Constrained Optimization
for Neural Networks:
a Mini-Lesson



Multiple Loss Terms

Choice of loss function is essential for training any neural network
Many options discussed this week:

o (Binary) crossentropy, L1 (absolute error), L2 (squared error), Wasserstein metric (earth mover’s
distance), maximum mean discrepancy, divergences, etc.

We often include additional loss terms for several reasons:
o Incorporate domain knowledge, i.e. physics
o Account or correct for unwanted effects

Simplest approach: £ =f(8) + Ag(6)

0 A (relative weight) treated as a hyperparameter:
guess its value based on magnitudes of f and g, how much you want to control an effect, etc.

o In generalize, N-1 A parameters for N loss terms

What can go wrong with this approach?



» Pareto optimal solution: any change to improve one criterion will degrade another criterion

Pareto Fronts

» Pareto front: set of all Pareto optimal solutions

» Which of these pareto fronts will work well when choosing an arbitrary value for a. (A)?

Loss #2

Optimising for Different Alphas
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https://www.engraved.blog/why-machine-learning-algorithms-are-hard-to-tune/

Challenges in Multi-Objective Optimization

Pareto front shape is unknown

0 Depends not just on loss functions, but also on training data,
network architecture & weights, etc.

0 May be convex in some areas and concave in others
Unclear relationship between A values and loss values at Pareto front
0 Hard to control and understand the behavior

Underlying problem: no mathematical guarantee to be able to
optimize for two things at once!

Instead: optimize for one thing with constraints on others

o Lagrange multiplier method, introduced in 1804




Basic Differential Method of Multipliers

» Lagrange multiplier approach: combined loss is £ = f(8) + A(e — g(6))

O ¢ is the constraint on loss term ¢

O A is now a learnable parameter

» Apply gradient descent:
0" = — /55 == Vg + XY
N ==, =-0(0)+¢

o Critical points of this system are saddle points rather than
minima — no convergence

o Differential method: £ =f(8) — M — g(0))

0 Gradient ascent in A — ensure critical points are attractors
0" =— Vs — A%
A =g(0)-c¢

o Does it work?
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Pareto Fronts with BDMM

e Converges to € in convex case

e Oscillates around € in concave case — no convergence

The Basic Differential Multiplier Method
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https://www.engraved.blog/how-we-can-make-machine-learning-algorithms-tunable/

Modified Differential Method of Multipliers

« \We can obtain an equation of motion from the BDMM gradient descent system:
0" + (%V + A0Y0)0" + X9 = 0
N
0" + A0, 1) + (9(0) — €)% = 0
0 A can be identified as the damping matrix
« LaSalle’s invariance principle: R”

o Consider region G as an open subset of R", / w
and F c G* at equilibrium:
F={0,A]|0=0;."=0;0,A€e G*}

o If:
a. A is positive definite in G
b.0, A are bounded in G
c. F is non-empty

0 Then: 0, X approach F as t — oo k j
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Modified Differential Method of Multipliers

» How to ensure A is positive definite?
0 A quadratic penalty term can be added: £ =f(8) — A(e — g(8)) + (e — g(0))?
0 Now A =&, + A0V, + 28(%Y0)* + 280(0)7Y
* Theorem: 3 6* > 0 such that for 6 > 6*, A is positive definite at the minimum
= A Is continuous, so A must also be positive definite in a region R around the minimum

> If system starts in R and is bounded in R, will always converge!
Region R

» This approach introduces a new hyperparameter o
path of algori't_b__m_.

0 Only influences the rate of convergence 0.

o No change in minima location:
quadratic term minimized for g(0) =¢

e Let’s test it out!
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e Success!

Pareto Fronts with MDMM

Reliable convergence for any Pareto front

The Modified Differential Method of Multipliers
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Application to Physics

FastSim refinement: adjust high-level guantities from lower-quality fast simulation to better match

high-quality (slow) full simulation Input arXiv:2309.12919 Output Target
o Target: b-jet tagging discriminators » 4x Residual Block ®
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https://arxiv.org/abs/2309.12919

Summary

Multi-objective training is a natural way to incorporate physics knowledge or other constraints
MDMM ensures convergence

o Specify constraints on loss terms: easily interpretable

O Pick preferred tradeoff on Pareto front — no guessing!

o Minimal hyperparameter tuning

Not the only way to handle constrained optimization...

o But (almost) always the best way

Original paper: J. Platt, A. Barr, “Constrained Differential Optimization”, NeurlPS, 1987

PyTorch implementation available at https://github.com/crowsonkb/mdmm

o Includes equality, min, and max constraints
o Previously linked article by Degrave and Koshunova includes a basic JAX implementation

A useful addition to your AlI/ML toolkit!
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https://papers.nips.cc/paper/1987/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf
https://github.com/crowsonkb/mdmm
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