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RECAP

• Last time, we covered:
• History of CNNs
• CNN Ingredients
• CNN use cases, and examples of these cases in physics
• High level thoughts about how to apply a CNN to your dataset.

• This time:
• Briefly, how to train a CNN on simulation that doesn’t quite match data.
• Then, all about GNNs.



USING AI TO SORT CLASSIFY SIGNAL/BACKGROUND
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• Input size 40X40x110 (voxel size 10x10x5 mm3)
• Energy of every event normalized to 1 (so the network 

does not have information about total event energy)
• ~500000 fiducial events, 35% signal
• Network is sparse 3D convolutions

https://link.springer.com/article/10.1007/JHEP01(2021)189
Source Code

https://link.springer.com/article/10.1007/JHEP01(2021)189
https://github.com/coreyjadams/NEXT_SparseEventID


DATA DRIVEN EVALUATION
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1. Fit the histogram to gaussian (signal) and exponential 
(background)

2. Integrate to calculate total number of signal and 
background   

3. Apply ith cut on DNN prediction and calculate metrics

https://link.springer.com/article/10.1007/JHEP01(2021)189
Source Code

https://link.springer.com/article/10.1007/JHEP01(2021)189
https://github.com/coreyjadams/NEXT_SparseEventID


DATA VS MC
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Prediction on data is biased towards lower values

Significant disagreement and performance hit on data

https://link.springer.com/article/10.1007/JHEP01(2021)189
Source Code

https://link.springer.com/article/10.1007/JHEP01(2021)189
https://github.com/coreyjadams/NEXT_SparseEventID


We apply on-the-fly augmentation 
to the training data to prevent the 
network from using these features 
during training.

DATA AUGMENTATION TO PREVENT OVERFITTING
From classical analysis we know there 
are some MC/data differences,  e.g. 
track length, blob energy...
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https://link.springer.com/article/10.1007/JHEP01(2021)189
Source Code

https://link.springer.com/article/10.1007/JHEP01(2021)189
https://github.com/coreyjadams/NEXT_SparseEventID


HOW TO QUANTIFY THE OVERFITTING?

• Can we know if it will work 
before we look at the 
interesting data?  Can we know 
if augmentation is improving 
things?

• Yes – we can use energy 
distance to compare the 
flattened layers in the 
sidebands around the 
interesting data!

• More about energy distance
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https://link.springer.com/article/10.1007/JHEP01(2021)189
Source Code

http://pages.stat.wisc.edu/~wahba/stat860public/pdf4/Energy2/ARSIA-final-sub.pdf
https://link.springer.com/article/10.1007/JHEP01(2021)189
https://github.com/coreyjadams/NEXT_SparseEventID


TRACK ENERGY DISTANCE DURING TRAINING

The energy distance is significantly lower with augmentation than without – this implies 
that the features learned by the network are much more closely related between data/MC 

with augmentation than without.

https://link.springer.com/article/10.1007/JHEP01(2021)189
Source Code

https://link.springer.com/article/10.1007/JHEP01(2021)189
https://github.com/coreyjadams/NEXT_SparseEventID


DATA VS MC (REPEAT)
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Prediction on data is biased towards lower values

Significant disagreement and performance hit on data

https://link.springer.com/article/10.1007/JHEP01(2021)189
Source Code

https://link.springer.com/article/10.1007/JHEP01(2021)189
https://github.com/coreyjadams/NEXT_SparseEventID


WITH AUGMENTATION
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Benefit: The data/MC discrepancy is significantly reduced

Cost: the overall performance of the network is reduced.



TAKEAWAYS

• When your training data does not perfectly match the target data:
• Understand the discrepancies - dead pixels?  Different sensor responses?
• Understand the symmetries: is there a “direction” to events?  Does dropping pixels 

from the training data change the labels?
• If you can remake the training data to match the target data - great!
• If you can’t, use augmentation on the fly.

• Already a well known technique in Comp Sci.
• Focus on label preserving augmentation techniques.

• Use sidebands and statistical measurements (energy distance not unique) to quantify 
discrepancies and know if you are improving things!



GRAPH NEURAL NETWORKS



WHAT MAKES GRAPHS DIFFERENT?

• Graphs are a collection of:
• Nodes - Individual locations that represent some piece of local information
• Edges - Connections between two nodes
• Globals - information that applies to the entire graph.

https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


IMAGES ARE GRAPHS!

https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


GRAPHS ARE MORE GENERAL THAN IMAGES

Generalize images by 
relaxing requirements:
• non-uniform pixel 

spacing
• non-uniform 

connections
• can be directed
• computationally, must 

be permutation invariant



GRAPHS ARE MORE VARIED

Connections in a social 
network are graph data.

The “type” of connections 
(friend / watch / like) is an 
example of an edge feature.



PHYSICS GRAPHS ARE MORE IMAGE-Y

We often use graphs when 
images don’t make sense:
• How to embed 

circular/cylindrical data 
into an image?

• What if pixels are a 
differnt size?

• What about GEANT 
output, directed particle 
interactions at specified 
locations?



GRAPH MATH

• Graphs can be large, and 
often sparse.
• Nodes can be stored 

in arrays of [n_nodes, 
n_node_features]

• Edges can be stored 
in arrays of [n_edges, 
n_edge_features]

• The adjacency 
matrix is a sparse 
connectivity between 
nodes

https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


GRAPH OPERATIONS

If Graphs are generalizations of images, what’s the generalization of convolutions?

We have learnable functions (MLPs) 
that operate on a local neighborhood of a 

node to update the node.
https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


GRAPH OPERATIONS

Formally, if hk
(i-1) represents the node k at layer i-1:

ak
i = AGGREGATE(hu

(i-1), u connected to k)

hk
i  = COMBINE(hk

(i-1), ak
i)

Most graph convolutions can be written like this 

(assuming all edges have no features, like images)

How Powerful are Graph Neural Networks?

https://arxiv.org/pdf/1810.00826.pdf


GRAPH OPERATIONS

After multiple layers of graph AGGREGATE and COMBINE, you can READOUT your 
graph information for the prediction of the network.

Possible graph-level readout: POOL over the nodes

(aka, sum(nodes, axis=0) where nodes has shape [n_nodes, n_features])

AGGREGATE, COMBINE, READOUT all often have learnable parameters, typically as 
MLPs.  READOUT is almost certainly required to be permutation-invariant.

How Powerful are Graph Neural Networks?

https://arxiv.org/pdf/1810.00826.pdf


WHAT ABOUT THE EDGES?

For nodes h and edges e:

Where M, and U are learnable “message” and “update” functions.

(Upon close inspection, the previous operations are variants of Message Passing!)

Neural Message Passing for Quantum 
Chemistry

https://arxiv.org/pdf/1704.01212v2.pdf


BUILDING YOUR GNN

• Most parameters of a GNN come from the learnable parameters of aggregation, 
message creation, etc.

• Normalization of your data is still valuable!

• Pooling of information between nodes, with or without messages, is critical for the 
network.

• Pooling of the graph, however, is not a well defined operation in many cases!



GRAPH POOLING

Graph Pooling is an ill-defined, ambiguous task.  

Recent results call into question if it is worth pooling at all...
https://arxiv.org/pdf/2110.05292.pdf

https://arxiv.org/pdf/2110.05292.pdf



GRAPH U NETS

• Downsampling learns a 
trainable projection 
layer, per downsample, 
to select nodes.

• Also used in a sigmoid 
to gate information flow 
(and make it 
differentiable!)

https://arxiv.org/abs/1905.05178

https://arxiv.org/abs/1905.05178


GRAPH U NETS

Results improve upon contemporary models but not in all cases....

https://arxiv.org/abs/1905.05178

https://arxiv.org/abs/1905.05178


CONNECTING YOUR GNN

• Usually, defining nodes is easy in graphs, especially physics graphs.
• Typically have some “position” (x/y/z or similar) and some “feature”.
• You can often just concatenated these together and have node features.
• Much like MLPs and dense neural networks, feature normalization can be useful.

• Connecting nodes and defining edges:
• Sometimes easy (particle flow data)
• Sometimes ambiguous.
• When in doubt, try k-NN algorithm
• Usually, don’t connect all-to-all!

• Defining Edge features?
• If nothing else, displacement vector of features
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EXAMPLE: CLASSIFICATION WITH GNNS

Icecube, at the south pole, has regular but 
not rectangular sensor layouts - CNNs are 

not a great fit.  GNNs instead are an 
improvement.

https://arxiv.org/pdf/1809.06166.pdf

https://arxiv.org/pdf/1809.06166.pdf


EXAMPLE: CLASSIFICATION WITH GNNS

https://arxiv.org/pdf/1809.06166.pdf

Both GNNs and CNNs (on transformed 
data) are tested, using a Graph Convolution 
operator.  GNNs significantly outperform 

CNNs.

https://arxiv.org/pdf/1809.06166.pdf


EXAMPLE: CLASSIFICATION WITH GNNS

https://arxiv.org/abs/2209.03042

2022 Update from Icecube extends GNN 
usecase to lower energy events.

https://arxiv.org/abs/2209.03042


EXAMPLE: CLASSIFICATION WITH GNNS

https://arxiv.org/abs/1902.08570

Improvement in classification metrics as well as in 
regression variables (energy, angles) compared to 

traditional reconstruction.

https://arxiv.org/abs/1902.08570


EXAMPLE: SEGMENTATION WITH GNNS

Graph neural network for 3D classification of ambiguities and optical 
crosstalk in scintillator-based neutrino detectors.

Challenge: 2D scintillator data projected to 
3D images can produce fake 3D hits from 

crosstalk or coincidence hits (ghost) - can a 
GNN label everything correctly looking at 

all 3D hits?

Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-based neutrino detectors.


EXAMPLE: SEGMENTATION WITH GNNS

Graph neural network for 3D classification of ambiguities and optical 
crosstalk in scintillator-based neutrino detectors.

3 layers of GraphSAGE + aggregation + 
fully connected + per-node segmentation

Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-based neutrino detectors.


EXAMPLE: CLASSIFICATION WITH GNNS

Jet Tagging via Particle Clouds

Challenge: Jet images are 
sparse and CNNs are highly 
inefficienct - can GNNs 
improve over CNNs?

Input features include 
significant derived physics 

information.

https://arxiv.org/pdf/1902.08570.pdf


EXAMPLE: CLASSIFICATION WITH GNNS

Jet Tagging via Particle Clouds

In tests, ParticleNet 
outperforms other 
methods in accuracy 
metrics.   

https://arxiv.org/pdf/1902.08570.pdf


EXAMPLE: CLASSIFICATION WITH GNNS

Jet Tagging via Particle Clouds

But, it is hard to compete 
against vendor optimized 
convolutional kernels for 
performance

https://arxiv.org/pdf/1902.08570.pdf


EXAMPLE: THEORY WITH GNNS

https://github.com/google-deepmind/ferminet

• Variational Monte Carlo is a numerical technique for solutions to the Schrodinger 
Equation:
• Requires an “ansatz” aka a trial wavefunction that can be optimized.
• The wavefunction must obey physial principles (twice differentiable, continous, 

antisymmetric under exchange of Fermions)
• The wavefunction must be sufficiently general to capture all the physics of the 

system.

Graph Neural Networks are an ideal candidate 
for building an ansatz.

https://github.com/google-deepmind/ferminet


EXAMPLE: FERMINET

Ferminet solves molecular physics by encoding 
electron locations in a dynamic graph.

https://github.com/google-deepmind/ferminet

https://github.com/google-deepmind/ferminet


EXAMPLE: FERMINET

• Nuclei locations are “constants” while electron 
positions are inputs to the network.

• Two-body correlations directly learned by the 
network.

• Ferminet beats traditional methods of encoding 
wavefunctions by applying permutation 
invariant methods to the particle positions.

• Antisymmetry is enforced through the use of 
Slater Determinants - the permutation 
invariance of GNNs is critical to constructing a 
physical wavefunction.

https://github.com/google-deepmind/ferminet

https://github.com/google-deepmind/ferminet


EXAMPLE: VARIATIONAL MONTE CARLO

https://arxiv.org/abs/2007.14282

Simpler than FermiNet: dump a bunch 
of protons and neutrons together  in an 
all-to-all GNN and solve for the 
minimum energy.

https://arxiv.org/abs/2007.14282



EXAMPLE: VARIATIONAL MONTE CARLO

https://arxiv.org/pdf/2305.08831.pdf

“Ultra cold Fermi Gas” - apply a message passing GNN to transform electron positions 
and features (spin) before applying an antisymmetric function (“pfaffian”).

https://arxiv.org/pdf/2305.08831.pdf


WRITING A GNN FOR YOURSELF

• Use the libraries out there!
• Pytorch Geometric

• Dynamic dispatch (just like torch), fast and easy to use
• Probably leaves performance on the table

• Jraph (JAX)
• Disclaimer: I haven’t used it!
• Probably very fast, due to JIT compilation
• Pads data to enable static runtime shapes (required in JAX).

• TF GNN
• It also exists?

https://pytorch-geometric.readthedocs.io/en/latest/
https://github.com/google-deepmind/jraph
https://github.com/tensorflow/gnn


WRAPPING UP GNNS

• If you want to apply machine learning and your dataset doesn’t have rectangular 
structure, Graph Neural Networks can be a powerful tool.

• Compared to CNNs, there is much less consensus about what makes a good GNN.
• Part of this is because the variety in graphs is much much larger than in image data!

• What I’ve covered is really the tip of the iceberg:
• Graph Transformers
• Graph Residual Networks
• Going Deeper with GNNs

• All of the challenges with CNNs may still apply!  (data/mc in particular)

https://arxiv.org/abs/2012.09699v2
https://arxiv.org/pdf/1909.05729.pdf
https://arxiv.org/pdf/2007.09296.pdf


THANK YOU FOR LISTENING, AND I HOPE IT 
WAS USEFUL!

QUESTIONS?


