Intervals

Topics: intervals

- Hypothesis tests
- Neyman intervals
- Likelihood ratio test statistic
	- Neyman-Pearson lemma
- Under-fluctuation and CLs
- Asymptotic behavior Wilk's theorem

Inferring P(cheat) as a frequentist

- Scan $-2 \ln \mathcal{L}(p_c) = -2 \ln f(n_r; n, p_c)$
- Find minimum
- ???
- Profit

Hypothesis tests

consistent with the experimental data?

Hypothesis tests

- Simple test parameterized by two probabilities: α, β
	- β with respect to an alternate hypothesis

Hypothesis test example

- ROC plot: let H_0 be QCD jet
	- DNN tagger score is the test statistic
		- \bullet Lower values more consistent with H_0
- Background efficiency
	- True negative: accept $H_0^{}$ when true
	- -1α (where α is the *size*)
- Signal efficiency
	- True positive: reject H_0 when false - *Power* 1 − *β*
- Prefer tests with higher *power* for a given *size*
	- Here, test size is large
	- Usually test size is *very small*

Comparison of the performance of the $X \rightarrow bb$ identification algorithms … in the 2018 data-taking conditions

줖 Fermilab

Coverage (confidence) sets

- One can ask, "assuming a value of θ , would x_{obs} be a likely outcome?"
	- This is a hypothesis test (sufficiently likely or not)
- We have $P(x; \theta)$, so we can answer this if we:
	- Choose a *size* (significance level) α of the test (e.g. 0.05)
	- Define a test statistic (ordering) of possible outcomes
	- Run pseudo-experiments (toys) for each θ to determine distribution of test statistic
	- Perform experiment, report set of θ where test statistic is below the 1- α quantile
- A good ordering will lead to
	- Good *coverage*: in repeated experiments the (unknown) θ_{true} will be in the set with probability at least 1- α , though it may over-cover
	- High *power* (1-β): the set does not contain θ_{alt} for some specified alternative hypothesis

Neyman interval

- Neyman construction:
	- For each θ , find range $[x_1,x_2]$ s.t.

$$
P(x_1 < x < x_2; \theta) = \int_{x_1}^{x_2} P(x; \theta) \, dx \ge 1 - \alpha
$$

- Perform experiment
- Report confidence interval: $[\theta_1, \theta_2]$ where $x_{\text{obs}} \in [x_1(\theta), x_2(\theta)]$ for all $\theta \in [\theta_1, \theta_2]$
- Interval has coverage $1-\alpha$.
	- For an ensemble of experiments, the interval $[\theta_1, \theta_2]$ will contain (unknown) θ_{true} with probability 1- α . This is a statement about the distribution of θ_1 and θ_2 , NOT θ_{true} .

Possible experimental values x

Neyman interval

- You have all seen these: error bars on data points are the Neyman intervals for a Poisson distribution
	- With $\alpha = 0.159...$

Likelihood ratio test statistic

1. Define
$$
t_{\theta}(x) = -2 \ln \frac{\mathcal{L}(\theta)}{\mathcal{L}(\hat{\theta})} = -2 \ln \frac{f(x; \theta)}{f(x; \hat{\theta})} \ge 0
$$

2. Compute associated pdf (change of variables) $f(t_{\theta}; \theta') = \int \delta(t_{\theta} - t_{\theta}(x)) dP(x; \theta')$

3. For each θ , find the critical value t_{θ ,c} that covers

$$
P(t_{\theta} < t_{\theta,c}) = \int_{0}^{t_{\theta,c}} f(t_{\theta}; \theta' = \theta) \, dt_{\theta} \ge 1 - \alpha
$$

4. Perform experiment, get x_{obs} , report confidence set $\{\theta \,|\: t_\theta(x_{obs}) < t_{\theta,c}\}$

Again, the set is the random variate, and will contain (unknown) θ_{true} with probability at least 1- α . Dimension of θ and x are arbitrary.

춮 Fermilab

If θ is 1-d and t_{θ} is monotone, can make a [Feldman-Cousins](https://arxiv.org/pdf/physics/9711021.pdf) interval.

Neyman-Pearson lemma

- $P(x \in R; \theta) = \alpha$
- $P(x \in R; \hat{\theta}) = 1 \beta$
- $P(x \in R'; \theta) = \alpha$
- $P(x \in R'; \hat{\theta}) < 1 \beta$
	- We reject θ less often

R

 R'

춮 Fermilab

The (log-)likelihood ratio test is the most powerful test for a given size

Frequentists…

Dec 8, 2023 Nick Smith I Statistics 59

- Poisson with background example $P(x; \mu s + b) =$ $(\mu s + b)^{x}e^{-(\mu s+b)}$ *x*!
	- $-$ s=5, b=10 fixed, $x=20$
- Plan: set upper limit on *μ*
- Problem: two-sided region
	- We should not consider $\hat{\mu} > \mu$ to indicate less compatibility with a model that assumes a rate μ .
- Solution: modify test statistic $_{\bullet}$ Define $q_{\mu}=-\,2\ln$ $\mathscr{L}(\mu)$ $\mathscr{L}(\min(\mu, \hat{\mu}))$
	- i.e. over-fluctuations are "not extreme"

 $t_\mu = -2 \ln$ $\mathscr{L}(\mu)$ $\mathscr{L}(\hat{\mu})$

Dec 8, 2023 Nick Smith I Statistics 60

- Poisson with background example $P(x | \mu s + b) =$ $-$ s=5, b=10 fixed, x=20 $(\mu s + b)^{x}e^{-(\mu s+b)}$ *x*!
- Problem: negative $\hat{\mu}$
	- Test stat distribution at 0 should collapse ℒ(*μ*)

• Define
$$
\tilde{q}_{\mu} = -2 \ln \frac{\mathcal{L}(\mu)}{\mathcal{L}(\max(0, \min(\mu, \hat{\mu})))}
$$

• i.e. restrict $\hat{\mu}$ to be positive

- CL_s criterion departs from purely frequentist CL to ameliorate the null set problem (among others)
	- Original expositions by [A. Read,](https://conway.physics.ucdavis.edu/teaching/252C/notes/Read-CLs.pdf) [T. Junk](https://arxiv.org/pdf/hep-ex/9902006.pdf)
	- See also **[PDG 40.4.2.4](https://pdg.lbl.gov/2022/web/viewer.html?file=../reviews/rpp2022-rev-statistics.pdf)**
- First we reformulate our old test:

 $P_\mu = \int$ ∞ *tμ*(*xobs*) $P(t_\mu | \mu' = \mu) dt_\mu$

- This is a p-value
- \Box Then we accept the region $p_\mu > \alpha$
	- Right: initial S+B example reformulated

- CL_s criterion departs from purely frequentist CL to ameliorate the null set problem (among others)
	- Original expositions by [A. Read,](https://conway.physics.ucdavis.edu/teaching/252C/notes/Read-CLs.pdf) [T. Junk](https://arxiv.org/pdf/hep-ex/9902006.pdf)
	- See also **[PDG 40.4.2.4](https://pdg.lbl.gov/2022/web/viewer.html?file=../reviews/rpp2022-rev-statistics.pdf)**
- First we reformulate our old test:

 $P_\mu = \int$ ∞ *tμ*(*xobs*) $P(t_\mu | \mu' = \mu) dt_\mu$

- This is a p-value
- \Box Then we accept the region $p_\mu > \alpha$
	- Right: under-fluctuation S+B example reformulated

- CL_s criterion departs from purely frequentist CL to ameliorate the null set problem (among others)
	- Original expositions by [A. Read,](https://conway.physics.ucdavis.edu/teaching/252C/notes/Read-CLs.pdf) [T. Junk](https://arxiv.org/pdf/hep-ex/9902006.pdf)
	- See also [PDG 40.4.2.4](https://pdg.lbl.gov/2022/web/viewer.html?file=../reviews/rpp2022-rev-statistics.pdf)
- First we reformulate our old test:

 $P_\mu = \int$ ∞ *tμ*(*xobs*) $P(t_\mu | \mu' = \mu) dt_\mu$

• Now define background-only p-value $-1 - p_b =$ ∞ $t_\mu(x_{obs})$ $P(t_{\mu} | \mu' = 0) dt_{\mu}$ *pμ*

• Accept instead
$$
CL_s = \frac{P\mu}{1 - p_b} > \alpha
$$

- CL_s criterion departs from purely frequentist CL to ameliorate the null set problem (among others)
	- Original expositions by [A. Read,](https://conway.physics.ucdavis.edu/teaching/252C/notes/Read-CLs.pdf) [T. Junk](https://arxiv.org/pdf/hep-ex/9902006.pdf)
	- See also [PDG 40.4.2.4](https://pdg.lbl.gov/2022/web/viewer.html?file=../reviews/rpp2022-rev-statistics.pdf)
- First we reformulate our old test:

 $P_\mu = \int$ ∞ *tμ*(*xobs*) $P(t_\mu | \mu' = \mu) dt_\mu$

• Now define background-only p-value $-1 - p_b =$ ∞ $t_\mu(x_{obs})$ $P(t_{\mu} | \mu' = 0) dt_{\mu}$

• Accept instead
$$
CL_s = \frac{p_\mu}{1 - p_b} > \alpha
$$

- No effect in the first example

Asymptotic behavior

- Notice how $t_{\mu,c}$ and $q_{\mu,c}$ tend towards a constant?
- This is [Wilk's theorem](https://en.wikipedia.org/wiki/Wilks%27_theorem) in action
	- Statement: as sample size grows, the distribution of the likelihood ratio $P(t_{\theta} | \theta)$ approaches a χ^2 distribution
		- With df = dim(θ)
	- Hence we can approximate by just evaluating $t_{\theta}(x_{obs})!$
- For q, formulas slightly more complex
	- [CCGV](https://arxiv.org/pdf/1007.1727.pdf) provide the recipe: non-central half- χ^2
	- The non-centrality is found using the *Asimov* dataset
		- A special x_{μ} for a given μ such that $\hat{\mu}(x) = \mu$
		- Note for Poisson data, it may be non-integral!
		- This dataset produces the median expected limit

Asymptotic behavior

• This is how we make deltaNLL contours

scipy.stats.chi2.ppf(q, df)

Asymptotic CLs

Examples

70

Test statistic for discovery

- Poisson with background example $f_P(x; \mu s + b) =$ $(\mu s + b)^{x}e^{-(\mu s+b)}$ *x*!
	- $-$ s=20, b=15 fixed, x=39
- Cannot use t_{μ} :
	- Severe under-fluctuation would count as discovery! Certainly something was discovered, but not an excess over background. Disallow in test statistic:

$$
\text{Define } q_0 = -2 \ln \frac{\mathcal{L}(0)}{\mathcal{L}(\max(0,\hat{\mu}))}
$$

- i.e. under-fluctuations are "not extreme"
- Deceptively simple result: $Z = \sqrt{q_0(x_{obs})}$
	- Only true if one POI

춮 Fermilab

Discovery example

• Coming back to our favorite problem

 E Fermilab

- Coming back to our favorite problem
	- For no-cheat null hypothesis, $p_0 \approx 0.2$, Z score: 0.88 σ

- Coming back to our favorite problem
	- For no-cheat null hypothesis, $p_0\approx 0.2$, Z score: 0.88 σ
	- 1 σ central interval: $0.08 < p_c < 0.41$

- Coming back to our favorite problem
	- For no-cheat null hypothesis, $p_0\approx 0.2$, Z score: 0.88 σ
	- 1 σ central interval: $0.08 < p_c < 0.41$

- Coming back to our favorite problem
	- For no-cheat null hypothesis, $p_0\approx 0.2$, Z score: 0.88 σ
	- 1 σ central interval: $0.08 < p_c < 0.41$

