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The Plan

• Lecture 1
– Introduction to Machine Learning fundamentals
– Linear Models

• Lecture 2
– Neural Networks
– Deep Neural Networks
– Inductive Bias and Model Architectures

• Lecture 3
– Unsupervised Learning
– Autoencoders
– Towards Generative Models: Variation Autoencoders
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Long History of Machine Learning 3

Vinyals et. al. 2019 Rosenblatt 1958, 1960
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Perceptron AlphaStar

https://www.nature.com/articles/s41586-019-1724-z
https://psycnet.apa.org/doiLanding?doi=10.1037%2Fh0042519
https://apps.dtic.mil/dtic/tr/fulltext/u2/236965.pdf


The Power of ML 4

Slide credit: L. Heinrich



Particle Physics Has Similar Goals! 5

Slide credit: L. Heinrich
Simulation

Data Analysis



Machine Learning in HEP 6

Particle Tagging

Simulation Based Inference

Uncertainty Mitigation

Signal Classification

Fast S
imulation

Design Optimization

+ More! Check out The Living Review of ML in HEP

Unfolding

Anomaly Detection

https://iml-wg.github.io/HEPML-LivingReview/


What is Machine Learning?

• Giving computers the ability to learn without 
explicitly programming them (Arthur Samuel, 1959)

• Statistics + Algorithms

• Computer Science + Probability + Optimization 
Techniques

• Fitting data with complex functions

• Mathematical models learnt from data that 
characterize the patterns, regularities, and 
relationships amongst variables in the system 
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Artificial Intelligence, Machine Learning, Deep Learning

• AI: make computers act in 
an intelligent way
– Rules, reasoning, symbol 

manipulation

• ML: Uses data to learn 
“intelligent” algorithms

• Deep Learning: Approach to 
ML that (often) uses complex 
pipelines to process low 
level data (e.g. pixels)
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Deep Learning

Machine Learning

Artificial Intelligence

Slide credit: L. Heinrich



Machine Learning: Models

• Key element is a mathematical model

– A mathematical characterization of system(s) of interest, 
typically via random variables

– Chosen model depends on the task / available data

• Learning: estimate statistical model from data
– Supervised learning
– Unsupervised Learning
– Reinforcement Learning
– …

• Prediction and Inference: using statistical model to 
make predictions on new data points and infer 
properties of system(s) 
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Learning 10

• Supervised Learning
– Classification
– Regression

• Unsupervised Learning
– Clustering
– Dimensionality reduction
– …

• Reinforcement learning
[Ravikumar] 



Supervised Learning

• Given N examples of observed features {𝑥!}
and prediction targets {𝑦𝑖 }, 
learn function mapping 𝒉(𝒙) = 𝒚
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Classification: 
𝑌 is a finite set of labels (i.e. classes) 
denoted with integers

x

y

Regression: 
𝑌 is a real number



Unsupervised Learning

Given data 𝐷 = {𝑥!}, but no labels, find structure in data

Clustering: partition the data into 
groups 𝐷 = {𝐷1 ∪ 𝐷2 ∪ 𝐷3 … ∪ 𝐷"}
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[Bishop] 

Dimensionality reduction: find a low 
dimensional (less complex) representation 
of  the data with a mapping 𝑍 = ℎ(𝑋)

Image Credit - Link

Density estimation and sampling: 
estimate density 𝑝(𝑥), and/or 
learn to draw new samples of  𝑥

https://lazyprogrammer.me/tutorial-principal-components-analysis-pca/


Reinforcement Learning

• Learn to make the best sequence of decisions to achieve 
a given goal when feedback is often delayed until you 
reach the goal
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[Ravikumar] 

Nature 529, 484–489 (28 January 2016)



Supervised Learning: How does it work? 14



Supervised Learning: How does it work?

• Design function with adjustable parameters

• Design a Loss function

• Find best parameters which minimize loss
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ℎ(𝒙; 	𝒘)
Function with 

adjustable 
parameters

Loss 
Function

Compare 
prediction 
with true 

label

Loss
True labels:
Higgs = 1
Bkg = 0

Y. Le Cun

𝐿(𝑾,𝑿)



Supervised Learning: How does it work?

• Design function with adjustable parameters

• Design a Loss function

• Find best parameters which minimize loss
– Use a labeled training-set to compute loss

– Adjust parameters to reduce loss function

– Repeat until parameters stabilize
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ℎ(𝒙; 	𝒘)
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adjustable 
parameters
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Compare 
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with true 
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Loss
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Bkg = 0
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Empirical Risk Minimization

• Framework to design learning algorithms

• 𝑳 is loss function: compare prediction ℎ(⋅) to label 𝑦

• Ω(𝒘) is a regularizer, penalizing certain values of 𝒘
– 𝜆 controls how much penalty. Hyperparameter we tune

• Learning is cast as an optimization problem
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Average expected loss Model regularization

argmin
w

1

N

NX

i=1

L(h(xi;w), yi) + �⌦(w)



Example Loss Functions

• Square Error Loss: 
– Often used in regression

• Cross entropy:
– With y Î {0,1}
– Often used in classification

• Hinge Loss: 
– With y Î {-1,1}

• Zero-One loss
– h(x; w) predicting label
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L(h(x;w), y) =
�
h(x;w)� y

�2

L(h(x;w), y) =� y log h(x;w)

� (1� y) log(1� h(x;w))

L(h(x;w), y) = max(0, 1� yh(x;w))

L(h(x;w), y) = 1y 6=h(x;w)

- Square Error
- Cross Entropy
- Hinge
- Zero-one

[Bishop] 



Model Space and Learning Algorithms

• Choose type of model
– Each set of parameters is a 

point in space of models

• Need to find the best 
model parameters for loss

• Learning is like a search 
through space of models, 
guided by the data

• Various possibilities
– Exhaustive search
– Closed for solutions (rare)
– Iterative optimization 

19

Target solution

Start

End

Space of Possible Models



Putting It All Together

• Gather data to be used

• Propose a space of 
possible models

• Define what “good” 
means with loss function 
/ learning objective

• Use learning algorithm to 
find best model 
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Data

Model 
space

Learning 
objective

Learning 
algorithm

Final 
Model



Linear Classification 21



Classification

• Learn a function to separate 
different classes of data

• Avoid over-fitting:
– Learning too fine details about 

training sample that will not 
generalize to unseen data
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Linear discriminant Nonlinear discriminantRectangular cuts
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[H. Voss]



Linear Decision Boundaries
• Separate two classes:
– 𝒙𝑖 Îℝ𝑚

– 𝑦𝑖 Î {−1,1}

• Linear discriminant model
ℎ(𝒙; 𝒘) = 𝒘𝑇𝒙 + 𝑏
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h(x)

• Decision boundary defined by hyperplane

  ℎ(𝒙; 	𝒘) = 𝒘𝑇𝒙 + 𝑏 = 0

• Class predictions: Predict class 0 if  ℎ(𝒙𝑖	; 	𝒘) < 0, else class 1

[Bishop]

h(x) < 0

h(x) = 0

h(x) > 0



Linear Classifier with Least Squares? 24

L(w) =
1

2

X

i

(yi �wTxi)
2

[Bishop]

• Why not use least squares loss with binary targets?

– Penalized even when predict class correctly

– Least squares is very sensitive to outliers



Linear Classifier with Least Squares? 25

L(w) =
1

2

X

i

(yi �wTxi)
2

What you want

What you get

[Bishop]

• Why not use least squares loss with binary targets?

– Penalized even when predict class correctly

– Least squares is very sensitive to outliers



Linear Discriminant Analysis 26

• Goal: Separate data from two classes / populations

x2

x1



Linear Discriminant Analysis 27

• Goal: Separate data from two classes / populations

• Data from joint distribution (𝒙, 𝑦) ~ 𝑝(𝑿, 𝑌)
– Features: 𝒙 Îℝ𝑚

– Labels:       𝑦 Î {0,1}

Red: Y=0 Blue: Y=1

x2

x1



Linear Discriminant Analysis 28

• Goal: Separate data from two classes / populations

• Data from joint distribution (𝒙, 𝑦) ~ 𝑝(𝑿, 𝑌)
– Features: 𝒙 Îℝ𝑚

– Labels:       𝑦 Î {0,1}

• Breakdown the joint distribution:
𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝(𝑦)

Likelihood:
Distribution of features
for a given class

Prior:
Probability of each class



Linear Discriminant Analysis 29

• Goal: Separate data from two classes / populations

• Data from joint distribution (𝒙, 𝑦) ~ 𝑝(𝑿, 𝑌)
– Features: 𝒙 Îℝ𝑚

– Labels:       𝑦 Î {0,1}

• Breakdown the joint distribution:
𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝(𝑦)

• Assume likelihoods are Gaussian

𝑝 𝑥 𝑦 =
1

2𝜋 !|Σ|
exp −

1
2
𝒙 − 𝝁"

#Σ$%(𝒙 − 𝝁")



Predicting the Class

• Separating classes à Predict the class of a point x

30

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣

log p(x|y=0)p(y=0)
log p(x|y=1)p(y=1)

⌘
Want to build classifier to predict label y given input x



Predicting the Class

• Separating classes à Predict the class of a point x
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Bayes Rulep(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣

log p(x|y=0)p(y=0)
log p(x|y=1)p(y=1)

⌘



Predicting the Class

• Separating classes à Predict the class of a point x
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Bayes Rule

Marginal
definition

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣

log p(x|y=0)p(y=0)
log p(x|y=1)p(y=1)

⌘



p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

=
1

1 + exp
⇣
log p(x|y=0)p(y=0)

p(x|y=1)p(y=1)

⌘

Predicting the Class

• Separating classes à Predict the class of a point x
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Bayes Rule

Why?

Marginal
definition



Logistic Sigmoid Function 34

Logistic Sigmoid

�(z) =
1

1 + e�z



Predicting Classes with Gaussian Likelihoods 35

p(y = 1|x) = �
⇣
log

p(x|y = 1)

p(x|y = 0)
+ log

p(y = 1)

p(y = 0)

⌘

Constant w.r.t. xLog-likelihood ratio



Predicting Classes with Gaussian Likelihoods

• For our Gaussian data:
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p(y = 1|x) = �
⇣
log

p(x|y = 1)

p(x|y = 0)
+ log

p(y = 1)

p(y = 0)

⌘

= �
⇣
log p(x|y = 1)� log p(x|y = 0) + const.

⌘

= �
⇣
� 1

2
(x� µ1)

T⌃�1(x� µ1) +
1

2
(x� µ0)

T⌃�1(x� µ0)

+ const.
⌘

= �
⇣
wTx+ b

⌘
Collect terms



What did we learn?

• For this data, the log-likelihood ratio is linear!
– Line defines boundary to separate the classes
– Sigmoid turns distance from boundary to probability

37

Red: Y=0 Blue: Y=1

x2

x1



Logistic Regression

• What if we ignore Gaussian assumption on data?

Model:

• Farther from boundary 𝒘𝑇𝒙 + 𝑏 = 0, 
more certain about class

• Sigmoid converts distance to class probability
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p(y = 1|x) = �
⇣
wTx+ b

⌘
⌘ h(x;w)



Logistic Regression 39

p(y = 1|x) = �
⇣
wTx+ b

⌘
p(y = 1|x) = �(h(x,w))

=
1

1 + e�wTx -b

This unit is the main building block of  Neural Networks!



Logistic Regression

• What if we ignore Gaussian assumption on data?

Model:

40

• With 𝑝! ≡ 𝑝(𝑦! = 𝑦|𝒙!)

P (yi = y|xi) = Bernoulli(pi) = (pi)
yi(1� pi)

1�yi = 𝑝𝑖         if  𝑦𝑖 = 1
1 − 𝑝𝑖  if  𝑦𝑖 = 0

• Goal:
– Given i.i.d. dataset of pairs (𝒙𝑖, 𝑦𝑖)

find w and b that maximize likelihood of data

p(y = 1|x) = �
⇣
wTx+ b

⌘
⌘ h(x;w)



Logistic Regression

• Negative log-likelihood

41

� lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�wTx) + (1� yi) ln(1 + ew
Tx)



Logistic Regression

• Negative log-likelihood

42

binary cross entropy loss function! � lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�wTx) + (1� yi) ln(1 + ew
Tx)

Lo
ss

-log(pi)
-log(1-pi)

pi



Logistic Regression

• Negative log-likelihood
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• No closed form solution to 𝑤∗ = argmin
%
− lnℒ(𝑤)

• How to solve for w?

� lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�wTx) + (1� yi) ln(1 + ew
Tx)

binary cross entropy loss function! 



Gradient Descent

• Minimize loss by repeated gradient steps

– Compute gradient w.r.t. current parameters:    ∇&)ℒ 𝜃'

– Update parameters:      𝜃'() ← 𝜃' − 𝜂∇&)ℒ 𝜃'

– h is the learning rate, controls how big of a step to take
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𝜃!

𝜃"



Stochastic Gradient Descent
• Loss is composed of a sum over samples: 

∇&ℒ 𝜃 =
1
𝑁
'
'(%

)

∇&ℒ 𝑦' , ℎ 𝑥'; 𝜃

– Computing gradient grows linearly with N!

• (Mini-Batch) Stochastic Gradient Descent
– Compute gradient update using 1 random sample (small size batch) 
– Gradient is unbiased à on average it moves in correct direction
– Tends to be much faster the full gradient descent
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Step Sizes

• Too small a learning rate, convergence very slow

• Too large a learning rate, algorithm diverges
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𝜃

ℒ(𝜃)

Small Learning rate

𝜃

ℒ(𝜃)

Large Learning rate



Gradient Descent

• Logistic Regression Loss is convex
– Single global minimum

• Iterations lower loss and move toward minimum

47

Lo
ss

L(w)

Lmin(w)

Iterationsw



Logistic Regression Example 48

p(y=1 | x)
0 1

Image source

https://triangleinequality.wordpress.com/2013/12/02/logistic-regression/


Basis Functions

• What if non-linear relationship between y and x?

49



Basis Functions

• What if non-linear relationship between y and x?

• Choose basis functions 𝝓(𝒙) to form new features

– Example: Polynomial basis 𝜙(𝑥) ~ {1, 𝑥, 𝑥2, 𝑥3, … }

– Logistic regression on new features: ℎ(𝑥;𝑤) = 𝜎 𝑤#𝜙 𝑥

• What basis functions to choose? Overfit with too much flexibility?

50



What is Overfitting

• Models allow us to generalize from data

• Different models generalize in different ways

51

http://scikit-learn.org/ 

http://scikit-learn.org/


Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
(bias) (variance)

52



Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
(bias) (variance)

53

• Simple models under-fit: 
will deviate from data (high bias) 
but will not be influenced by 
peculiarities of data (low variance). 

• Complex models over-fit: 
will not deviate systematically from 
data (low bias) but will be very 
sensitive to data (high variance). 
– As dataset size grows, can reduce 

variance! Use more complex model



Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
(bias) (variance)

54

• Simple models under-fit: 
will deviate from data (high bias) 
but will not be influenced by 
peculiarities of data (low variance). 

• Complex models over-fit: 
will not deviate systematically from 
data (low bias) but will be very 
sensitive to data (high variance). 
– As dataset size grows, can reduce 

variance! Use more complex model



Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
(bias) (variance)

55

• Simple models under-fit: 
will deviate from data (high bias) 
but will not be influenced by 
peculiarities of data (low variance). 

• Complex models over-fit: 
will not deviate systematically from 
data (low bias) but will be very 
sensitive to data (high variance). 
– As dataset size grows, can reduce 

variance! Use more complex model



Bias Variance Tradeoff 56



Regularization – Control Complexity

• L2 keeps weights small,  L1 keeps weights sparse!

• But how to choose hyperparameter a? 
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L(w) =
1

2
(y�Xw)2 + ↵⌦(w)

L2 : ⌦(w) = ||w||2 L1 : ⌦(w) = ||w||

http://scikit-learn.org/ 

Less regularization Less regularization

http://scikit-learn.org/


How to Measure Generalization Error?

• Split dataset into multiple parts

• Training set
– Used to fit model parameters

• Validation set
– Used to check performance on 

independent data and tune hyper 
parameters

• Test set
– final evaluation of performance 

after all hyper-parameters fixed
– Needed since we tune, or “peek”, 

performance with validation set

58

Training set Validation set Test set

[Murray] 



How to Measure Generalization Error? 59

Validation Sample



Summary

• Machine learning uses mathematical & statistical 
models learned from data to characterize patterns and 
relations between inputs, and use this for inference / 
prediction

• Machine learning comes in many forms, much of which 
has probabilistic and statistical foundations and 
interpretations (i.e. Statistical Machine Learning)

• Machine learning is a powerful toolkit to analyze data

– Linear methods can help greatly in understanding data

– Choosing a model for a given problem is difficult, keep in 
mind the bias-variance tradeoff when building an ML mode
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