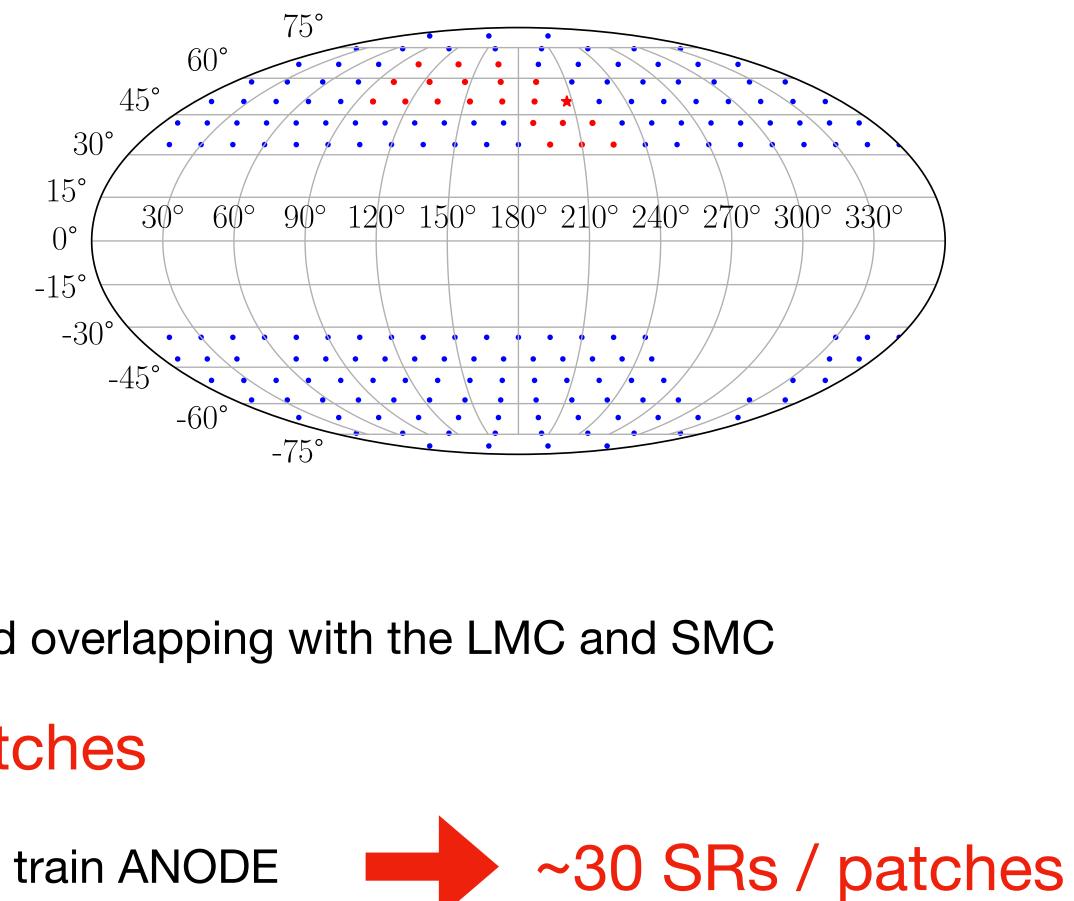


Exclude patches too close to the disk (too many stars) and overlapping with the LMC and SMC

200 patches

- So the method works!
- How do we apply this to the entire sky?
 - Divide sky up into overlapping 15° circular patches lacksquare
 - Exclude patches too close to the disk (too many stars) and overlapping with the LMC and SMC \bullet

Divide up each patch into overlapping SRs (width 6) in μ_{α} , train ANODE



200 patches

- So the method works!
- How do we apply this to the entire sky?
 - Divide sky up into overlapping 15° circular patches lacksquare
 - Exclude patches too close to the disk (too many stars) and overlapping with the LMC and SMC \bullet

- Divide up each patch into overlapping SRs (width 6) in μ_{α} , train ANODE
- Repeat for SRs in orthogonal proper motion coordinate μ_{δ}

200 patches

- So the method works!
- How do we apply this to the entire sky?
 - Divide sky up into overlapping 15° circular patches lacksquare
 - Exclude patches too close to the disk (too many stars) and overlapping with the LMC and SMC

- Divide up each patch into overlapping SRs (width 6) in μ_{α} , train ANODE Repeat for SRs in orthogonal proper motion coordinate μ_{β} x 2

200 patches

- So the method works!
- How do we apply this to the entire sky?
 - Divide sky up into overlapping 15° circular patches \bullet
 - Exclude patches too close to the disk (too many stars) and overlapping with the LMC and SMC

- Divide up each patch into overlapping SRs (width 6) in μ_{α} , train ANODE
- Repeat for SRs in orthogonal proper motion coordinate μ_{δ}

Need to train ANODE ~12,000 times to cover the entire sky!! Each training takes O(10h)

200 patches

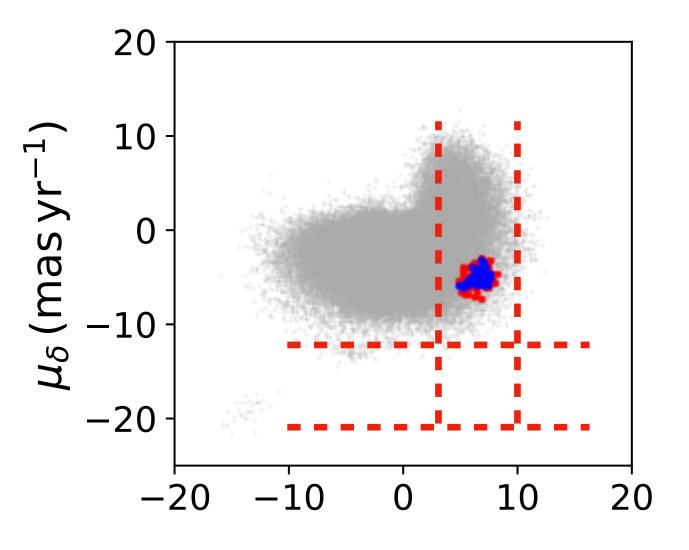
- So the method works!
- How do we apply this to the entire sky?
 - Divide sky up into overlapping 15° circular patches \bullet
 - Exclude patches too close to the disk (too many stars) and overlapping with the LMC and SMC

- Divide up each patch into overlapping SRs (width 6) in μ_{α} , train ANODE x 2 Repeat for SRs in orthogonal proper motion coordinate μ_{δ}

Need to train ANODE ~12,000 times to cover the entire sky!! Each training takes O(10h)

200 patches

- We ran this on the NERSC supercomputer at LBNL


• How to set the cut on R(x)?

- How to set the cut on R(x)?
- We found a defining a single threshold on R(x) across all SRs was insufficient to find other known streams besides GD-1.

ANODE on Gaia data

- How to set the cut on R(x)?
- We found a defining a single threshold on R(x) across all SRs was insufficient to find other known streams besides GD-1.
- What worked instead was to further subdivide SRs into slices by the orthogonal proper motion => "ROIs"

ANODE on Gaia data

- How to set the cut on R(x)?
- We found a defining a single threshold on R(x) across all SRs was insufficient to find other known streams besides GD-1.
- What worked instead was to further subdivide SRs into slices by the orthogonal proper motion => "ROIs"
- In each ROI, take the 100 highest R stars

ANODE on Gaia data

- How to set the cut on R(x)?
- We found a defining a single threshold on R(x) across all SRs was insufficient to find other known streams besides GD-1.
- What worked instead was to further subdivide SRs into slices by the orthogonal proper motion => "ROIs"
- In each ROI, take the 100 highest R stars
- Increases the sensitivity to real streams, but at the cost of a bigger look elsewhere effect.

Building streams from fragments

- We end up with $\sim 10^5$ ROIs —> need an automated way to scan them for potential streams and a way to cut down on trials factor!
 - Hough transform for line finding => significance
 - Cluster together ROIs from independent runs of ANODE => build stream fragments in each patch and cut down on LEE
 - Cluster together significant stream fragments in different patches to build full stream candidate

Galaxia false positive rate

We find 100 stream candidates with a 95% UL on fpr of 11%!

To quantify our false positive rate, we ran our full method on a semi-realistic Gaia mock catalog called Galaxia (Rybizki et al 2018) which does not have stellar streams

Results: known streams

We confirm 6 previously discovered stream candidates

Others are either too wide, or have too few stars

Results: known streams

We also recover fragments of the Sagittarius Stream, despite it generally being much too wide for our narrow stream search

New stream candidates from Gaia DR2

[DS, Buckley, Necib 2303.01529]

Applied to Gaia DR2: many (~ 80-90) new streams potentially discovered!

3. Bonus: unsupervised ML for measuring DM density with Gaia data

Mapping the local density of DM in 3d Buckley, Lim, Putney & **DS** <u>2205.01129</u>, <u>2305.13358</u> Green et al 2011.04673, 2205.02244, Naik et al 2112.07657, An et al 2106.05981

- interesting applications
- the nearby ones) carries a wealth of information about Galactic dynamics.
- In particular, we can directly infer the mass density $\rho(\vec{x})$ of the Galaxy from

We realized that training density estimators on the Gaia dataset could have other

• The full 6D phase space density $p(\vec{x}, \vec{v})$ of all the stars in the Galaxy (or at least all

knowledge of $p(\vec{x}, \vec{v})$, and from that the mass density $\rho_{DM}(\vec{x})$ of the dark matter.

Local dark matter density

Knowing the local dark matter density $\rho_{DM}(x)$ is very important for many reasons:

formation and nature of dark matter

Could potentially resolve the presence of dark matter substructure

• Baryons+DM source the galactic potential $\Phi(x)$. Gravitational tracers (stars) drawn from $p(\vec{x}, \vec{v}, t)$ accelerate in response to $\Phi(x)$.

$$\frac{dp}{dt} = \left[\frac{\partial}{\partial t} + \vec{v} \cdot \frac{\partial}{\partial \vec{x}} + \vec{a}(\vec{x}) \cdot \frac{\partial}{\partial \vec{v}}\right] p = 0 \qquad \vec{a}(\vec{x}) = -\nabla \Phi(\vec{x})$$

• Baryons+DM source the galactic potential $\Phi(x)$. Gravitational tracers (stars) drawn from $p(\vec{x}, \vec{v}, t)$ accelerate in response to $\Phi(x)$.

$$\frac{dp}{dt} = \left[\frac{\partial}{\partial t} + \vec{v} \cdot \frac{\partial}{\partial \vec{x}} + \vec{a}(\vec{x}) \cdot \frac{\partial}{\partial \vec{x}}\right]$$

- Over many dynamic timescales, $p(\vec{x}, \vec{v}, t)$ equilibrates $\rightarrow p(\vec{x}, \vec{v})$
- $\left. \frac{\partial}{\partial \vec{v}} \right| p = 0 \qquad \vec{a}(\vec{x}) = -\nabla \Phi(\vec{x})$

• Baryons+DM source the galactic potential $\Phi(x)$. Gravitational tracers (stars) drawn from $p(\vec{x}, \vec{v}, t)$ accelerate in response to $\Phi(x)$.

$$\frac{dp}{dt} = \left[\frac{\partial}{\partial t} + \vec{v} \cdot \frac{\partial}{\partial \vec{x}} + \vec{a}(\vec{x}) \cdot \frac{\partial}{\partial \vec{x}}\right]$$

- Over many dynamic timescales, $p(\vec{x}, \vec{v}, t)$ equilibrates $\rightarrow p(\vec{x}, \vec{v})$
- $\left. \frac{\partial}{\partial \vec{v}} \right| p = 0 \qquad \vec{a}(\vec{x}) = -\nabla \Phi(\vec{x})$

• Baryons+DM source the galactic potential $\Phi(x)$. Gravitational tracers (stars) drawn from $p(\vec{x}, \vec{v}, t)$ accelerate in response to $\Phi(x)$.

$$\frac{dp}{dt} = \left| \frac{\partial}{\partial t} + \vec{v} \cdot \frac{\partial}{\partial \vec{x}} + \vec{a}(\vec{x}) \cdot \frac{\partial}{\partial \vec{x}} \right|$$

- Over many dynamic timescales, $p(\vec{x}, \vec{v}, t)$ equilibrates $\rightarrow p(\vec{x}, \vec{v})$
- We can use a snapshot of $p(\vec{x}, \vec{v})$ today to infer the acceleration field $\vec{a}(\vec{x})$

 $\left. \frac{\partial}{\partial \vec{v}} \right| p = 0 \qquad \vec{a}(\vec{x}) = -\nabla \Phi(\vec{x})$

From phase space density to mass density

Buckley, Lim, Putney & **DS** <u>2205.01129</u>, <u>2305.13358</u> Green et al 2011.04673, 2205.02244, Naik et al 2112.07657, An et al 2106.05981

Comparison with previous approaches

- Existing measurements typically use **Jean's equation** (second moment of Boltzmann equation) or rotation curves
- They make many assumptions (axisymmetry, reflection) symmetry, simple parametric models...) and **bin the data**
- Results can seem precise but might not be accurate (biased)

From de Salas & Widmark 2012.11477

Comparison with previous approaches

- Existing measurements typically use **Jean's equation** (second moment of Boltzmann equation) or rotation curves
- They make many assumptions (axisymmetry, reflection) symmetry, simple parametric models...) and **bin the data**
- Results can seem precise but might not be accurate (biased)

Our approach using normalizing flows is model-free, does not assume symmetries, and is unbinned

From de Salas & Widmark 2012.11477

Comparison with previous approaches

- Existing measurements typically use **Jean's equation** (second moment of Boltzmann equation) or rotation curves
- They make many assumptions (axisymmetry, reflection) symmetry, simple parametric models...) and **bin the data**
- Results can seem precise but might not be accurate (biased)

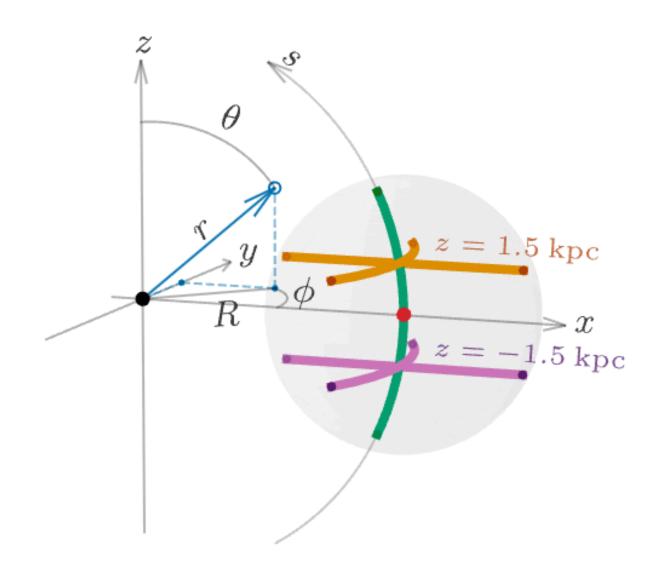
Our approach using normalizing flows is model-free, does not assume symmetries, and is unbinned

First ever fully 3d measurement of dark matter density in the solar neighborhood

From de Salas & Widmark 2012.11477

From proof-of-concept to real data Buckley, Lim, Putney & DS 2205.01129, 2305.13358

- After validating our method with a realistic hydrodynamical cosmological simulation, we applied it to Gaia DR3.
- Selected stars in Gaia DR3 within 4 kpc with
 - full 6d features lacksquare
 - brightness cut to ensure completeness lacksquare
- dominated by "red clump" stars which are supposed to be a good equilibrium tracer population => 5.8M stars


Results: density estimation

Lim, Putney, Buckley & **DS** 2305.13358

Results: accelerations

Lim, Putney, Buckley & **DS** 2305.13358

Symmetries to ~10% level:

- north-south
- azimuthal (phi)

=> Expected from dynamical equilibrium

	Gaia EDR3 [56]	This work
$a_x (10^{-10} \text{m/s}^2)$	-2.32 ± 0.16	-1.94 ± 0.22
$a_y (10^{-10} \text{m/s}^2)$	0.04 ± 0.16	0.08 ± 0.08
$a_z (10^{-10} \text{m/s}^2)$	-0.14 ± 0.19	-0.06 ± 0.08
$ \vec{a} \ (10^{-10} \mathrm{m/s^2})$	2.32 ± 0.16	1.94 ± 0.22

TABLE I: Galactic acceleration at the Solar location \vec{a}_{\odot} in Cartesian coordinates, calculated by averaging the solution to the Boltzmann equation within a 100 pc sphere centered on the Sun. We list for comparison the acceleration at the Solar location obtained from *Gaia* DR3 quasar measurements [56].

Results: mass density

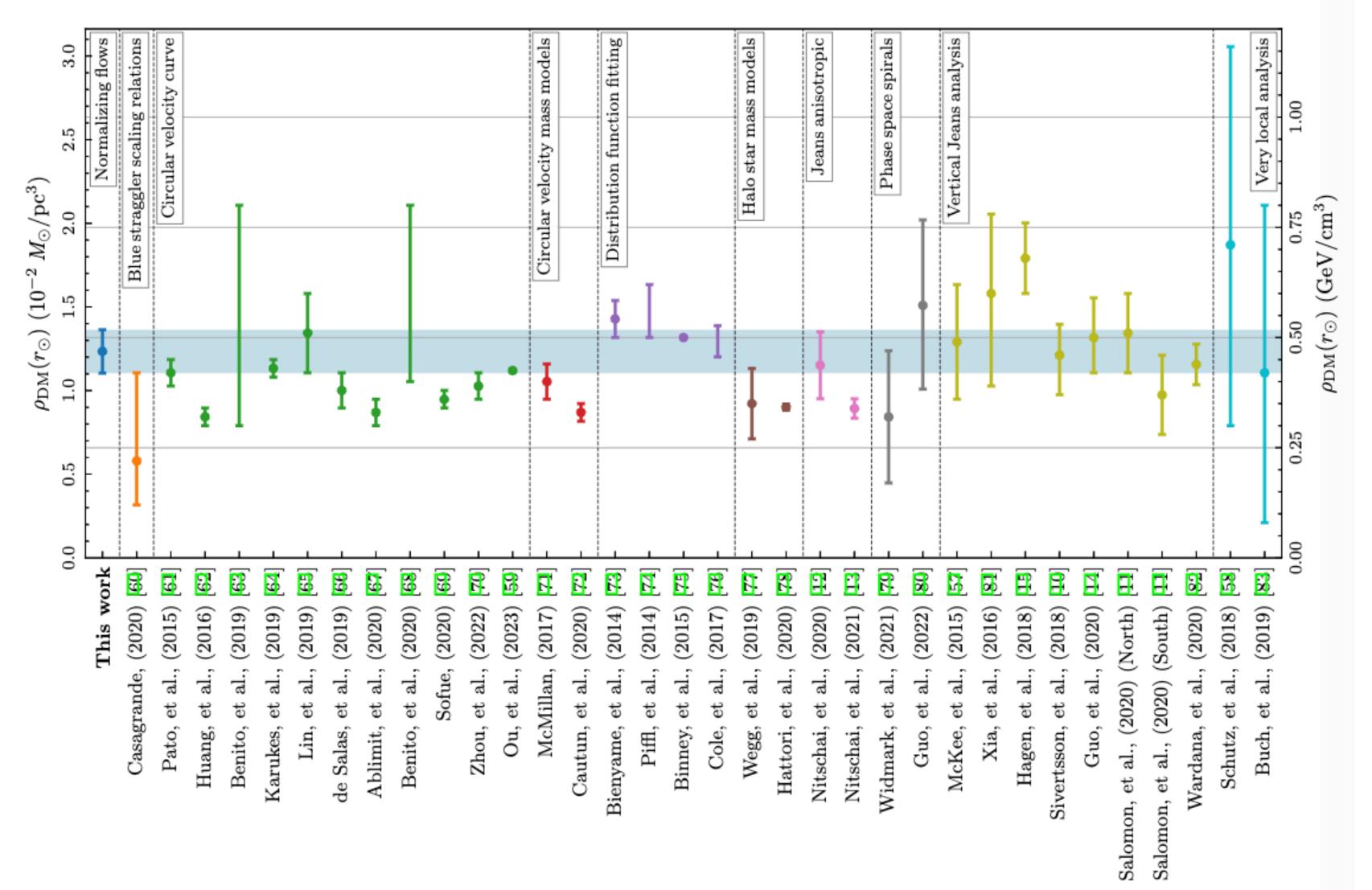
Lim, Putney, Buckley & **DS** 2305.13358

Error bars include:

 MAF training variance • Finite training statistics Gaia measurement error

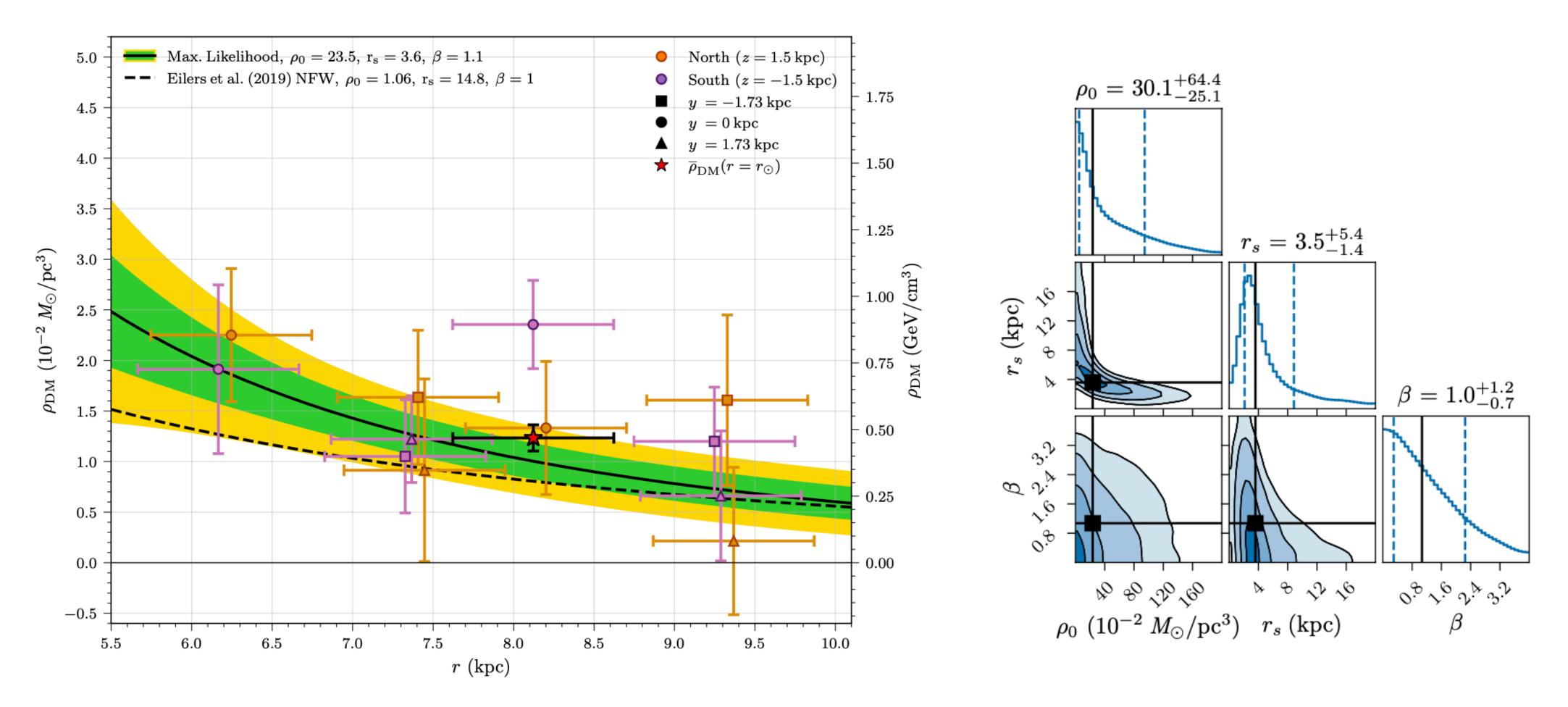
Density	$(10^{-2}~M_{\odot}/{ m pc}^3)$	$({ m GeV/cm^3})$
$ ho_{\odot}$	6.17 ± 0.20	2.34 ± 0.08
$ ho_{b,\odot}$	5.34 ± 0.42	2.03 ± 0.16
$ ho_{ m DM,\odot}$	0.83 ± 0.47	0.32 ± 0.18
$\overline{ ho}_{ m DM}(r=r_{\odot})$	1.18 ± 0.14	0.47 ± 0.05

Result is consistent with nonzero, spherically symmetric DM density!



Results: mass density

Lim, Putney, Buckley & **DS** 2305.13358


Excellent agreement with previous measurements, with hopefully more realistic error bars

Results: mass density

Lim, Putney, Buckley & **DS** 2305.13358

Radial profile broadly consistent with recent NFW fits

Summary and Outlook

- all of them are highly model-specific.
- strategies.
- exciting model-agnostic methods using the tools of modern ML.
- cutting power of ML tools!

• While countless searches for new physics have been performed at the LHC, nearly

• This represents a huge opportunity for a new paradigm of model-agnostic search

 Motivated in part by community data challenges (LHCO2020, DarkMachines, ADC2022), theorists, experimentalists (and others!) have developed many new and

 Some of these ideas are beginning to be ported over to ATLAS and CMS and implemented as actual analyses on real data, but much work remains to be done!

Methods are also being ported over to the Astro domain — highlights the cross-

Thanks for your attention!