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The Plan

* Lecture T
— Introduction to Machine Learning fundamentals
— Linear Models

* Lecture 2
— Neural Networks
— Deep Neural Networks
— Inductive Bias and Model Architectures

 Lecture 3
— Unsupervised Learning
— Autoencoders
— Towards Generative Models: Variation Autoencoders



Long History of Machine Learning 3
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https://www.nature.com/articles/s41586-019-1724-z
https://psycnet.apa.org/doiLanding?doi=10.1037%2Fh0042519
https://apps.dtic.mil/dtic/tr/fulltext/u2/236965.pdf

The Power of ML
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Particle Physics Has Similar Goals!

5
.
Data Analysis
f" \‘/ g 40f~ ® Data2011+2012 ATLAS 1.0
j, = ’ f F S F Hozz'ma | | ===

=T 1 5 i Vs=7TeV [Ldt=461b" > S,
N @ g \s=8Tev JLdt=207 10" 054 // o \‘
J 7 \ “
¢ @ ~ / 1
‘\l ¢ W'VSV +L-C. Ns ', Y ) } ',
> 00 fladl Ak R

s 1 N 4P

S ! " & p

- | Y
+ {V«' a.‘ ‘{Q¢4 k. (=5 —054 ‘\\ Ne=F
. =
High-Level 5
¥ b;¢[,R V(¢) g RS 150 2;0 oo -1.0 ) : y
COncept my G0 -1.0 -05 0.0 0.5 1.0
fw vV2IN?

v

~\

reconstruct high level concepts
from low-level, high-dim data

L

Low-Level
Dath

Simulation



Machine Learning in

HE
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https://iml-wg.github.io/HEPML-LivingReview/

What is Machine Learning?

Giving computers the ability to learn without
explicitly programming them (arthur samuel, 1959

Statistics + Algorithms

Computer Science + Probability + Optimization
Techniques

Fitting data with complex functions
Mathematical models learnt from data that

characterize the patterns, regularities, and
relationships amongst variables in the system




Artificial Intelligence, Machine Learning, Deep Learning

* Al: make computers act in
an intelligent way

Artificial Intelligence — Rules, reasoning, symbol
manipulation

« ML: Uses data to learn
“intelligent” algorithms

* Deep Learning: Approach to

ML that (often) uses complex
Machine Learning pipelines to process low
level data (e.g. pixels)




Machine Learning: Models

» Key element is a mathematical model

— A mathematical characterization of system(s) of interest,
typically via random variables

— Chosen model depends on the task / available data

» Learning: estimate statistical model from data
— Supervised learning
— Unsupervised Learning
— Reinforcement Learning

» Prediction and Inference: using statistical model to
make predictions on new data points and infer
properties of system(s)



Learning
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Supervised Learning
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 Given N examples of observed features {x;}
and prediction targets {y, },
learn function mapping h(x) =y

Classification: Regression:
Y is a finite set of labels (i.e. classes) Y is a real number
denoted with integers




Unsupervised Learning
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Given data D = {x;}, but no labels, find structure in data

[Bishop]

Clustering: partition the data into  « 3§ .
sge ¥, :{é‘ .
groups D ={D;UD,UD; ..U D} ¥ - |%

Dimensionality reduction: find a low
dimensional (less complex) representation

of the data with a mapping Z = h(X)

Density estimation and sampling:
estimate density p(x), and/or
learn to draw new samples of x

Image Credit - Link



https://lazyprogrammer.me/tutorial-principal-components-analysis-pca/

Reinforcement Learning
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state (s[t])

reward (r[t+1])

Agent
Policy m: S—A

—[EnvironmentJ%

action (a[t])

[Ravikumar]

* Learn to make the best sequence of decisions to achieve
a given goal when feedback is often delayed until you

reach the goal

LEE SEDOL
® 00:01:00

Self-play positio

Nature 529, 484—-489 (28 January 2016)

Rollout policy SL policy network RL policy network Value network Policy network Value network
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Supervised Learning: How does it work?

14




Supervised Learning: How does it work? .

> h(x; w) > Loss
Function with Function
adjustable
parameters Compare
prediction L
with true 055
True labels: label
Higgs =1 >
Bkg =0
 Design function with adjustable parameters
Y. Le Cun
 Design a Loss function
* Find best parameters which minimize loss t LW, X)

Ny




Supervised Learning: How does it work? .

> h(x; w) > Loss
Function with Function
adjustable
parameters Compare
prediction L
with true 055
True labels: label
Higgs =1 >
Bkg =0
 Design function with adjustable parameters
Y. Le Cun
 Design a Loss function
* Find best parameters which minimize loss t LW, X)

— Use a labeled training-set to compute loss k

— Adjust parameters to reduce loss function w
— Repeat until parameters stabilize




Empirical Risk Minimization .

argmm—ZL (X33 W),4;) + AQ(W)

J] | l
| |

Average expected loss Model regularization

* Framework to design learning algorithms
* L is loss function: compare prediction h(-) to label y

» (w) is a regularizer, penalizing certain values of w
— A controls how much penalty. Hyperparameter we tune

* Learning is cast as an optimization problem



Example Loss Functions ,

* Square Error Loss: L(h(x;w),y) = (h(x;w) — )’
— Often used in regression
* Cross entropy: L(h(x;w),y) = — ylog h(x; w)
— Withy € {0,1} — (1 —y)log(l — h(x;w))

— Often used in classification

* Hinge Loss: o
. - Square Error
— With y € -1,1} - Cross Entropy
L(h(x;w),y) = max(0, 1 — yh(x; w)) Zeraone

e Zero-One loss |
— h(x; w) predicting label \\

—2 —1 0 1 2
L(h(X7 W)7 y) — 1y;éh(x;w)

[Bishop]




Model Space and Learning Algorithms

19

* Choose type of model

— Each set of parameters is a
point in space of models Target solution

*
End

* Need to find the best
model parameters for loss

* Learning is like a search
through space of models,
guided by the data

Start

* Various possibilities
— Exhaustive search Space of Possible Models
— Closed for solutions (rare)
— Iterative optimization



Putting It All Together

20

Gather data to be used

Propose a space of
possible models

Define what “good”
means with loss function
/ learning objective

Use learning algorithm to
find best model

Learning
objective

\

Data

Learning
algorithm

!

Final
Model

Model
space

/



Linear Classification

21




Classification y

Rectangular cuts Linear discriminant Nonlinear discriminant

* Learn a function to separate x|
different classes of data

» Avoid over-fitting: _—

— Learning too fine details about
trainingig sample that will not
generalize to unseen data X,
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Linear Decision Boundaries
* Separate two classes: Moo @
h(x) =0

- xi = Rm h(x) <0 n Ri1
-y €{—-11}

e Linear discriminant model
h(x; w) =wlx+b

* Decision boundary defined by hyperplane

hix; w)=wix+b=0

A

X1

[Bishop]

* Class predictions: Predict class 0 if h(x;; w) < 0, else class 1



Linear Classifier with Least Squares? y

[Bishop]

* Why not use least squares loss with binary targets?



Linear Classifier with Least Squares? .

. — . . .
X X*
2| X &’ﬁ |
g é’%%;y o)
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* Why not use least squares loss with binary targets?
— Penalized even when predict class correctly

— Least squares is very sensitive to outliers



Linear Discriminant Analysis

26

* Goal: Separate data from two classes / populations




Linear Discriminant Analysis
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* Goal: Separate data from two classes / populations

 Data from joint distribution (x,y) ~p(X,Y)
— Features: x € R™
— Labels: y € {0,1}




Linear Discriminant Analysis y

* Goal: Separate data from two classes / populations

 Data from joint distribution (x,y) ~p(X,Y)
— Features: x € R™
— Labels: y € {0,1}

* Breakdown the joint distribution:
p(x y) =pxly)p(y)

N\

Likelihood: Prior:
Distribution of features Probability of each class
for a given class



Linear Discriminant Analysis

* Goal: Separate data from two classes / populations

 Data from joint distribution (x,y) ~p(X,Y)
— Features: x € R™
— Labels: y € {0,1}

* Breakdown the joint distribution:
p(x,y) = plx|y)p(y)

 Assume likelihoods are Gaussian

1 1 N\Teo1
e ol Hew )

p(xly) =




Predicting the Class

30

* Separating classes = Predict the class of a point x

p(y = 1]x)

Want to build classifier to predict label y given input x



Predicting the Class

31

* Separating classes = Predict the class of a point x

p(X|y — 1)p(y — 1) Bayes Rule
p(x)

ply = 1]x) =



Predicting the Class .

* Separating classes = Predict the class of a point x

p(y = HX) = p(x|y :pi})(];(y — 1) Bayes Rule
— p(X’y — 1)p(y — 1) Marginal

p(x|y =0)p(y =0) +p(x|ly = 1)p(y = 1) definition



Predicting the Class

* Separating classes = Predict the class of a point x

p(y = HX) = p(x|y :pi})(];(y — 1) Bayes Rule
— p(X’y — 1)p(y — 1) Marginal

p(x|ly =0)p(y =0) + p(x|ly = 1)p(y = 1) definition

1

P (<ly=0)p(5=0)
T pxly=Dp(y=1)

1

(x|y=0)p(y=0 Why?
L exp (bg 5(x|§=1§§8=1§)




Logistic Sigmoid Function

09

Logistic Sigmoid

08 1
7(2) = 14+e %

0.7

06

g(2)

05

041

03

02

01




Predicting Classes with Gaussian Likelihoods

35

p(xly =1) ply =1)
p(x|y = 0) +log p(y = 0)>

/ \

Log-likelihood ratio Constant w.r.t. x

Pl = 1) = o 1o



Predicting Classes with Gaussian Likelihoods y

+ log

p(y = 1))
p(y = 0)

— 1|X) =0 OpX :1)
ply =100 =108 1, =

e For our Gaussian data:

= a(logp(x\y =1) —logp(x|ly =0) + const.)

= o~ e )" S o ) + 3 (x — o) S (x — o)

+ const.)

T
= O(W X + b) Collect terms



What did we learn? .

» For this data, the log-likelihood ratio is linear!
— Line defines boundary to separate the classes
— Sigmoid turns distance from boundary to probability




Logistic Regression N

* What if we ignore Gaussian assumption on data?

Model:  p(y =1|x) = O'(WTX + b) = h(x; w)

* Farther from boundary wx + b = 0,
more certain about class

» Sigmoid converts distance to class probability



Logistic Regression ,

= 1|x) = O'(WTX—l— b)

1 +e-wixb

This unit 1s the main building block of Neural Networks!




Logistic Regression 0

* What if we ignore Gaussian assumption on data?

Model: p(y =1|x) = O'(WTX + b) = h(x; w)

* With p; = p(y; = y|x))

P(y; = y|x;) = Bernoulli(p;) = (p;)¥ (1 _pi)l—yi _ zii_pi 11%:)

* Goal:

— Given i.i.d. dataset of pairs (x;, y;)
find w and b that maximize likelihood of data



Logistic Regression

41

* Negative log-likelihood

—InL=—In][@) 1 -p)¥

7



Logistic Regression v

* Negative log-likelihood

. _ i (1 — .\ ¥
Inl = In H (p z) (1 p Z) binary cross entropy loss function!

— _ Zyz In(p;) + (1 —y;) In(1 — pz)/

-log(pi)
-log(1-p;) |




Logistic Regression v

* Negative log-likelihood

. _ i (1 — . \1—¥i
Inl = In H (p z) <1 p ’&) binary cross entropy loss function!

— _ Zyz In(p;) + (1 —y;) In(1 — pz)/

=Y Tyl +e™ X) + (1 —y,)In(1 + eV ¥)

* No closed form solution to w* = arg min — In L(w)
w

e How to solve for w?



Gradient Descent

44

* Minimize loss by repeated gradient steps
— Compute gradient w.r.t. current parameters: Vg L(6;)
— Update parameters:  6;;4 « 6; —nVg L(6;)

— 1 is the learning rate, controls how big of a step to take

0,




Stochastic Gradient Descent .

» Loss is composed of a sum over samples:
N
1
VoL(0) = Nz Vo L(vi, h(x;80))
i=1

— Computing gradient grows linearly with N!

* (Mini-Batch) Stochastic Gradient Descent
— Compute gradient update using 1 random sample (small size batch)
— Gradient is unbiased = on average it moves in correct direction
— Tends to be much faster the full gradient descent

= E=

Batch gradient descent Stochastic gradient descent



Step Sizes

* Too small a learning rate, convergence very slow

* Too large a learning rate, algorithm diverges

Small Learning rate Large Learning rate
-/—V




Gradient Descent o

Starting

L(W)A / Point

>\ lteration 3

Loss

Iteration 4

Convergence

L n(w)

mi

l 1 I |
gt — HH > 0 200 400 600 800 1000

w lterations

* Logistic Regression Loss Is convex
— Single global minimum

e lterations lower loss and move toward minimum



Logistic Regression Example 48

p(y=1 [ x)
25 T T T
e o
20 .
® o
15 i R
101 y
o
® N True decision boundary
° e === Fitted decision boundary ©® - .
@%e Out 1 = Fitted decision boundary
o utcome ) ) -
@89 Outcome 0 00@ Predicted probability
5—1 0 1 2 3 - 5 6 -1 0 1 2 3 - 5 6

Image source


https://triangleinequality.wordpress.com/2013/12/02/logistic-regression/

Basis Functions

49

N =100 1

0 1

* What if non-linear relationship between y and x?



Basis Functions .

N =100 1

0 1

* What if non-linear relationship between y and x¢

* Choose basis functions ¢ (x) to form new features
— Example: Polynomial basis d(x) ~{1,x,x?% x3 ..}
— Logistic regression on new features:  h(x;w) = o(wl¢(x))

* What basis functions to choose? Overfit with too much flexibility?



What is Overfitting .

Degree 1 Degree 4 Degree 15

—  Model —  Model —  Model

. True function : True function True function

> e*e Samples *e Samples *e Samples
o

Underfitting Overfitting

http://scikit-learn.org/

* Models allow us to generalize from data

» Different models generalize in different ways


http://scikit-learn.org/

Bias Variance Tradeoff .

* generalization error = systematic error + sensitivity of prediction
(bias) (variance)



Bias Variance Tradeoff .

* generalization error = systematic error + sensitivity of prediction
(bias) (variance)

Degree 1

—  Model

 Simple models under-fit: B Yue function
will deviate from data (high bias) Tn =
but will not be influenced by
peculiarities of data (low variance).




Bias Variance Tradeoff .

* generalization error = systematic error + sensitivity of prediction

(bias) (variance)
« Simple models under-fit: | = e functon
will deviate from data (high bias) T =

but will not be influenced by
peculiarities of data (low variance).

Degree 15

» Complex models over-fit: e functio
will not deviate systematically from Al
data (low bias) but will be very -
sensitive to data (high variance).




Bias Variance Tradeoff

55

* generalization error = systematic error + sensitivity of prediction

(bias)

 Simple models under-fit:
will deviate from data (high bias)
but will not be influenced by
peculiarities of data (low variance).

« Complex models over-fit:
will not deviate systematically from
data (low bias) but will be very
sensitive to data (high variance).

— As dataset size grows, can reduce
variance! Use more complex model

(variance)

Degree 1

—  Model
. True function
’\‘ ee e Samples

o

Degree 15

—  Model
True function
*e Samples




Bias Variance Tradeoff

Total Error

Variance

Optimum Model Complexity

Error

- -
Model Complexity
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Regularization — Control Complexity

L(w) = 3y — Xw)’ + af(w)

L2: Q(w)=|lwl]| L1: Q(w)=||w||
Ridge coefficients as a function of the regularization Lasso and Elastic-Net Paths
25}
200 1 20 |
15+
100 + /
8 10f
£ / 5
2 s &
[ —
S . g 5
—— oL
-5
-100 |+
—10H — Les -~
Elas
1072 1073 10+ 10° 106 107 108 107 1010 -1.5 -1.0 -0.5 0.0 0.5
o alpha o -Log(alpha)
Less regularization > Less regularization >

» L2 keeps weights small, L1 keeps weights sparse!

* But how to choose hyperparameter o.?

http://scikit-learn.org/



http://scikit-learn.org/

How to Measure Generalization Error? N

Training set Validation set Test set

 Split dataset into multiple parts

* Training set
— Used to fit model parameters

y, output

* Validation set
— Used to check performance on .

independent data and tune hyper X, input
parameters
5 10 . ;
* Test set = —e— validation
— final evaluation of performance S —>— train
after all hyper-parameters fixed S 5y -
— Needed since we tune, or “peek”, 2
performance with validation set é
O N
0 5 10 15

p, polynomial order

[Murray]



How to Measure Generalization Error?

59

Prediction Error

High Bias Low Bias
Low Variance High Variance
- ——————— e e e —— .

Validation Sample

/

/

Training Sample

Low High
Model Complexity



Summary

60

* Machine learning uses mathematical & statistical
models learned from data to characterize patterns and
relations between inputs, and use this for inference /
prediction

* Machine learning comes in many forms, much of which
has probabilistic and statistical foundations and
interpretations (i.e. Statistical Machine Learning)

» Machine learning is a powerful toolkit to analyze data
— Linear methods can help greatly in understanding data

— Choosing a model for a given problem is difficult, keep in
mind the bias-variance tradeoff when building an ML mode
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