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Goal of these lectures

Evolved from a CMS tutorial given last February
There, the goal was to give plausible familiarity with sentences like:

Expanded to talk about:
• Alternatives to the standard CMS methods
• ML-related topics

Resources:
• PDG: probability, statistics 
• Past lectures to HEP audiences
- R. Cousins, N. Wardle, K. Cranmer, J. Duarte
• Wikipedia, Youtube, (3b1b, Simons TV, …)
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An observed (expected) upper limit is placed on the signal strength 
μ, using the profile likelihood ratio test statistic, following the CLs 
criterion, under asymptotic assumptions, and found to be …”

https://pdg.lbl.gov/2022/web/viewer.html?file=../reviews/rpp2022-rev-probability.pdf
https://pdg.lbl.gov/2022/web/viewer.html?file=../reviews/rpp2022-rev-statistics.pdf
https://arxiv.org/pdf/1807.05996.pdf
https://indico.cern.ch/event/48425/attachments/957638/1359275/StatisticsLecture1_CERN.pdf
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The current plan

• Probability

• Inference

• Intervals

• Uncertainties
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Statistical landscape
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HEP
(i.i.d.)

Hard sciences
(often i.i.d.?)

Finance 💸💸
(Stochastic processes)

ActuarialSocial sciences
(Sampling)

AI/ML
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The AI hill
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Statistical purity
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Statisticians?

More is different: Broken symmetry and the nature of the hierarchical structure of science (P.W. Anderson)

https://www.science.org/doi/10.1126/science.177.4047.393
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Probability
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Topics in probability

• Axioms

• Bayes’ theorem

• Distributions

• Statistical distances

• Information theory

• HEP data
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Probability

S

• Kolmogorov axioms: for a sample space , we have

-

-

-

• Conditional probability

-

• Total probability:

-
For a partition  where ,  

S

∀A ⊂ S P(A) ≥ 0

∀A, B ⊂ S, A ∩ B = Ø P(A ∪ B) = P(A) + P(B)

P(S) = 1

P(A |B) =
P(A ∩ B)

P(B)

S = ⋃
i

Ai i ≠ j ⟹ Ai ∩ Aj = Ø P(B) = ∑
i

P(B |Ai)P(Ai)
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Example application: total probability

• Flip a fair coin without showing anyone the result
- If heads (H), raise your hand (✋)
- If tails (T): raise your hand ✋ only if you have ever cheated on your homework
• If I count  hands raised in  attendees, we have:
- P(T) = 
- P(✋|H) = 1
- P(✋|T) = 
- P(✋) = P(✋|H)P(H) + P(✋|T)P(T) = 
-
• Can we find P(cheat) for this audience?
- Which variables are known here? Which are random variates? Which are parameters?
- How will we interpret the result?

nr n
nt /n

nc /nt
1 − nt /n + nc /n = nr /n

⟹ nc /n = nr /n + nt /n − 1
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Probability the hard way

• Measure-theoretic take: Radon-Nikodym theorem 
• On a measurable space 
- e.g.  or  with the Borel algebra

• If measure  is absolutely continuous w.r.t. 
- i.e. for , 
-  could be a counting measure (for  above) or Lebesgue measure (for )

• Then there is a measurable function  

- s.t. 

-  is the Radon-Nikodym derivative

• If  we have a probability measure
- i.e.  can now have continuous support if needed
• Glad I’m not a mathematician

(X, Σ)
X = {1,2,3}, Σ = {{1}, {2}, {3}, {1,2}, …, {1,2,3}} X = ℝ

ν μ
A ∈ Σ μ(A) = 0 ⟹ ν(A) = 0

μ X ℝn

f : X → [0,∞)
ν(A) = ∫A

f dμ

f =
dν
dμ

ν(X) = 1
ν = P
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https://en.wikipedia.org/wiki/Radon%E2%80%93Nikodym_theorem
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Probability mass

• Probability mass function (pmf)
- probability of observing a specific outcome
- defined over a support (space of outcomes/observables/samples)
- may be parameterized

Examples:
• Marbles: P(draw 2 red, 2 green, 1 blue from jar)
- pmf Multivariate hypergeometric distribution

•

- Support:   ; Parameters: 
• Counts in a particle detector after some time
- pmf Poisson distribution

•

- Support: ; Parameters: 

f(k; K) =
∏c

i=1 (Ki

ki )
( ∑ Ki

∑ ki )
ki ∈ {0,1,…} Ki ∈ {1,2,…}

f(n; λ) =
λne−λ

n!
n ∈ {0,1,…} λ ∈ [0,∞)
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https://en.wikipedia.org/wiki/Hypergeometric_distribution#Multivariate_hypergeometric_distribution
https://en.wikipedia.org/wiki/Poisson_distribution
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Probability density

• Probability density function (pdf), e.g. 
- a differential probability of observing an outcome: e.g. for 1D,

• , sometimes write 

- defined over a support (space of outcomes/observables/samples)
- implies a cumulative (cdf), percentile (inverse cdf), etc. in 1D
- may be parameterized

Example:
• Brownian motion: P(displacement after some time)
- pdf Normal distribution

•

- Support: ; Parameters: 

f(x)

P(a < x < b) = ∫
b

a
f(x) dx P(x ∈ A) = ∫A

dP

f(x; μ, σ) =
1

2πσ
e− (x − μ)2

2σ2

x ∈ ℝ μ, σ ∈ ℝ, σ > 0
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https://en.wikipedia.org/wiki/Normal_distribution
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Bayes’ theorem

• From conditional probability,

-

-

-

• Note: from total probability,

-
If  then we can also write 

- So  is a normalization
• You don’t have to be Bayesian to use Bayes’ theorem

P(A |B) =
P(A ∩ B)

P(B)
⟹ P(A ∩ B) = P(A |B)P(B) = P(B |A)P(A)

⟹ P(A |B) =
P(B |A)P(A)

P(B)

⋃
i

Ai = S P(B) = ∑
i

P(B |Ai)P(Ai)

P(B)
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Example application of Bayes’ theorem

• Monty hall problem:
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Suppose you're on a game show, and you're 
given the choice of three doors: Behind one 
door is a car; behind the others, goats. You 
pick a door, say No. 1, and the host, who 
knows what's behind the doors, opens another 
door, say No. 3, which has a goat. He then 
says to you, "Do you want to pick door No. 2?" 
Is it to your advantage to switch your choice?

• You should switch
- P(door 1 wins) = 1/3
- P(host opens door 3 | door 1 wins) = 1/6
- P(host opens door 3) = 1/6 + 1/3
- ⇒P(door 1 wins | host opens door 3) = 1/3
• P(door 2 wins | host opens door 3) = 2/3
• P(door 3 wins | host opens door 3) = 0
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Cool discrete distributions

• Bernoulli: weighted coin flip
-

• Binomial: k success in n trials

-

• Poisson: a limiting case of Binomial

-

fB(k; p) = p[k = 1] + (1 − p)[k = 0]

fBi(k; n, p) = (n
k) pk(1 − p)n−k

fP(k; λ) = lim
n→∞,np=λ

fBi(k; n, p) =
λke−λ

k!
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Cool continuous distributions

• Normal: another limiting case of Binomial
-
- Central limit theorem:
• sums of independent random-distributed variables tend towards a Normal-distributed variable

- Standard (Z) score:
• Convention for interesting percentiles: “1σ” = 0.6827…, “2σ” = 0.9545…, “5σ” = 5.7e-7
- These are 2-sided. Can also define 1-sided (common in HEP.) Often quote 95 %-ile

fN(x; μ = np, σ = np(1 − p)) = lim
n→∞

fBi(x; n, p)
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https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Standard_score
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Cool continuous distributions - continued

• Chi-square: squared distance from mean of unit multivariate normal
-
• Log-normal distribution
- Definition: Normal in log-space (change of variables: )
- Corollary to central limit theorem:
• products of […] tend towards a Log-normal distributed variable
• Common model for calibration uncertainties (more later)

• All of the above (both discrete and continuous): exponential family
- Exponential, gamma, beta, Dirichlet, categorical, Wishart, geometric, Pareto, …

x ∼ fN(x; 0, 𝕀) ⟹ x ⋅ x = d2 ∼ fχ2(d2; n)

y = ln(x), dy = x−1dx

18
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Coming back to P(cheat)

• Setup reminder: flip a fair coin without showing anyone the result
- If heads (H), raise your hand (✋)
- If tails (T): raise your hand ✋ only if you have ever cheated on your homework
• Sample space:  coins are tails,  people who flip tails raised their hand
-   and 
• The joint distribution factorizes

-

- Also an exponential family
• We can marginalize over the latent variable 
- Also substituting  and 

-

- We don’t have to assume  but it seems reasonable (more later)

nt nc
nt ∼ fBi(nt; n, pt) nc ∼ fBi(nc; nt, pc)

f(nt, nc) = f(nc |nt)f(nt) = ( n
nt) (nt

nc) pnt
t (1 − pt)n−nt pnc

c (1 − pc)nt−nc

nt
nc = nr + nt − n pt = 1/2

f(nr; n, pc) =
n

∑
nt=0

fBi(nt; n,1/2)fBi(nr + nt − n; nt, pc)

pt
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Coming back to P(cheat)

•
Visualizing f(nr; n, pc) =

n

∑
nt=0

fBi(nt; n,1/2)fBi(nr + nt − n; nt, pc)

20
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Exponential family

• A exponential family is a set of distributions with a pdf/pmf of the form
-
- This generalizes to multiple dimensions, implicitly 
• The terms have an interpretation:
-  is the natural parameter of the distribution. Values  where  is integrable define the 

space of the parameter. This space is convex!
-  is the sufficient statistic: it holds all data that  provides.

• For i.i.d. samples  ~ , the sufficient statistic of the joint distribution  

-  is the log-partition function.

• Moments of the sufficient statistic can be found by differentiating 
• A few interesting properties:
- Exponential families are the only families with sufficient statistics that can summarize 

arbitrary amounts of i.i.d. data using a fixed number of values
- All distributions in this family have conjugate priors 
- The relative entropy (KL-divergence) can be computed using  and its derivative

f(x; θ) = h(x)eη(θ)⋅T(x)−A(θ)

dim(η) = dim(T )

η(θ) η f

T(x) x
xi f T(x1, x2, …) = ∑ T(xi)

A(η) = ln [∫ heηTdx]
A(η)

π(η; χ, ν) = f(χ, ν)eη⋅χ−νA(η)

A(η)
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Exponential family

• Example: Normal distribution with known variance
-
-
-
-
•
•

- Conjugate prior 
• Complete the square: Normal distribution

• Example: Poisson distribution 
-  
-
-
-
- Conjugate prior 
• A Gamma distribution

h(x) = (2πσ2)−1e−x2/2σ2

η(μ) = μ/σ
T(x) = x/σ
A(η) = η2/2

E[T ] = dA /dη = η ⟹ E[x] = μ
E[T2] = d2A /dη2 = 1 ⟹ E[x2] = σ2

π(η; χ, ν) = f(χ, ν)eηχ−νη2/2

fP(k; λ)
h(k) = 1/k!
η(λ) = ln λ
T(k) = k
A(η) = eη

π(η; χ, ν) = f(χ, ν)eηχ−νeη ⟹ π(λ) ∝ λχe−νλλ−1
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