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Multiple Loss Terms
• Choice of loss function is essential for training any neural network

• Many options discussed this week:

o (Binary) crossentropy, L1 (absolute error), L2 (squared error), Wasserstein metric (earth mover’s 
distance), maximum mean discrepancy, divergences, etc.

• We often include additional loss terms for several reasons:

o Incorporate domain knowledge, i.e. physics

o Account or correct for unwanted effects
• Simplest approach: L = f(𝜃𝜃) + λg(𝜃𝜃)

o λ (relative weight) treated as a hyperparameter:
guess its value based on magnitudes of f and g, how much you want to control an effect, etc.

o In generalize, N–1 λ parameters for N loss terms

• What can go wrong with this approach?
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Pareto Fronts
• Pareto optimal solution: any change to improve one criterion will degrade another criterion
• Pareto front: set of all Pareto optimal solutions
• Which of these pareto fronts will work well when choosing an arbitrary value for α (λ)?

J. Degrave & I. Korshunova
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https://www.engraved.blog/why-machine-learning-algorithms-are-hard-to-tune/


Challenges in Multi-Objective Optimization
• Pareto front shape is unknown

o Depends not just on loss functions, but also on training data,
network architecture & weights, etc.

o May be convex in some areas and concave in others

• Unclear relationship between λ values and loss values at Pareto front

o Hard to control and understand the behavior

• Underlying problem: no mathematical guarantee to be able to
optimize for two things at once!

• Instead: optimize for one thing with constraints on others

o Lagrange multiplier method, introduced in 1804
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Basic Differential Method of Multipliers
• Lagrange multiplier approach: combined loss is L = f(𝜃𝜃) + λ(ε − g(𝜃𝜃))

o ε is the constraint on loss term g

o λ is now a learnable parameter

• Apply gradient descent:

θ′ = – ∂L⁄∂θ = – ∂f⁄∂θ + λ∂g⁄∂θ

λ′ = – ∂L⁄∂λ = – g(θ) + ε

o Critical points of this system are saddle points rather than
minima → no convergence

• Differential method: L = f(𝜃𝜃) – λ(ε − g(𝜃𝜃))

o Gradient ascent in λ → ensure critical points are attractors
θ′ = – ∂f⁄∂θ – λ∂g⁄∂θ
λ′ = g(θ) – ε

o Does it work?

C. Cazzaniga
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Pareto Fronts with BDMM
• Converges to ε in convex case
• Oscillates around ε in concave case → no convergence

J. Degrave & I. Korshunova
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https://www.engraved.blog/how-we-can-make-machine-learning-algorithms-tunable/


Modified Differential Method of Multipliers
• We can obtain an equation of motion from the BDMM gradient descent system:

θ″ + (∂²f⁄∂θ² + λ∂²g⁄∂θ²)θ′ + λ′∂g⁄∂θ = 0
→
θ″ + A(θ, λ)θ′ + (g(θ) – ε)∂g⁄∂θ = 0
o A can be identified as the damping matrix

• LaSalle’s invariance principle:
o Consider region G as an open subset of Rn,

and F ⊂ G* at equilibrium:
F = { θ, λ | θ′ = 0; λ′ = 0; θ, λ ∈ G* }

o If:
a. A is positive definite in G
b. θ, λ are bounded in G
c. F is non-empty

o Then: θ, λ approach F as t → ∞

C. Cazzaniga
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Modified Differential Method of Multipliers
• How to ensure A is positive definite?
o A quadratic penalty term can be added: L = f(𝜃𝜃) – λ(ε − g(𝜃𝜃)) + δ(ε – g(θ))²

o Now A = ∂²f⁄∂θ² + λ∂²g⁄∂θ² + 2δ(∂g⁄∂θ)² + 2δg(θ)∂²g⁄∂θ²

 Theorem: ∃ δ* > 0 such that for δ > δ*, A is positive definite at the minimum

 A is continuous, so A must also be positive definite in a region R around the minimum

 If system starts in R and is bounded in R, will always converge!

• This approach introduces a new hyperparameter δ

o Only influences the rate of convergence

o No change in minima location:
quadratic term minimized for g(θ) = ε

• Let’s test it out!

C. Cazzaniga
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Pareto Fronts with MDMM
• Success!
• Reliable convergence for any Pareto front

J. Degrave & I. Korshunova
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https://www.engraved.blog/how-we-can-make-machine-learning-algorithms-tunable/


Application to Physics
• FastSim refinement: adjust high-level quantities from lower-quality fast simulation to better match 

high-quality (slow) full simulation
o Target: b-jet tagging discriminators

• Two loss terms:
o MSE (Huber): per-object comparison
o MMD: ensemble comparison

• MDMM balances optimally:
o Minimize MSE: bad MMD values
o Minimize MMD: still good MSE!
o Mechanically sketch out

Pareto front by varying ε
• Substantial improvement

in agreement w/ FullSim
• First known usage of MDMM in HEP!

arXiv:2309.12919
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https://arxiv.org/abs/2309.12919


Summary
• Multi-objective training is a natural way to incorporate physics knowledge or other constraints

• MDMM ensures convergence

o Specify constraints on loss terms: easily interpretable

o Pick preferred tradeoff on Pareto front → no guessing!

o Minimal hyperparameter tuning

• Not the only way to handle constrained optimization…

o But (almost) always the best way

• Original paper: J. Platt, A. Barr, “Constrained Differential Optimization”, NeurIPS, 1987

• PyTorch implementation available at https://github.com/crowsonkb/mdmm

o Includes equality, min, and max constraints

o Previously linked article by Degrave and Koshunova includes a basic JAX implementation

• A useful addition to your AI/ML toolkit!
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https://papers.nips.cc/paper/1987/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf
https://github.com/crowsonkb/mdmm
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