Introduction to Machine Learning and Artificial Intelligence: Lecture I

Michael Kagan

2nd COFI Advanced Instrumentation and Analysis Techniques School December 9, 2023

The Plan

Lecture 1

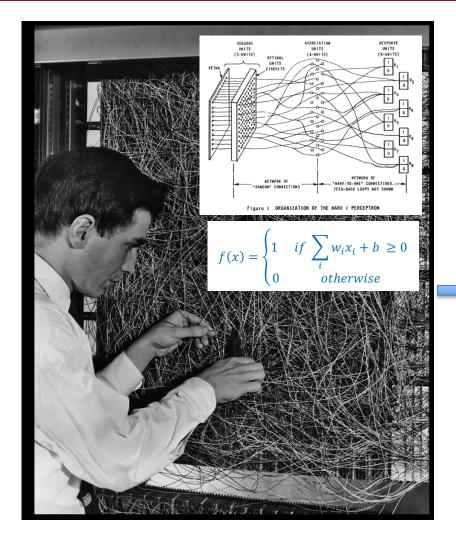
- Introduction to Machine Learning fundamentals
- Linear Models

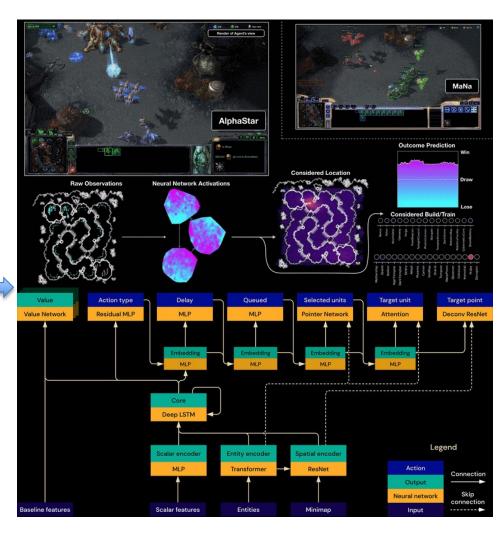
• Lecture 2

- Neural Networks
- Deep Neural Networks
- Inductive Bias and Model Architectures

• Lecture 3

- Unsupervised Learning
- Autoencoders
- Towards Generative Models: Variation Autoencoders





Perceptron AlphaStar

Nosenblatt <u>1958</u>, <u>1960</u> <u>Vinyals et. al. 2019</u>

street style photo of a woman selling pho at a Vietnamese street market, sunset, shot on fujifilm

generate low-level, high-dim data from high-level concepts

High-Level Concept

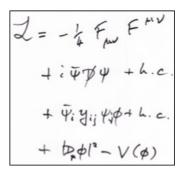
*-----

Low-Level Data This is a picture of Barack Obama.

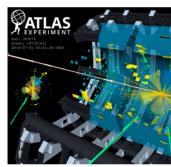
His foot is positioned on the right side of the scale.

The scale will show a higher weight.

reconstruct high level concepts from low-level, high-dim data



generate low-level, high-dim data from high-level concepts

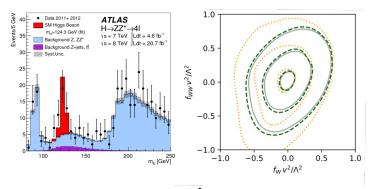


Simulation

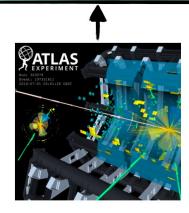
High-Level Concept

Low-Level Data

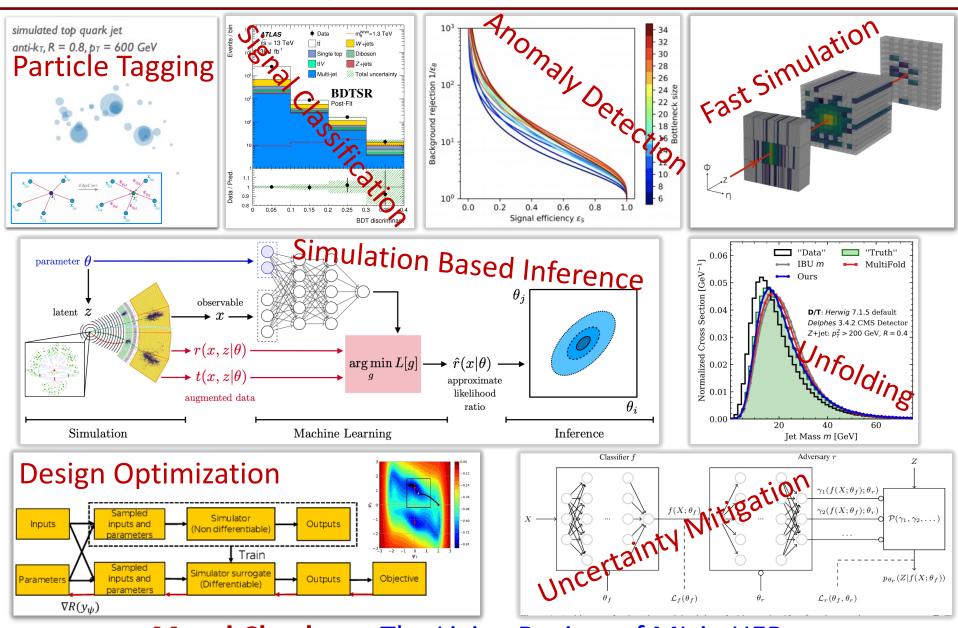
Data Analysis



reconstruct high level concepts from low-level, high-dim data

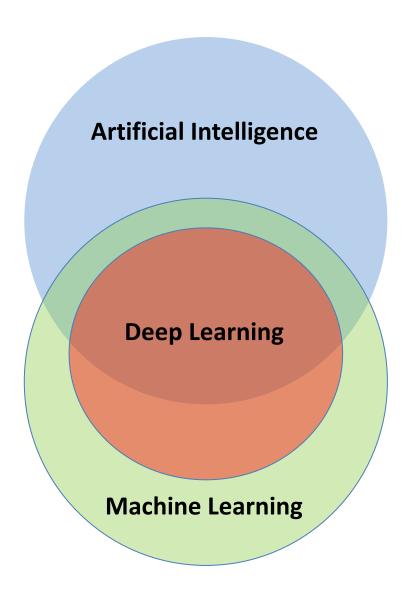


Machine Learning in HEP



+ More! Check out The Living Review of ML in HEP

- Giving computers the ability to learn without explicitly programming them (Arthur Samuel, 1959)
- Statistics + Algorithms
- Computer Science + Probability + Optimization Techniques
- Fitting data with complex functions
- Mathematical models learnt from data that characterize the patterns, regularities, and relationships amongst variables in the system

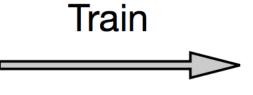


- AI: make computers act in an intelligent way
 - Rules, reasoning, symbol manipulation
- ML: Uses data to learn "intelligent" algorithms

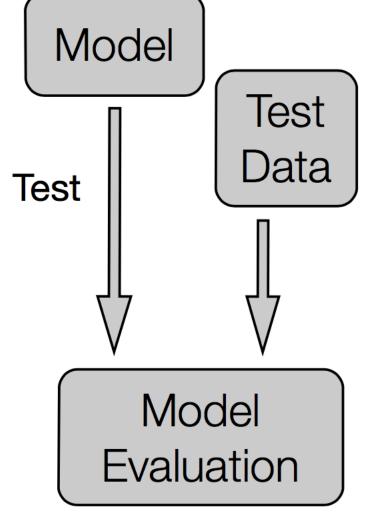
• **Deep Learning**: Approach to ML that (often) uses complex pipelines to process low level data (e.g. pixels)

- Key element is a mathematical model
 - A mathematical characterization of system(s) of interest, typically via random variables
 - Chosen model depends on the task / available data
- Learning: estimate statistical model from data
 - Supervised learning
 - Unsupervised Learning
 - Reinforcement Learning
 - **–** ...
- Prediction and Inference: using statistical model to make predictions on new data points and infer properties of system(s)

Training
Data



- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
 - Clustering
 - Dimensionality reduction
 - **–** ...
- Reinforcement learning



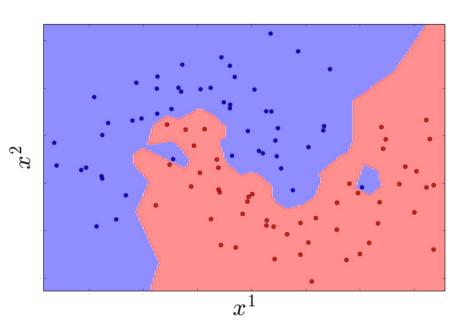
[Ravikumar]

Supervised Learning

• Given N examples of observed features $\{x_i\}$ and prediction **targets** $\{y_i\}$, learn function mapping h(x) = y

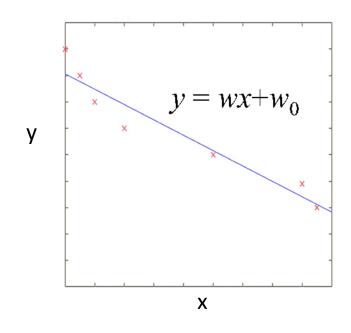
Classification:

Y is a finite set of **labels** (i.e. classes) denoted with integers



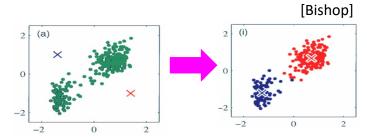
Regression:

Y is a real number

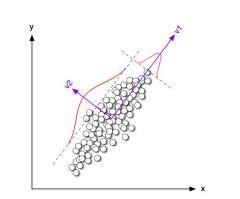


Given data $D = \{x_i\}$, but no labels, find structure in data

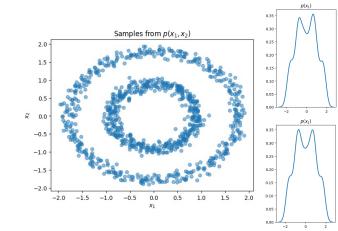
Clustering: partition the data into groups $D = \{D_1 \cup D_2 \cup D_3 \dots \cup D_k\}$



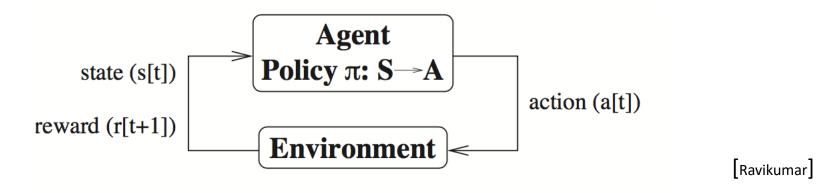
Dimensionality reduction: find a low dimensional (less complex) representation of the data with a mapping Z = h(X)



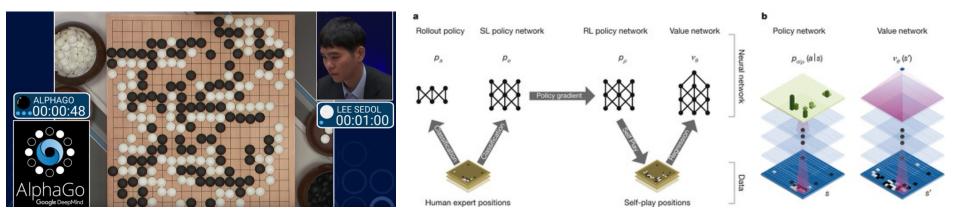
Density estimation and sampling: estimate density p(x), and/or learn to draw new samples of x



<u>Image Credit - Link</u>



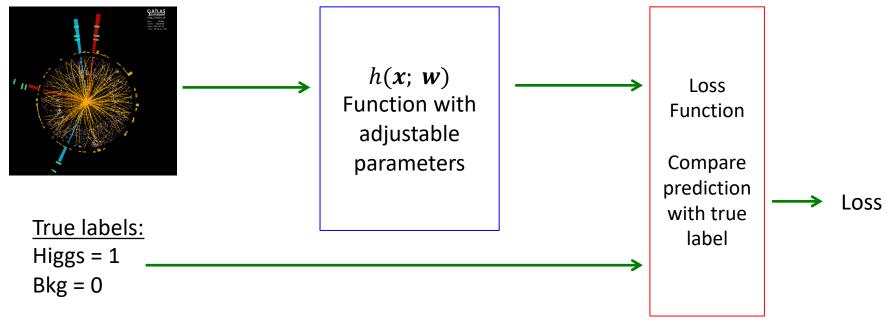
 Learn to make the best sequence of decisions to achieve a given goal when feedback is often delayed until you reach the goal



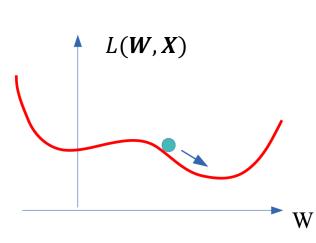
Nature 529, 484-489 (28 January 2016)

Y. Le Cun

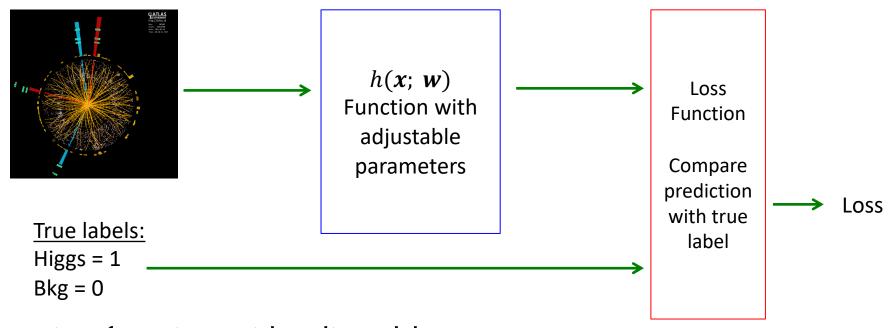
Supervised Learning: How does it work?



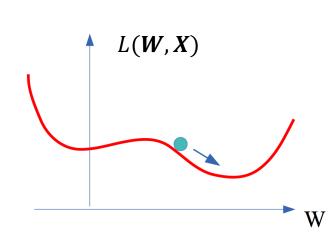
- Design function with adjustable parameters
- Design a Loss function
- Find best parameters which minimize loss

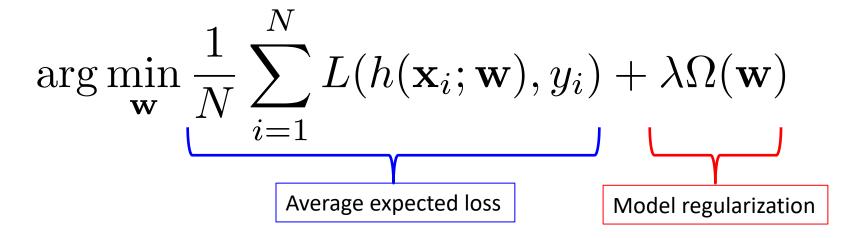


Y. Le Cun



- Design function with adjustable parameters
- Design a Loss function
- Find best parameters which minimize loss
 - Use a labeled training-set to compute loss
 - Adjust parameters to reduce loss function
 - Repeat until parameters stabilize





- Framework to design learning algorithms
- L is loss function: compare prediction $h(\cdot)$ to label y
- $\Omega(w)$ is a regularizer, penalizing certain values of w
 - $-\lambda$ controls how much penalty. Hyperparameter we tune
- Learning is cast as an optimization problem

Example Loss Functions

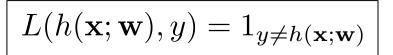
- Square Error Loss:
 - Often used in regression
- $L(h(\mathbf{x}; \mathbf{w}), y) = (h(\mathbf{x}; \mathbf{w}) y)^2$

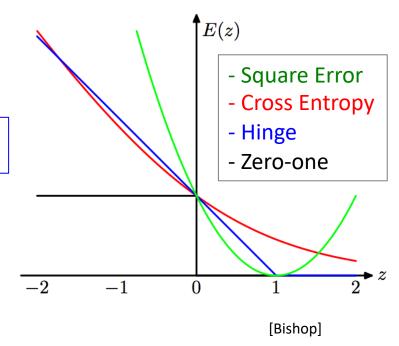
 $L(h(\mathbf{x}; \mathbf{w}), y) = -y \log h(\mathbf{x}; \mathbf{w})$

- Cross entropy:
 - With $y \in \{0,1\}$
 - Often used in classification
- Hinge Loss:
 - With $y \in \{-1,1\}$

$$L(h(\mathbf{x}; \mathbf{w}), y) = \max(0, 1 - yh(\mathbf{x}; \mathbf{w}))$$

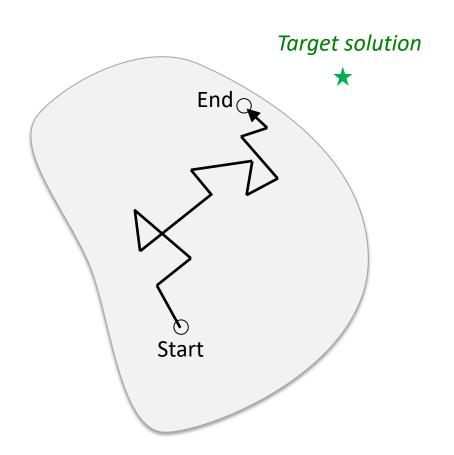
- Zero-One loss
 - h(x; w) predicting label





 $-(1-y)\log(1-h(\mathbf{x};\mathbf{w}))$

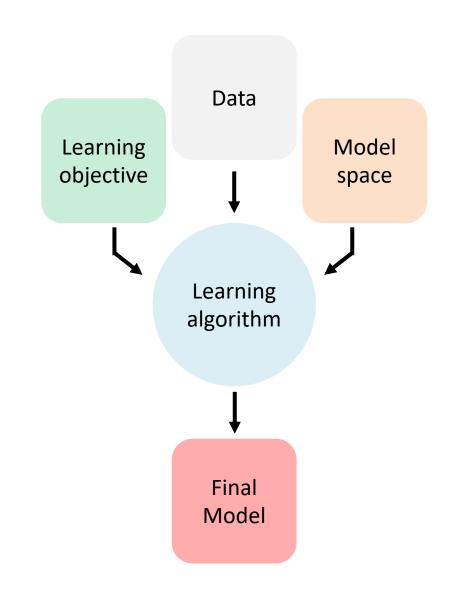
- Choose type of model
 - Each set of parameters is a point in space of models
- Need to find the best model parameters for loss
- Learning is like a search through space of models, guided by the data
- Various possibilities
 - Exhaustive search
 - Closed for solutions (rare)
 - Iterative optimization

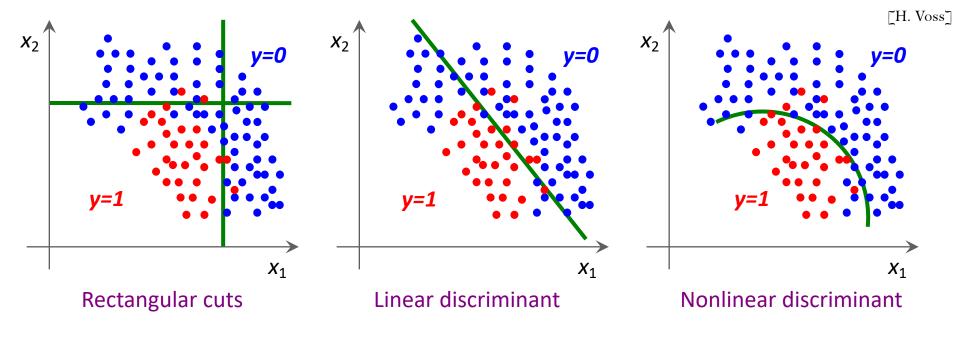


Space of Possible Models

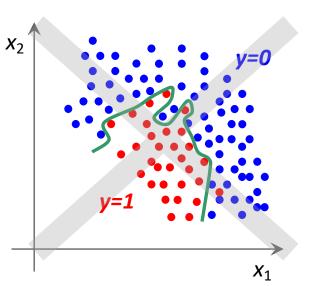
Gather data to be used

- Propose a space of possible models
- Define what "good" means with loss function / learning objective
- Use learning algorithm to find best model





- Learn a function to separate different classes of data
- Avoid over-fitting:
 - Learning too fine details about training sample that will not generalize to unseen data



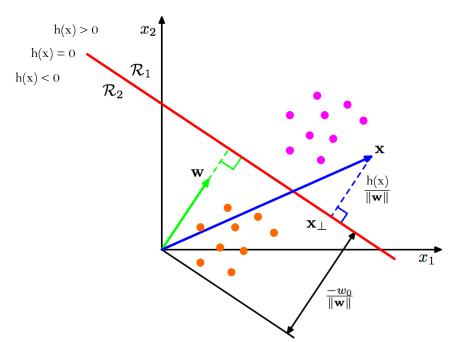
[Bishop]

Separate two classes:

$$- \boldsymbol{x}_i \in \mathbb{R}^m$$
$$- \boldsymbol{y}_i \in \{-1,1\}$$

Linear discriminant model

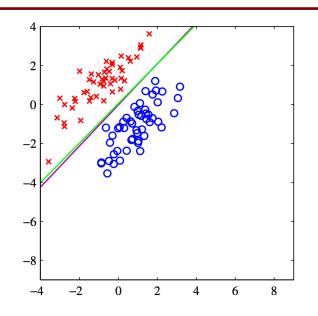
$$h(\mathbf{x};\ \mathbf{w}) = \mathbf{w}^T\mathbf{x} + b$$



• Decision boundary defined by hyperplane

$$h(x; w) = w^{T}x + b = 0$$

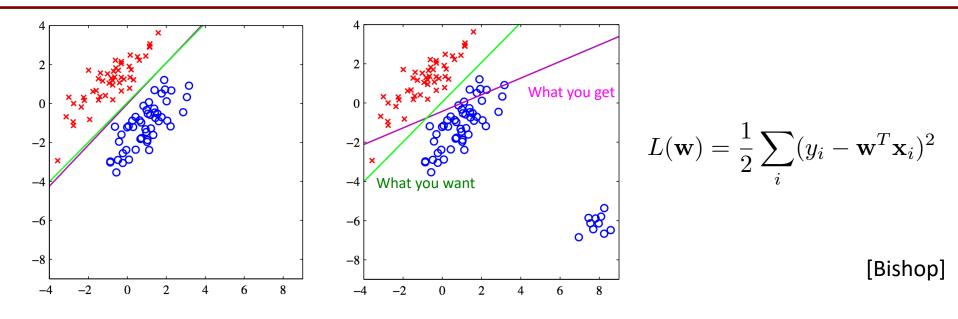
Class predictions: Predict class 0 if $h(x_i; w) < 0$, else class 1



$$L(\mathbf{w}) = \frac{1}{2} \sum_{i} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

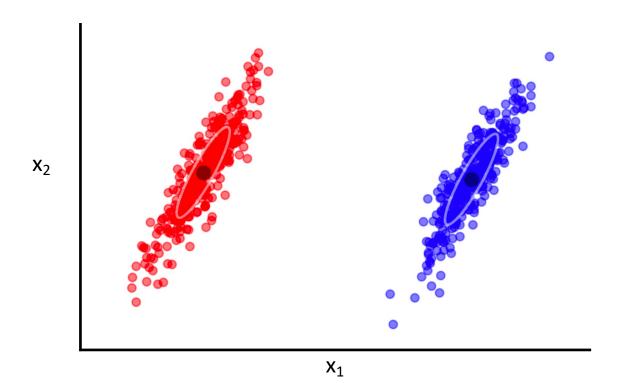
[Bishop]

Why not use least squares loss with binary targets?



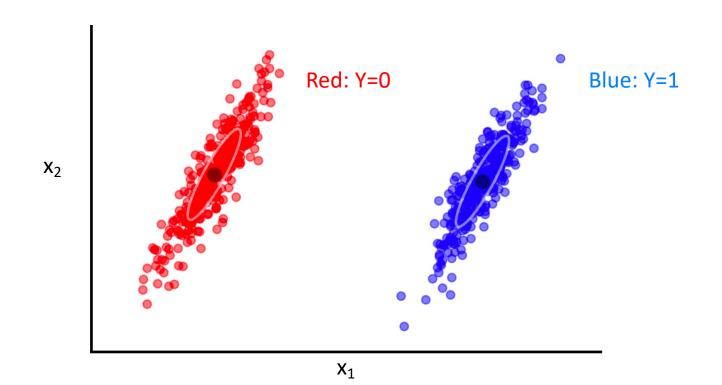
- Why not use least squares loss with binary targets?
 - Penalized even when predict class correctly
 - Least squares is very sensitive to outliers

Goal: Separate data from two classes / populations



Linear Discriminant Analysis

- Goal: Separate data from two classes / populations
- Data from joint distribution $(x, y) \sim p(X, Y)$
 - Features: $\mathbf{x} \in \mathbb{R}^m$
 - Labels: $y \in \{0,1\}$



- Goal: Separate data from two classes / populations
- Data from joint distribution $(x, y) \sim p(X, Y)$
 - Features: $\mathbf{x} \in \mathbb{R}^m$
 - Labels: $y \in \{0,1\}$
- Breakdown the joint distribution:

$$p(x,y) = p(x|y)p(y)$$

Likelihood:
Distribution of features
for a given class

Prior:

Probability of each class

- Goal: Separate data from two classes / populations
- Data from joint distribution $(x, y) \sim p(X, Y)$
 - Features: $\mathbf{x} \in \mathbb{R}^m$
 - Labels: $y \in \{0,1\}$
- Breakdown the joint distribution:

$$p(x,y) = p(x|y)p(y)$$

Assume likelihoods are Gaussian

$$p(x|y) = \frac{1}{\sqrt{(2\pi)^m |\Sigma|}} \exp\left(-\frac{1}{2}(x - \mu_y)^T \Sigma^{-1}(x - \mu_y)\right)$$

• Separating classes \rightarrow Predict the class of a point \mathbf{x}

$$p(y=1|\mathbf{x})$$

Want to build classifier to predict label y given input x

• Separating classes \rightarrow Predict the class of a point \mathbf{x}

$$p(y = 1|\mathbf{x}) = \frac{p(\mathbf{x}|y = 1)p(y = 1)}{p(\mathbf{x})}$$

Bayes Rule

Predicting the Class

• Separating classes \rightarrow Predict the class of a point \mathbf{x}

$$p(y = 1|\mathbf{x}) = \frac{p(\mathbf{x}|y = 1)p(y = 1)}{p(\mathbf{x})}$$

Bayes Rule

$$= \frac{p(\mathbf{x}|y=1)p(y=1)}{p(\mathbf{x}|y=0)p(y=0) + p(\mathbf{x}|y=1)p(y=1)}$$

Marginal definition

• Separating classes \rightarrow Predict the class of a point \mathbf{x}

$$p(y = 1|\mathbf{x}) = \frac{p(\mathbf{x}|y = 1)p(y = 1)}{p(\mathbf{x})}$$

Bayes Rule

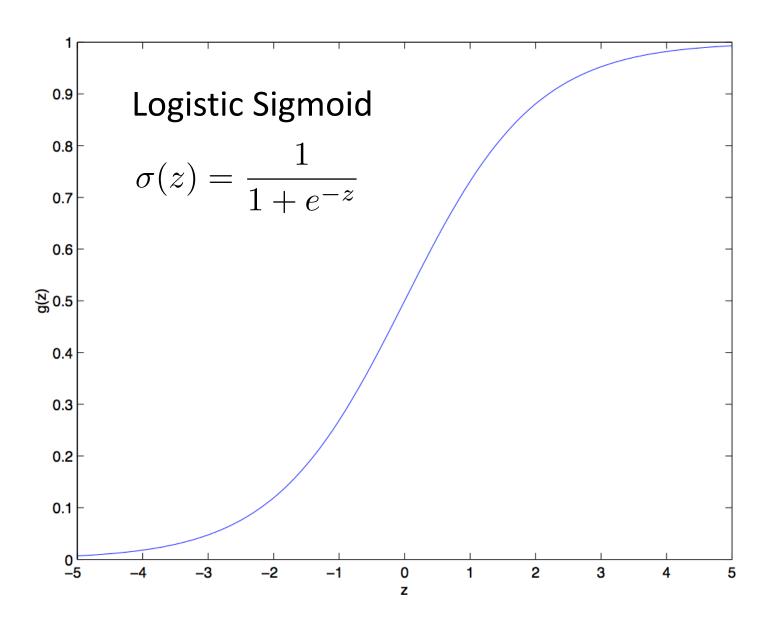
$$= \frac{p(\mathbf{x}|y=1)p(y=1)}{p(\mathbf{x}|y=0)p(y=0) + p(\mathbf{x}|y=1)p(y=1)}$$

Marginal definition

$$= \frac{1}{1 + \frac{p(\mathbf{x}|y=0)p(y=0)}{p(\mathbf{x}|y=1)p(y=1)}}$$

$$= \frac{1}{1 + \exp\left(\log\frac{p(\mathbf{x}|y=0)p(y=0)}{p(\mathbf{x}|y=1)p(y=1)}\right)}$$

Why?



Predicting Classes with Gaussian Likelihoods

$$p(y = 1|\mathbf{x}) = \sigma \left(\log \frac{p(\mathbf{x}|y = 1)}{p(\mathbf{x}|y = 0)} + \log \frac{p(y = 1)}{p(y = 0)}\right)$$

Log-likelihood ratio

Constant w.r.t. x

$$p(y = 1|\mathbf{x}) = \sigma \left(\log \frac{p(\mathbf{x}|y = 1)}{p(\mathbf{x}|y = 0)} + \log \frac{p(y = 1)}{p(y = 0)}\right)$$

For our Gaussian data:

$$= \sigma \Big(\log p(\mathbf{x}|y=1) - \log p(\mathbf{x}|y=0) + const. \Big)$$

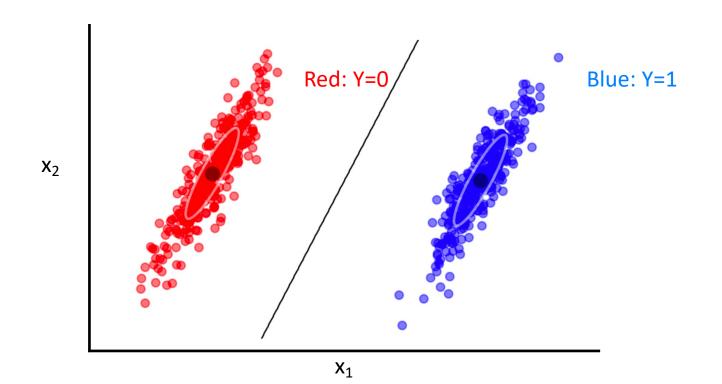
$$= \sigma \left(-\frac{1}{2} (\mathbf{x} - \mu_1)^T \Sigma^{-1} (\mathbf{x} - \mu_1) + \frac{1}{2} (\mathbf{x} - \mu_0)^T \Sigma^{-1} (\mathbf{x} - \mu_0) + const. \right)$$

$$+ const.$$

$$= \sigma \Big(\mathbf{w}^T \mathbf{x} + b \Big)$$

Collect terms

- For this data, the log-likelihood ratio is linear!
 - Line defines boundary to separate the classes
 - Sigmoid turns distance from boundary to probability

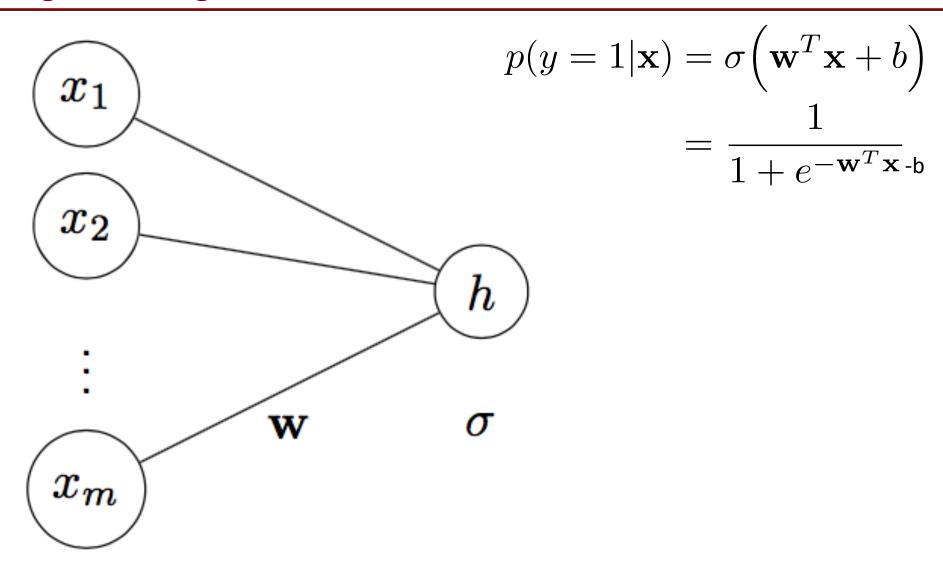


What if we ignore Gaussian assumption on data?

Model:
$$p(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x} + b) \equiv h(\mathbf{x}; \mathbf{w})$$

• Farther from boundary $\mathbf{w}^T \mathbf{x} + b = 0$, more certain about class

Sigmoid converts distance to class probability



This unit is the main building block of Neural Networks!

What if we ignore Gaussian assumption on data?

Model:
$$p(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x} + b) \equiv h(\mathbf{x}; \mathbf{w})$$

• With $p_i \equiv p(y_i = y | x_i)$

$$P(y_i = y | x_i) = \text{Bernoulli}(p_i) = (p_i)^{y_i} (1 - p_i)^{1 - y_i} = \begin{cases} p_i & \text{if } y_i = 1\\ 1 - p_i & \text{if } y_i = 0 \end{cases}$$

- Goal:
 - Given i.i.d. dataset of pairs (x_i, y_i) find w and b that maximize likelihood of data

Logistic Regression

Negative log-likelihood

$$-\ln \mathcal{L} = -\ln \prod_{i} (p_i)^{y_i} (1 - p_i)^{1 - y_i}$$

Logistic Regression

Negative log-likelihood

Loss

0.2

$$-\ln\mathcal{L}=-\ln\prod_i(p_i)^{y_i}(1-p_i)^{1-y_i}$$
 binary cross entropy loss function!
$$=-\sum_i y_i \ln(p_i) + (1-y_i) \ln(1-p_i)$$
 -log(p_i) -log(1-p_i)

0.6

0.8

 p_i

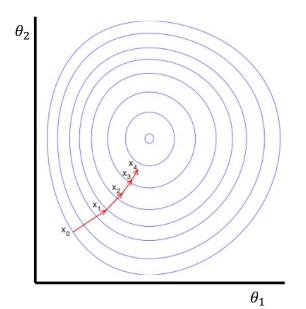
Logistic Regression

Negative log-likelihood

$$-\ln \mathcal{L} = -\ln \prod_i (p_i)^{y_i} (1-p_i)^{1-y_i}$$
 binary cross entropy loss function! $= -\sum_i y_i \ln(p_i) + (1-y_i) \ln(1-p_i)$ $= \sum_i y_i \ln(1+e^{-\mathbf{w}^T\mathbf{x}}) + (1-y_i) \ln(1+e^{\mathbf{w}^T\mathbf{x}})$

- No closed form solution to $w^* = \arg\min_{w} \ln \mathcal{L}(w)$
- How to solve for w?

- Minimize loss by repeated gradient steps
 - Compute gradient w.r.t. current parameters: $\nabla_{\theta_i} \mathcal{L}(\theta_i)$
 - Update parameters: $\theta_{i+1} \leftarrow \theta_i \eta \nabla_{\theta_i} \mathcal{L}(\theta_i)$
 - η is the *learning rate*, controls how big of a step to take



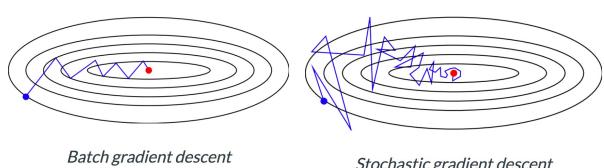
Loss is composed of a sum over samples:

$$\nabla_{\theta} \mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \mathcal{L}(y_i, h(x_i; \theta))$$

Computing gradient grows linearly with N!

(Mini-Batch) Stochastic Gradient Descent

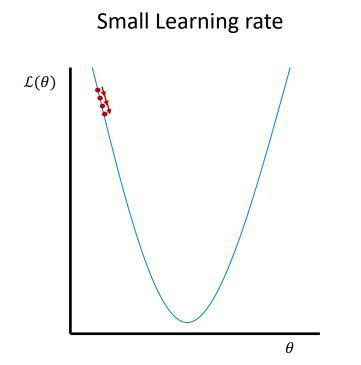
- Compute gradient update using 1 random sample (small size batch)
- Gradient is unbiased → on average it moves in correct direction
- Tends to be much faster the full gradient descent

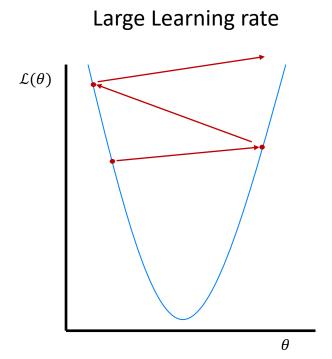


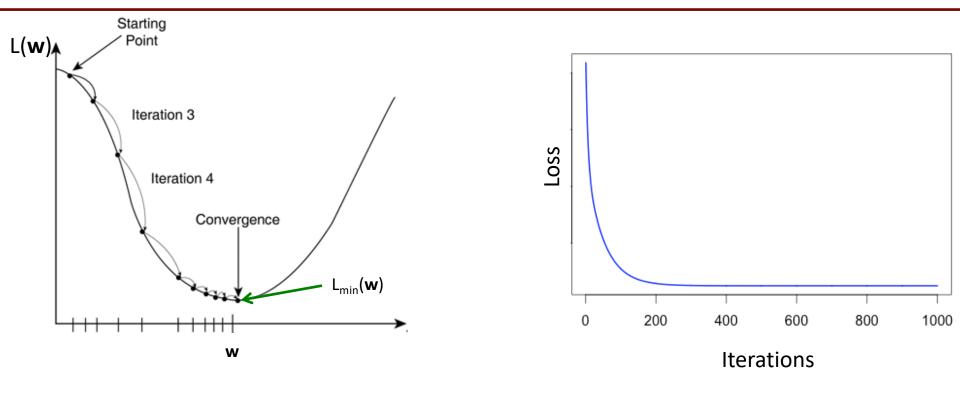
Stochastic gradient descent

Too small a learning rate, convergence very slow

Too large a learning rate, algorithm diverges

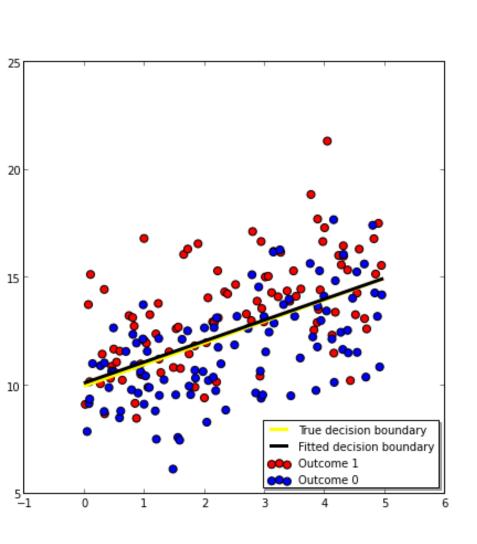


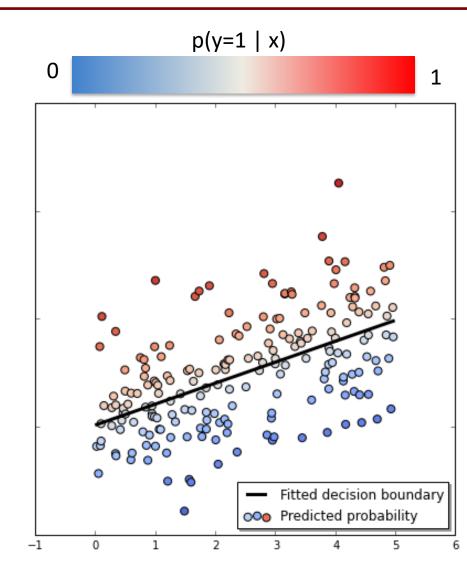


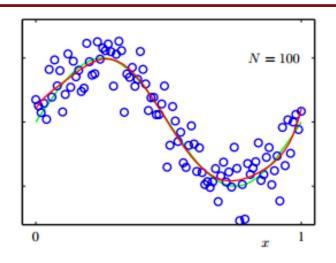


- Logistic Regression Loss is convex
 - Single global minimum
- Iterations lower loss and move toward minimum

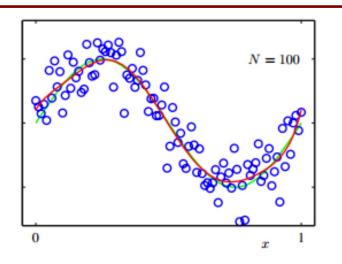
Logistic Regression Example

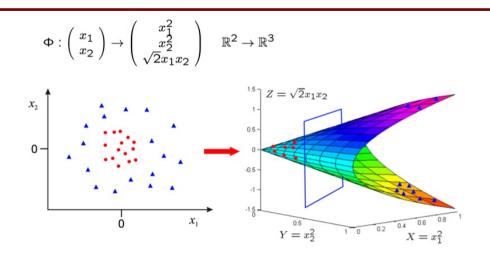






• What if non-linear relationship between **y** and **x**?





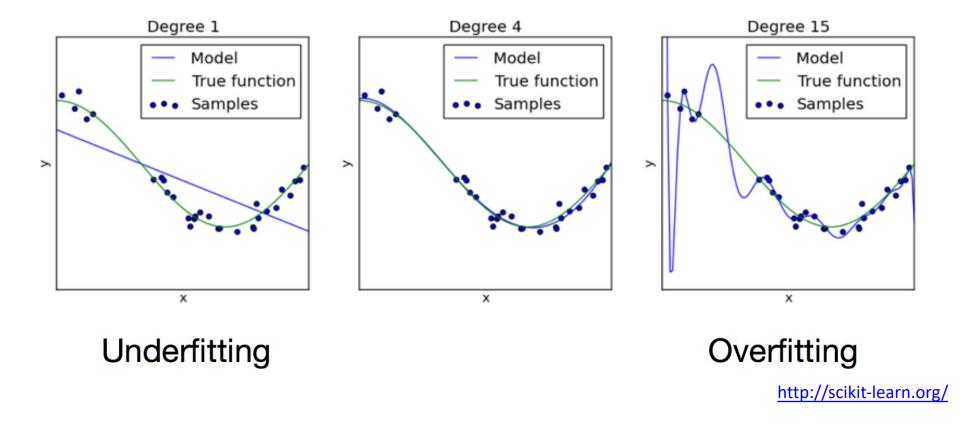
- What if non-linear relationship between \mathbf{y} and \mathbf{x} ?
- Choose basis functions $\phi(x)$ to form new features
 - Example: Polynomial basis

$$\phi(x) \sim \{1, x, x^2, x^3, \dots\}$$

– Logistic regression on new features: $h(x; w) = \sigma(w^T \phi(x))$

$$h(x; w) = \sigma(w^T \phi(x))$$

What basis functions to choose? *Overfit* with too much flexibility?

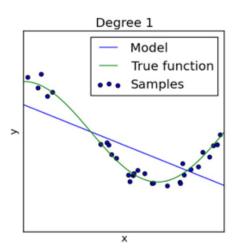


- Models allow us to generalize from data
- Different models generalize in different ways

• generalization error = systematic error + sensitivity of prediction (bias) (variance)

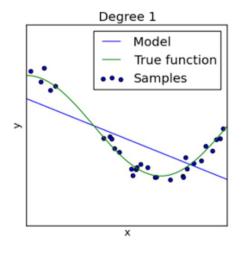
 generalization error = systematic error + sensitivity of prediction (bias) (variance)

• Simple models <u>under-fit</u>: will deviate from data (high bias) but will not be influenced by peculiarities of data (low variance).

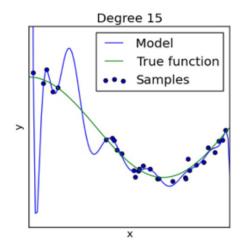


 generalization error = systematic error + sensitivity of prediction (bias) (variance)

Simple models <u>under-fit</u>:
 will deviate from data (high bias)
 but will not be influenced by
 peculiarities of data (low variance).



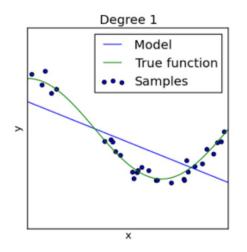
Complex models <u>over-fit</u>:
 will not deviate systematically from
 data (low bias) but will be very
 sensitive to data (high variance).

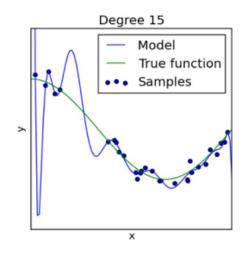


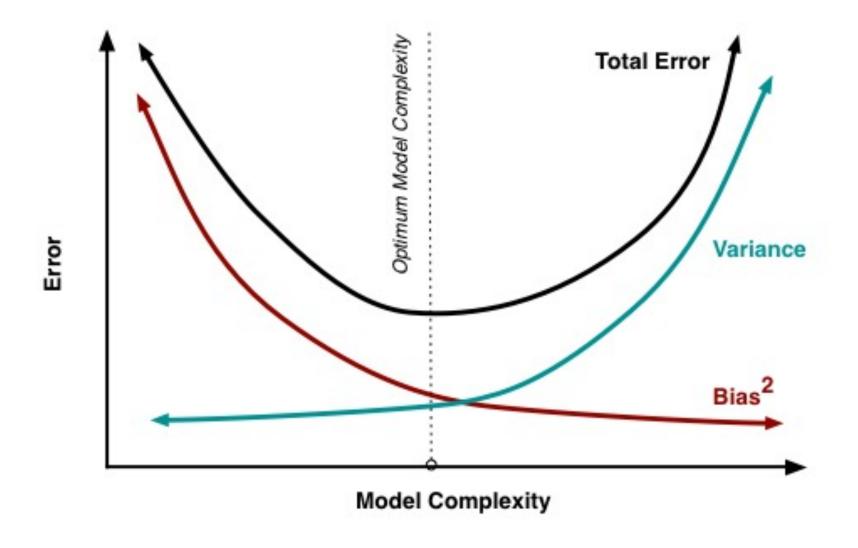
 generalization error = systematic error + sensitivity of prediction (bias) (variance)

Simple models <u>under-fit</u>:
 will deviate from data (high bias)
 but will not be influenced by
 peculiarities of data (low variance).

- Complex models over-fit: will not deviate systematically from data (low bias) but will be very sensitive to data (high variance).
 - As dataset size grows, can reduce variance! Use more complex model

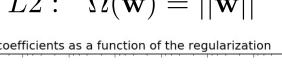


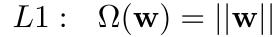


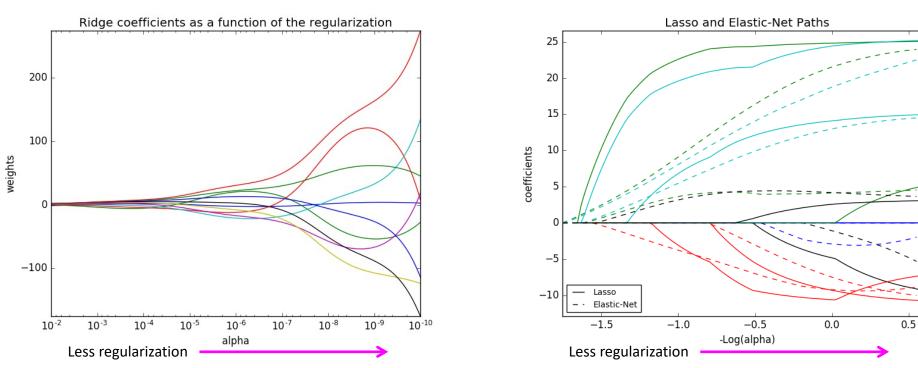


$$L(\mathbf{w}) = \frac{1}{2}(\mathbf{y} - \mathbf{X}\mathbf{w})^2 + \alpha\Omega(\mathbf{w})$$

$$L2: \Omega(\mathbf{w}) = ||\mathbf{w}||^2$$







- L2 keeps weights small, L1 keeps weights sparse!
- But how to choose hyperparameter α ?

Training set

Validation set

Test set

Split dataset into multiple parts

Training set

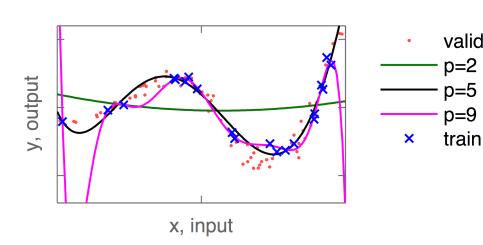
Used to fit model parameters

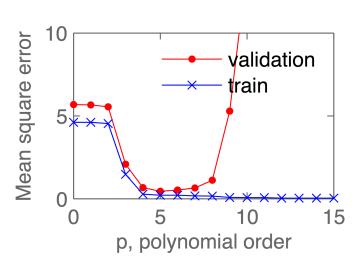
Validation set

 Used to check performance on independent data and tune hyper parameters

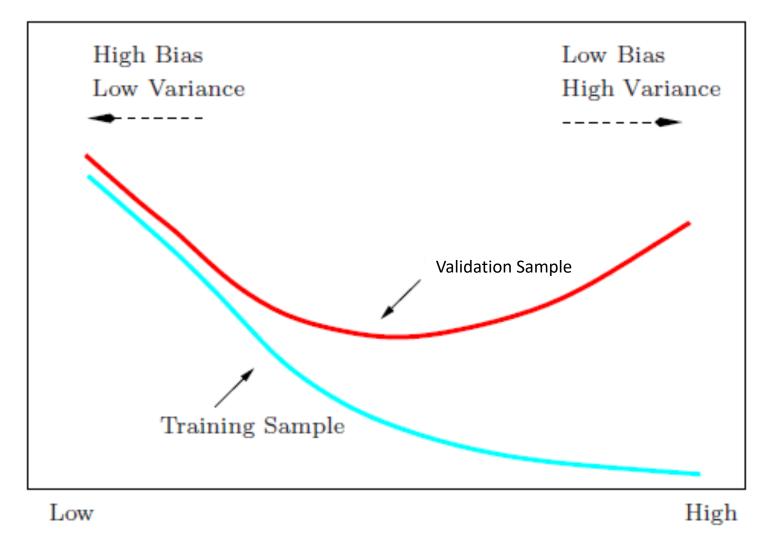
Test set

- final evaluation of performance after all hyper-parameters fixed
- Needed since we tune, or "peek", performance with validation set





[Murray]



Model Complexity

- Machine learning uses mathematical & statistical models learned from data to characterize patterns and relations between inputs, and use this for inference / prediction
- Machine learning comes in many forms, much of which has probabilistic and statistical foundations and interpretations (i.e. Statistical Machine Learning)
- Machine learning is a powerful toolkit to analyze data
 - Linear methods can help greatly in understanding data
 - Choosing a model for a given problem is difficult, keep in mind the bias-variance tradeoff when building an ML mode

- http://scikit-learn.org/
- [Bishop] Pattern Recognition and Machine Learning, Bishop (2006)
- [ESL] Elements of Statistical Learning (2nd Ed.) Hastie, Tibshirani & Friedman 2009
- [Murray] Introduction to machine learning, Murray
 - http://videolectures.net/bootcamp2010_murray_iml/
- [Ravikumar] What is Machine Learning, Ravikumar and Stone
 - http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSS-Intro.pdf
- [Parkes] CS181, Parkes and Rush, Harvard University
 - http://cs181.fas.harvard.edu
- [Ng] CS229, Ng, Stanford University
 - http://cs229.stanford.edu/
- [Rogozhnikov] Machine learning in high energy physics, Alex Rogozhnikov
 - https://indico.cern.ch/event/497368/
- [Fleuret] Francois Fleuret, EE559 Deep Learning, EPFL, 2018
 - https://documents.epfl.ch/users/f/fl/fleuret/www/dlc/