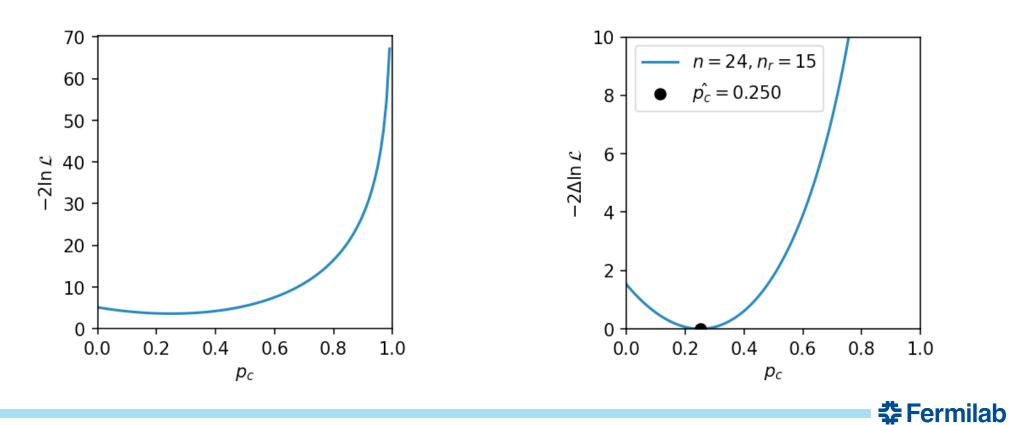
Intervals

Topics: intervals

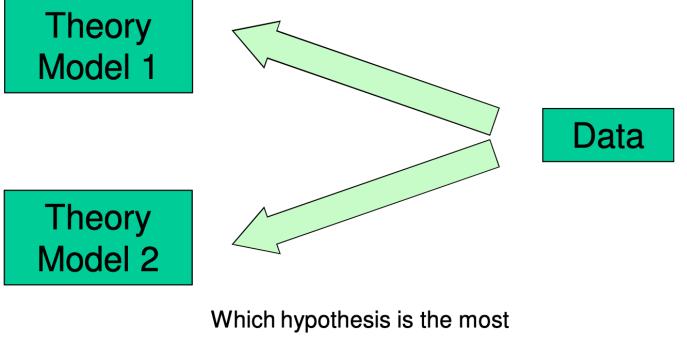
- Hypothesis tests
- Neyman intervals
- Likelihood ratio test statistic
 - Neyman-Pearson lemma
- Under-fluctuation and CLs
- Asymptotic behavior Wilk's theorem

Inferring P(cheat) as a frequentist

- Scan $-2\ln \mathscr{L}(p_c) = -2\ln f(n_r; n, p_c)$
- Find minimum
- ???
- Profit



Hypothesis tests



consistent with the experimental data?

Hypothesis tests

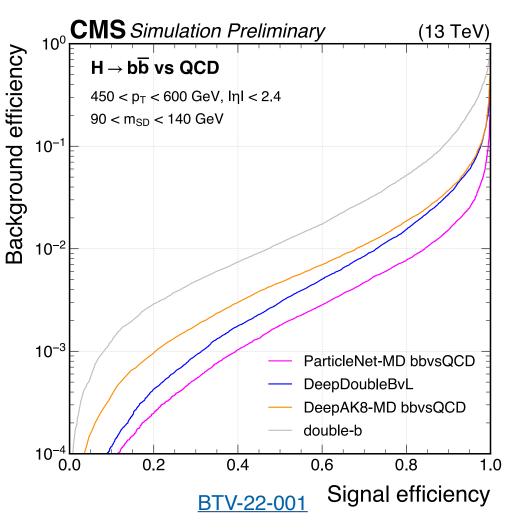
- Simple test parameterized by two probabilities: α, β
 - β with respect to an alternate hypothesis

Table of error types		Null hypothesis (<i>H</i> ₀) is		
		TRUE	FALSE	
Decision about null hypothesis (<i>H</i> ₀)	Don't reject	Correct inference (true negative) (probability = 1-α)	Type II error (false negative) (probability = β)	
	Reject	Type I error (false positive) (probability = α)	Correct inference (true positive) (probability = 1-β)	

Hypothesis test example

- ROC plot: let H_0 be QCD jet
 - DNN tagger score is the test statistic
 - Lower values more consistent with ${\cal H}_0$
- Background efficiency
 - True negative: accept H_0 when true
 - 1α (where α is the *size*)
- Signal efficiency
 - True positive: reject H_0 when false
 - Power 1β
- Prefer tests with higher *power* for a given *size*
 - Here, test size is large
 - Usually test size is very small

Comparison of the performance of the $X \rightarrow bb$ identification algorithms ... in the 2018 data-taking conditions



🚰 Fermilab

Coverage (confidence) sets

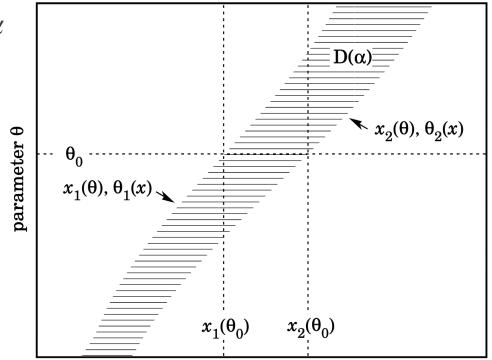
- One can ask, "assuming a value of θ , would x_{obs} be a likely outcome?"
 - This is a hypothesis test (sufficiently likely or not)
- We have $P(x;\theta)$, so we can answer this if we:
 - Choose a *size* (significance level) α of the test (e.g. 0.05)
 - Define a test statistic (ordering) of possible outcomes
 - Run pseudo-experiments (toys) for each θ to determine distribution of test statistic
 - Perform experiment, report set of θ where test statistic is below the 1- α quantile
- A good ordering will lead to
 - Good *coverage*: in repeated experiments the (unknown) θ_{true} will be in the set with probability at least 1- α , though it may over-cover
 - High *power* (1- β): the set does not contain θ_{alt} for some specified alternative hypothesis

Neyman interval

- Neyman construction:
 - For each θ , find range $[x_1, x_2]$ s.t.

$$P(x_1 < x < x_2; \theta) = \int_{x_1}^{x_2} P(x; \theta) \, dx \ge 1 - \alpha$$

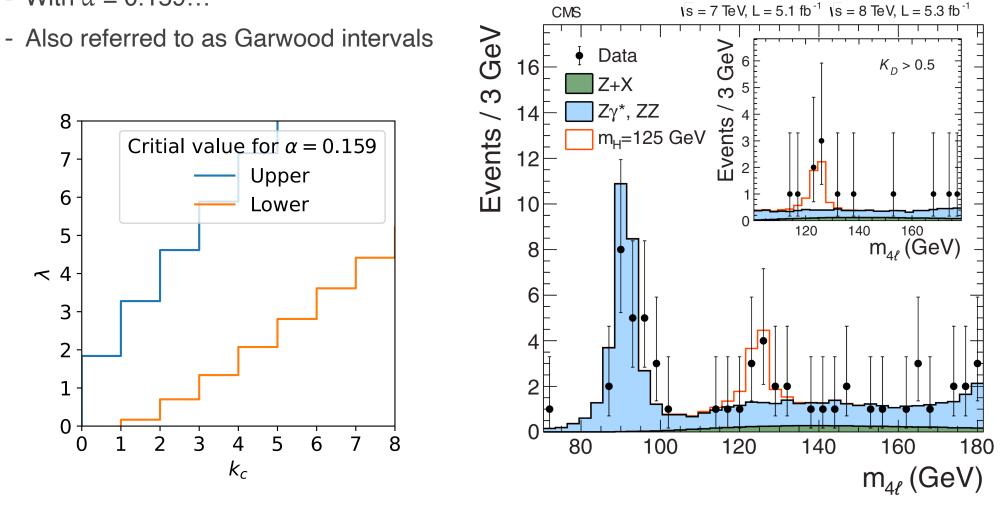
- Perform experiment
- Report confidence interval: [θ₁,θ₂] where x_{obs}∈[x₁(θ),x₂(θ)] for all θ∈[θ₁,θ₂]
- Interval has coverage $1-\alpha$.
 - For an ensemble of experiments, the interval [θ₁,θ₂] will contain (unknown) θ_{true} with probability 1-α. This is a statement about the distribution of θ₁ and θ₂, NOT θ_{true}.



Possible experimental values x

Neyman interval

- You have all seen these: error bars on data points are the Neyman intervals for a Poisson distribution
 - With $\alpha = 0.159...$



‡ Fermilab

Likelihood ratio test statistic

1. Define
$$t_{\theta}(x) = -2 \ln \frac{\mathscr{L}(\theta)}{\mathscr{L}(\hat{\theta})} = -2 \ln \frac{f(x;\theta)}{f(x;\hat{\theta})} \ge 0$$

2. Compute associated pdf (change of variables) $f(t_{\theta}; \theta') = \int \delta(t_{\theta} - t_{\theta}(x)) \, dP(x; \theta')$

3. For each θ , find the critical value $t_{\theta,c}$ that covers

$$P(t_{\theta} < t_{\theta,c}) = \int_{0}^{t_{\theta,c}} f(t_{\theta}; \theta' = \theta) \, dt_{\theta} \ge 1 - \alpha$$

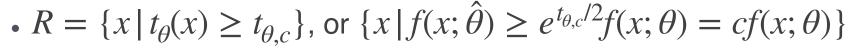
4. Perform experiment, get x_{obs} , report confidence set $\{\theta \mid t_{\theta}(x_{obs}) < t_{\theta,c}\}$

Again, the set is the random variate, and will contain (unknown) θ_{true} with probability at least 1- α . Dimension of θ and x are arbitrary.

🚰 Fermilab

If θ is 1-d and t_{θ} is monotone, can make a <u>Feldman-Cousins</u> interval.

Neyman-Pearson lemma



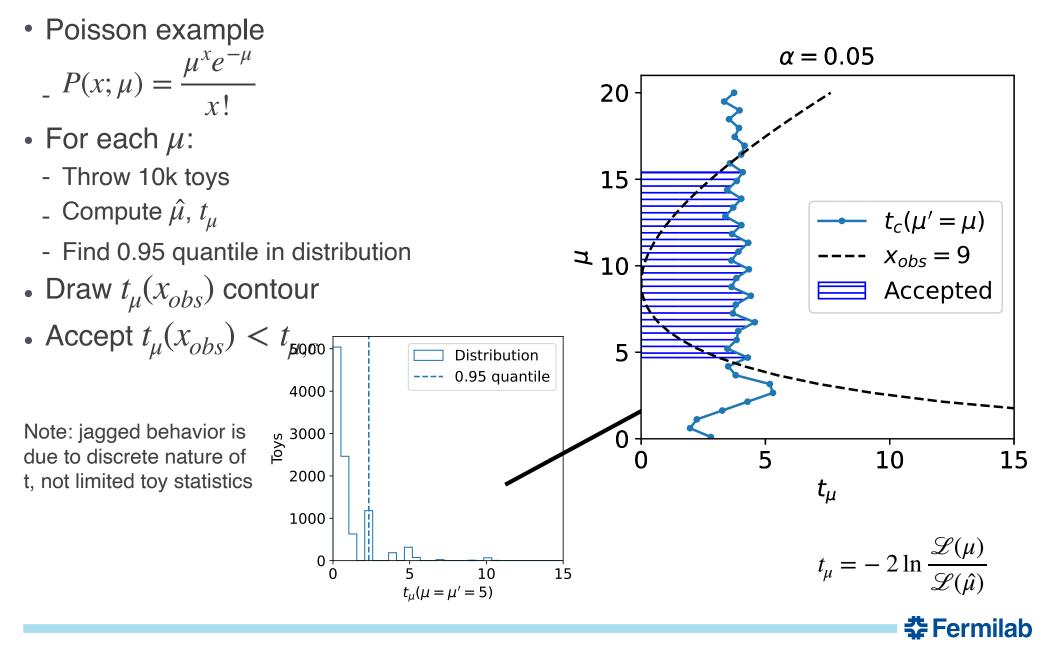
• $P(x \in R; \theta) = \alpha$ • $P(x \in R; \hat{\theta}) = 1 - \beta$ • $P(x \in R'; \theta) = \alpha$ • $P(x \in R'; \hat{\theta}) < 1 - \beta$ R' - We reject θ less often $f(x;\hat{\theta}) < cf(x;\theta)$ $f(x;\hat{\theta}) \ge cf(x;\theta)$

 $f(x;\theta) \ge cf(x;\theta)$ $f(x;\theta) < cf(x;\theta)$ $P(x \in R \setminus R';\hat{\theta}) \ge cP(x \in R \setminus R';\theta)$ $P(x \in R \setminus R;\hat{\theta}) < CP(x \in R' \setminus R;\theta)$ $P(x \in R \setminus R';\hat{\theta}) > P(x \in R' \setminus R;\hat{\theta})$

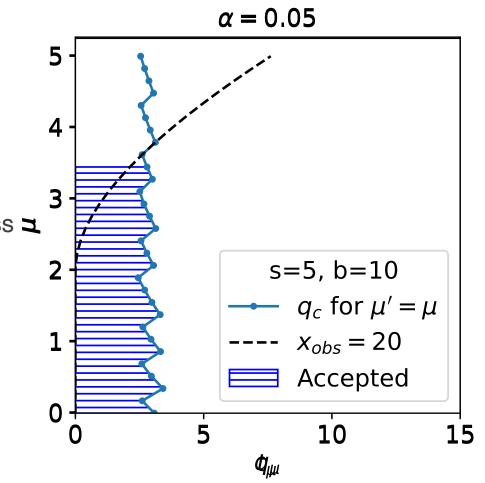
The (log-)likelihood ratio test is the most powerful test for a given size

🚰 Fermilab

Frequentists...



- Poisson with background example $P(x; \mu s + b) = \frac{(\mu s + b)^{x} e^{-(\mu s + b)}}{x!}$
 - s=5, b=10 fixed, x=20
- Plan: set upper limit on μ
- Problem: two-sided region
 - We should not consider $\hat{\mu} > \mu$ to indicate less **a** compatibility with a model that assumes a rate μ .
- Solution: modify test statistic • Define $q_{\mu} = -2 \ln \frac{\mathscr{L}(\mu)}{\mathscr{L}(\min(\mu, \hat{\mu}))}$
 - i.e. over-fluctuations are "not extreme"



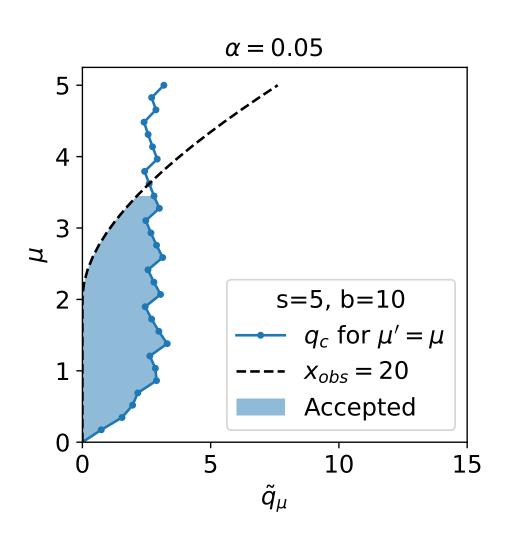
 $t_{\mu} = -2\ln\frac{\mathscr{L}(\mu)}{\mathscr{L}(\hat{\mu})}$

🛟 Fermilab

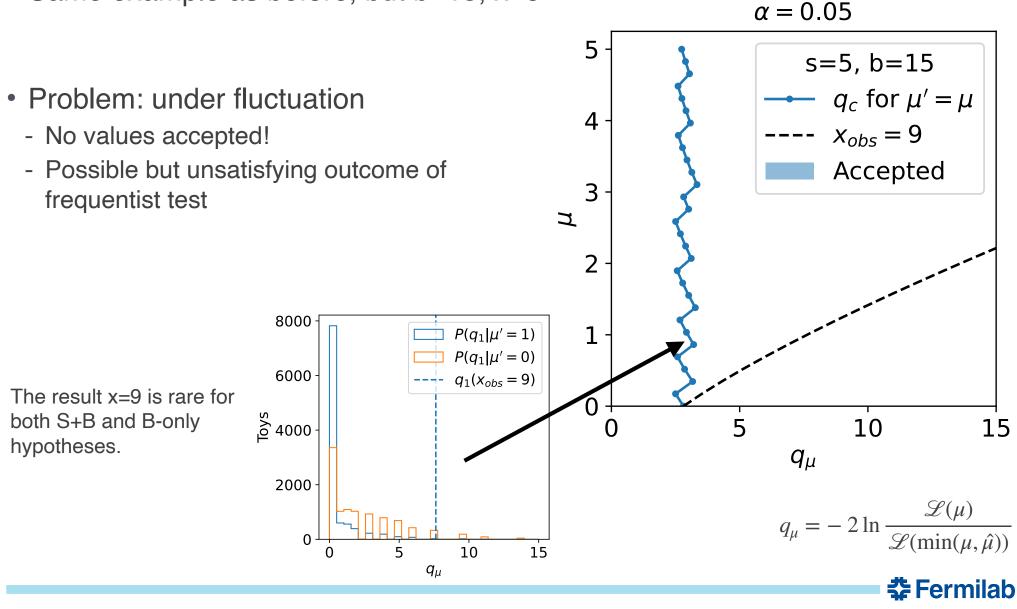
- Poisson with background example $P(x | \mu s + b) = \frac{(\mu s + b)^{x} e^{-(\mu s + b)}}{x!}$ - s=5, b=10 fixed, x=20
- Problem: negative $\hat{\mu}$
 - Test stat distribution at 0 should collapse $\mathscr{G}(u)$

• Define
$$\tilde{q}_{\mu} = -2 \ln \frac{\mathscr{L}(\mu)}{\mathscr{L}(\max(0, \min(\mu, \hat{\mu})))}$$

- i.e. restrict $\hat{\mu}$ to be positive



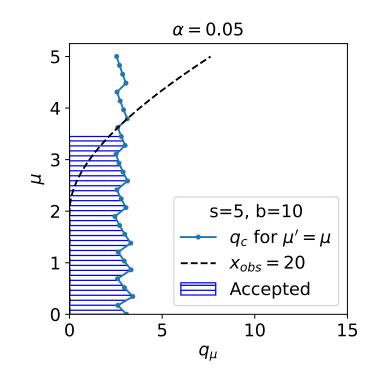
‡ Fermilab

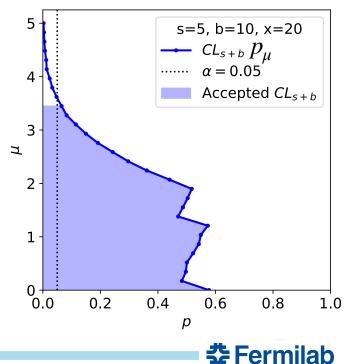


- CL_s criterion departs from purely frequentist CL to ameliorate the null set problem (among others)
 - Original expositions by <u>A. Read</u>, <u>T. Junk</u>
 - See also PDG 40.4.2.4
- First we reformulate our old test:

Define $p_{\mu} = \int_{t_{\mu}(x_{obs})}^{\infty} P(t_{\mu} \mid \mu' = \mu) dt_{\mu}$

- This is a p-value
- _ Then we accept the region $p_{\mu} > \alpha$
 - Right: initial S+B example reformulated

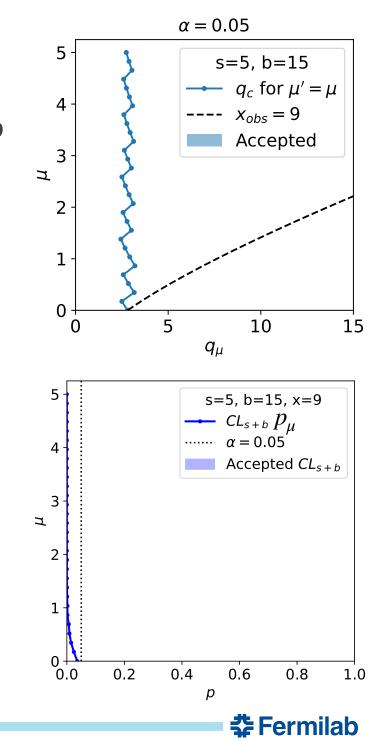




- CL_s criterion departs from purely frequentist CL to ameliorate the null set problem (among others)
 - Original expositions by <u>A. Read</u>, <u>T. Junk</u>
 - See also PDG 40.4.2.4
- First we reformulate our old test:

Define $p_{\mu} = \int_{t_{\mu}(x_{obs})}^{\infty} P(t_{\mu} \mid \mu' = \mu) dt_{\mu}$

- This is a p-value
- _ Then we accept the region $p_{\mu} > \alpha$
 - Right: under-fluctuation S+B example reformulated

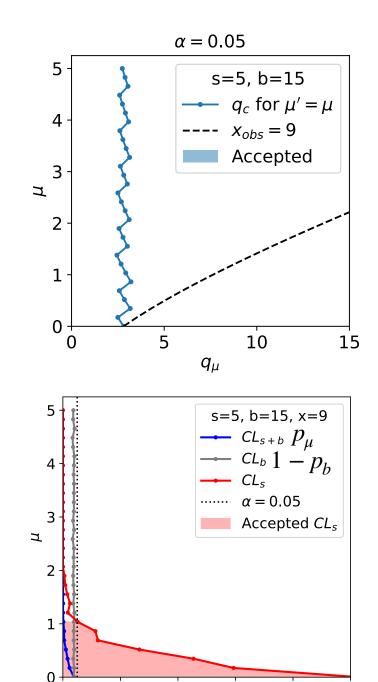


- CL_s criterion departs from purely frequentist CL to ameliorate the null set problem (among others)
 - Original expositions by <u>A. Read</u>, <u>T. Junk</u>
 - See also PDG 40.4.2.4
- First we reformulate our old test:

Define $p_{\mu} = \int_{t_{\mu}(x_{obs})}^{\infty} P(t_{\mu} \mid \mu' = \mu) dt_{\mu}$

• Now define background-only p-value $1 - p_b = \int_{t_{\mu}(x_{obs})}^{\infty} P(t_{\mu} | \mu' = 0) dt_{\mu}$ p_{μ}

• Accept instead
$$CL_s = \frac{1}{1 - p_b} > \alpha$$



0.0

0.2

0.4

0.6

р

0.8

🚰 Fermilab

1.0

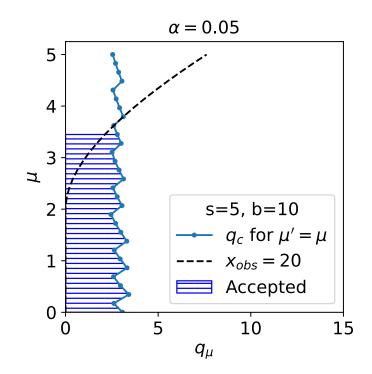
- CL_s criterion departs from purely frequentist CL to ameliorate the null set problem (among others)
 - Original expositions by <u>A. Read</u>, <u>T. Junk</u>
 - See also PDG 40.4.2.4
- First we reformulate our old test:

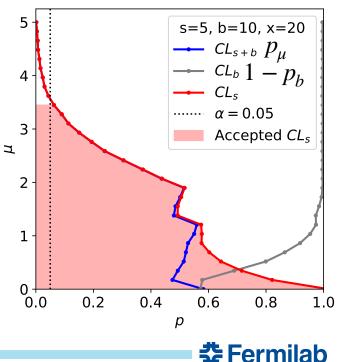
Define $p_{\mu} = \int_{t_{\mu}(x_{obs})}^{\infty} P(t_{\mu} \mid \mu' = \mu) dt_{\mu}$

• Now define background-only p-value $1 - p_b = \int_{t_{\mu}(x_{obs})}^{\infty} P(t_{\mu} | \mu' = 0) dt_{\mu}$

Accept instead
$$CL_s = \frac{p_{\mu}}{1 - p_b} > \alpha$$

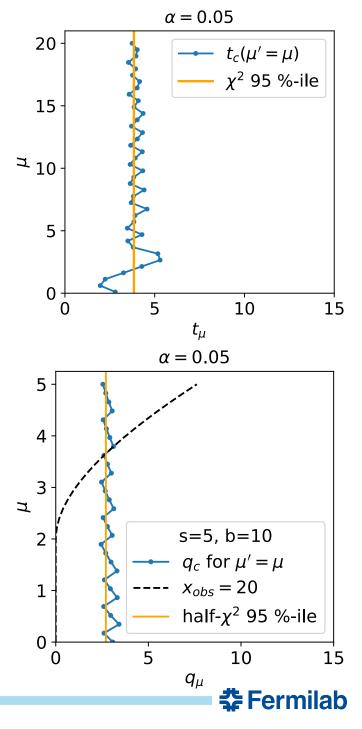
- No effect in the first example





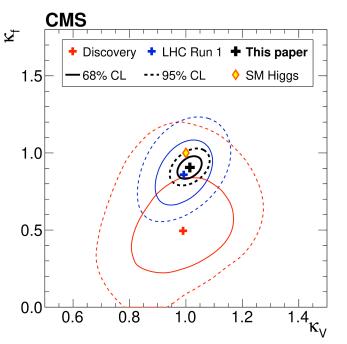
Asymptotic behavior

- Notice how $t_{\mu,c}$ and $q_{\mu,c}$ tend towards a constant?
- This is <u>Wilk's theorem</u> in action
 - Statement: as sample size grows, the distribution of the likelihood ratio $P(t_{\theta}|\theta')$ approaches a χ^2 distribution
 - With df = dim(θ)
 - Hence we can approximate by just evaluating $t_{\theta}(x_{obs})!$
- For q, formulas slightly more complex
 - <u>CCGV</u> provide the recipe: non-central half- χ^2
 - The non-centrality is found using the Asimov dataset
 - A special x_{μ} for a given μ such that $\hat{\mu}(x) = \mu$
 - Note for Poisson data, it may be non-integral!
 - · This dataset produces the median expected limit



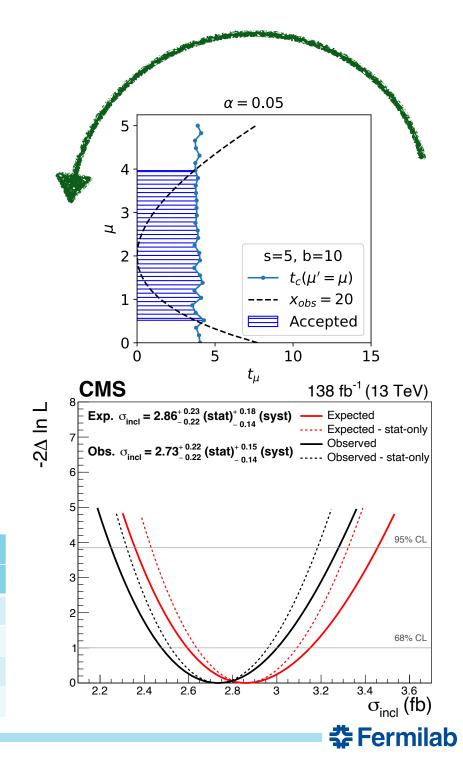
Asymptotic behavior

• This is how we make deltaNLL contours

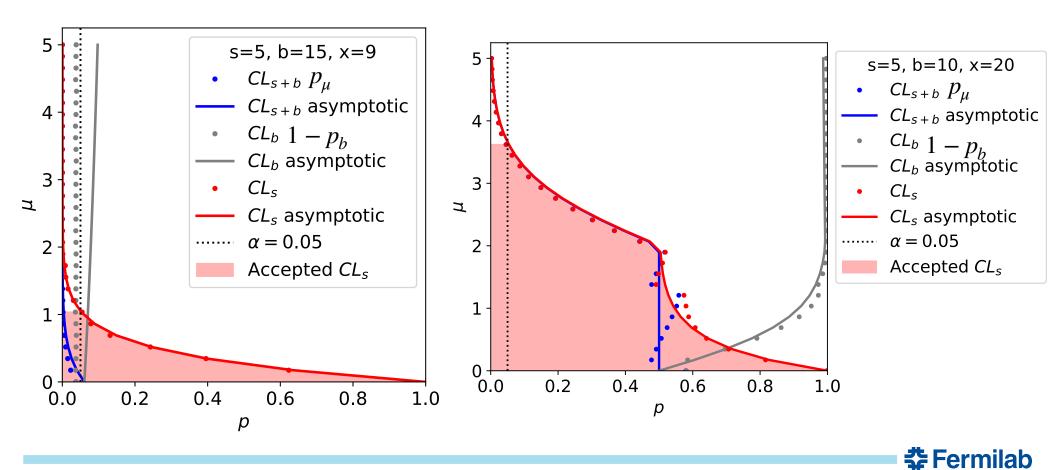


scipy.stats.chi2.ppf(q, df)

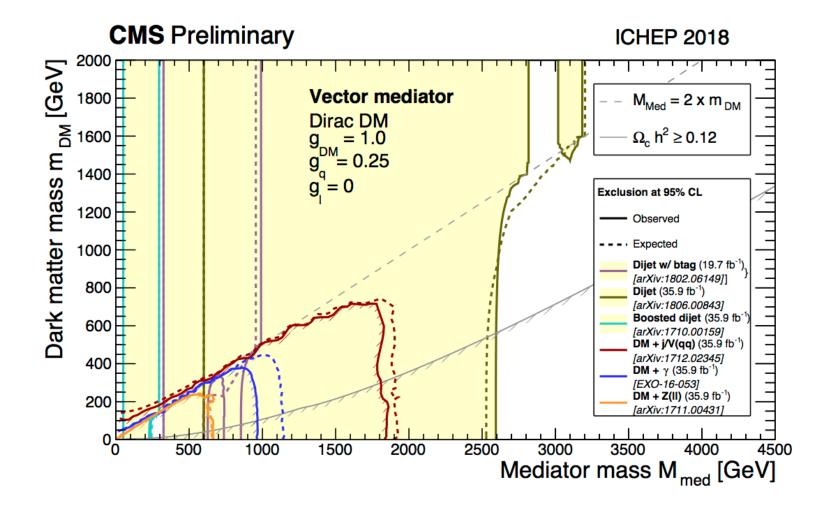
Quantile	t _c		
Quantile	df=1	df=2	
0.68	0.989	2.279	
1σ (0.6827)	1	2.296	
0.95	3.841	5.991	
2σ (0.9545)	4	6.180	



Asymptotic CLs



Examples

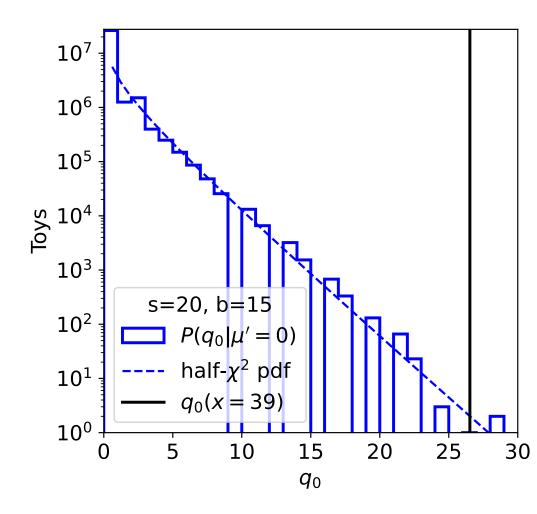


Test statistic for discovery

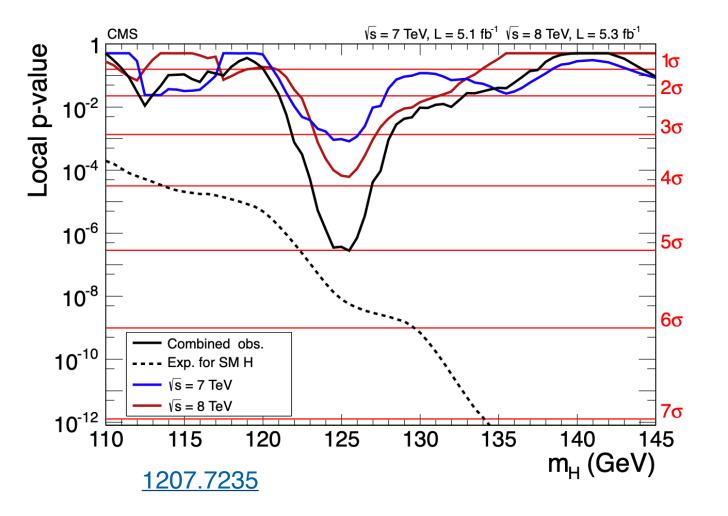
- Poisson with background example $f_P(x; \mu s + b) = \frac{(\mu s + b)^x e^{-(\mu s + b)}}{x!}$ - s=20, b=15 fixed, x=39
- Cannot use t_{μ} :
 - Severe under-fluctuation would count as discovery! Certainly something was discovered, but not an excess over background. Disallow in test statistic:

. Define
$$q_0 = -2 \ln \frac{\mathscr{L}(0)}{\mathscr{L}(\max(0,\hat{\mu}))}$$

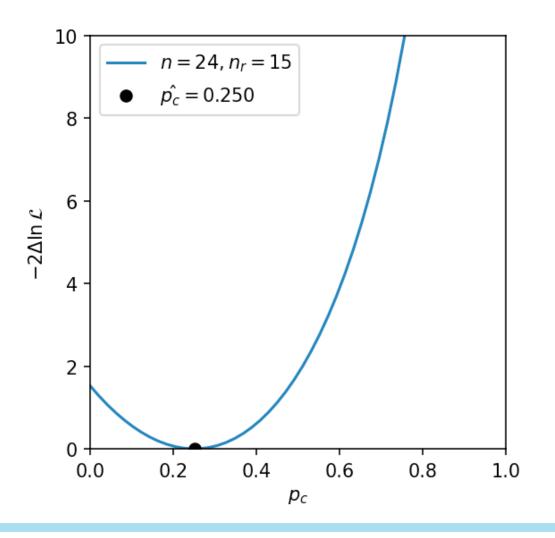
- i.e. under-fluctuations are "not extreme"
- Deceptively simple result: $Z = \sqrt{q_0(x_{obs})}$
 - Only true if one POI



Discovery example

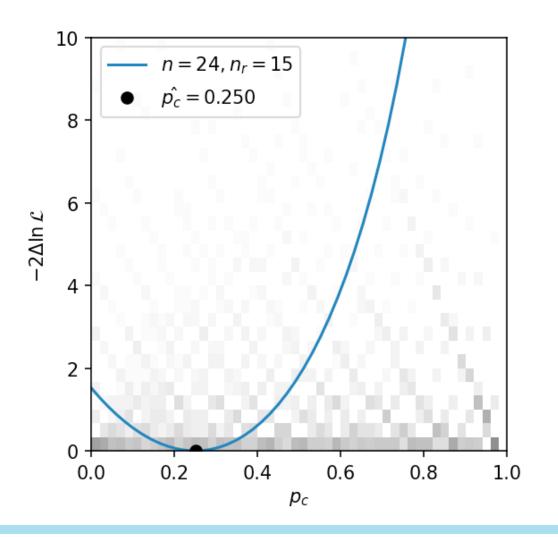


• Coming back to our favorite problem



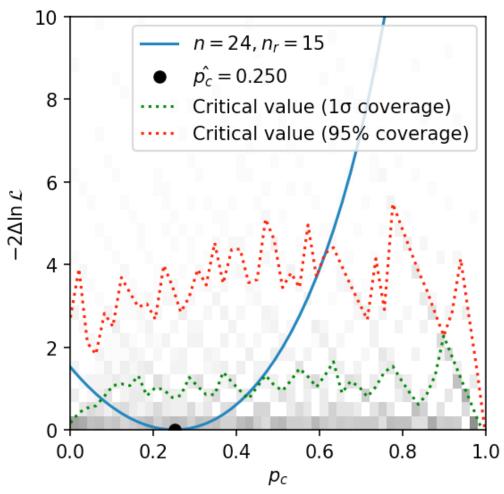
Coming back to our favorite problem

- For no-cheat null hypothesis, $p_0 pprox 0.2$, Z score: 0.88 σ

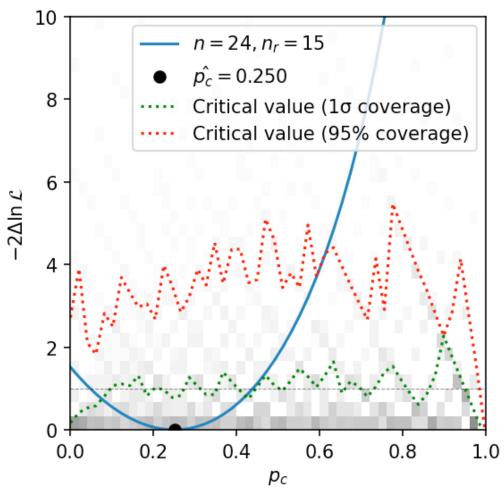


‡ Fermilab

- Coming back to our favorite problem
 - For no-cheat null hypothesis, $p_0 \approx 0.2$, Z score: 0.88 σ
 - 1 σ central interval: $0.08 < p_c < 0.41$



- Coming back to our favorite problem
 - For no-cheat null hypothesis, $p_0 \approx 0.2$, Z score: 0.88 σ
 - 1 σ central interval: $0.08 < p_c < 0.41$



- Coming back to our favorite problem
 - For no-cheat null hypothesis, $p_0 \approx 0.2$, Z score: 0.88 σ
 - 1 σ central interval: $0.08 < p_c < 0.41$

