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RECAP

« Last time, we covered:
o History of CNNs
 CNN Ingredients
» CNN use cases, and examples of these cases in physics
* High level thoughts about how to apply a CNN to your dataset.

e This time:

* Briefly, how to train a CNN on simulation that doesn’t quite match data.
e Then, all about GNNs.
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USING Al TO SORT CLASSIFY SIGNAL/BACKGROUND
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“ * Energy of every event normalized to 1 (so the network
does not have information about total event energy)
L « ~500000 fiducial events, 35% signal
[ o * Network is sparse 3D convolutions

https://link.springer.com/article/10.1007/JHEP01(2021)189
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https://link.springer.com/article/10.1007/JHEP01(2021)189
https://github.com/coreyjadams/NEXT_SparseEventID

DATA DRIVEN EVALUATION
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https://link.springer.com/article/10.1007/JHEP01(2021)189
https://github.com/coreyjadams/NEXT_SparseEventID

DATA VS MC
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https://link.springer.com/article/10.1007/JHEP01(2021)189
https://github.com/coreyjadams/NEXT_SparseEventID

DATA AUGMENTATION TO PREVENT OVERFITTING
We apply on-the-fly augmentation

From classical analysis we know there to the training data to prevent the
are some MC/data differences, e.g. network from using these features
track length, blob energy... during training
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https://link.springer.com/article/10.1007/JHEP01(2021)189
https://github.com/coreyjadams/NEXT_SparseEventID

HOW TO QUANTIFY THE OVERFITTING?

1200 e e side bands
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e Can we know if it will work
before we look at the 800
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If augmentation is improving

things? 0
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https://link.springer.com/article/10.1007/JHEP01(2021)189
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http://pages.stat.wisc.edu/~wahba/stat860public/pdf4/Energy2/ARSIA-final-sub.pdf
https://link.springer.com/article/10.1007/JHEP01(2021)189
https://github.com/coreyjadams/NEXT_SparseEventID

TRACK ENERGY DISTANCE DURING TRAINING

The energy distance is significantly lower with augmentation than without — this implies
that the features learned by the network are much more closely related between data/MC
with augmentation than without.
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https://link.springer.com/article/10.1007/JHEP01(2021)189
https://github.com/coreyjadams/NEXT_SparseEventID

DATA VS MC (REPEAT) .
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https://link.springer.com/article/10.1007/JHEP01(2021)189
https://github.com/coreyjadams/NEXT_SparseEventID

WITH AUGMENTATION
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Benefit: The data/MC discrepancy is significantly reduced

Cost: the overall performance of the network is reduced.
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TAKEAWAYS

* When your training data does not perfectly match the target data:

» Understand the discrepancies - dead pixels? Different sensor responses?

« Understand the symmetries: is there a “direction” to events? Does dropping pixels
from the training data change the labels?

» If you can remake the training data to match the target data - great!

» If you can’t, use augmentation on the fly.
» Already a well known technique in Comp Sci.
» Focus on label preserving augmentation techniques.

» Use sidebands and statistical measurements (energy distance not unique) to quantify
discrepancies and know if you are improving things!
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GRAPH NEURAL NETWORKS
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WHAT MAKES GRAPHS DIFFERENT?

o Graphs are a collection of:
* Nodes - Individual locations that represent some piece of local information
* Edges - Connections between two nodes
» Globals - information that applies to the entire graph.
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https://distill.pub/2021/gnn-intro/
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https://distill.pub/2021/gnn-intro/

IMAGES ARE GRAPHS!
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https://distill.pub/2021/gnn-intro/

GRAPHS ARE MORE GENERAL THAN IMAGES

Generalize images by -/ | & ATLAS

relaxing requirements: DTN P EXPERIMENT

 non-uniform pixel SAXTN o
spacing

e non-uniform
connections

e can be directed

e computationally, must
be permutation invariant

r‘?’: U.S. DEPARTMENT OF Argopne National Laboratory is a
{ZJENERGY Y5 ezmeroibreg thormey Argonne i}
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GRAPHS ARE MORE VARIED

watch

The “type” of connections

" e (friend / watch / like) is an

q example of an edge feature.
’ friend

’ e Connections in a social
‘ network are graph data.
e frien

U.s. DEPARTMENT OF _ Argonne National Laboratory is a A
ENERGY U.S. Department of Energy laboratory r On ne
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PHYSICS GRAPHS ARE MORE IMAGE-Y

We often use graphs when
Images don’t make sense:

How to embed
circular/cylindrical data
into an image?

What if pixels are a
differnt size?

What about GEANT
output, directed particle
interactions at specified
locations?

nnnnnnnnnnnnnnnnnn



GRAPH MATH

Graphs can be large, and
often sparse.

Nodes can be stored
in arrays of [n_nodes,
n_node_features]
Edges can be stored
in arrays of [n_edges,
n_edge features]
The adjacency
matrix is a sparse
connectivity between
nodes

Adjacency List

Global

https://distill.pub/2021/gnn-intro/
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https://distill.pub/2021/gnn-intro/

GRAPH OPERATIONS

If Graphs are generalizations of images, what’s the generalization of convolutions?

We have learnable functions (MLPS)
that operate on a local neighborhood of a

node to update the node.
https://distill.pub/2021/gnn-intro/

§558, U.s. DEPARTMENT OF  Argonne National Laboratory is a
6042 ENERGY U.S. Department of Energy laboratory
EN managed by UChicago Argonne, LLC.
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https://distill.pub/2021/gnn-intro/

GRAPH OPERATIONS

Formally, if h, (-1 represents the node k at layer i-1:

a, ' = AGGREGATE(h,(-D, u connected to k)
h = COMBINE(h,(-D, a,1)

Most graph convolutions can be written like this
(assuming all edges have no features, like images)

How Powerful are Graph Neural Networks?

nnnnnnnnnnnnnnnnnn



https://arxiv.org/pdf/1810.00826.pdf

GRAPH OPERATIONS

After multiple layers of graph AGGREGATE and COMBINE, you can READOUT your
graph information for the prediction of the network.

Possible graph-level readout: POOL over the nodes
(aka, sum(nodes, axis=0) where nodes has shape [n_nodes, n_features])

AGGREGATE, COMBINE, READOUT all often have learnable parameters, typically as
MLPs. READOUT is almost certainly required to be permutation-invariant.

How Powerful are Graph Neural Networks?

AAAAAAAAAAAAAAAAAA



https://arxiv.org/pdf/1810.00826.pdf

WHAT ABOUT THE EDGES?

For nodes h and edges e:

mitl = Z M (ht, bt eyw)
weN (v)

hy™ = U(hy, my™)

U

Where M, and U are learnable “message” and “update” functions.
(Upon close inspection, the previous operations are variants of Message Passing!)

Neural Message Passing for Quantum
Chemistry Argonne &

nnnnnnnnnnnnnnnnnn
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https://arxiv.org/pdf/1704.01212v2.pdf

BUILDING YOUR GNN

« Most parameters of a GNN come from the learnable parameters of aggregation,
message creation, etc.

« Normalization of your data is still valuable!

« Pooling of information between nodes, with or without messages, is critical for the
network.

» Pooling of the graph, however, is not a well defined operation in many cases!

nnnnnnnnnnnnnnnnnn




GRAPH POOLING

Graph Pooling is an ill-defined, ambiguous task.

Table 6: Accuracy on the graph classification benchmarks®

No-pool  DiffPool  MinCut NMF LaPool TopK SAGPool NDP Graclus

Colors-3 408421 552415 6001 a0 297 417 449 40 269 tan 344 452 254 vis 29.5 420
Triangles 935407 913 202 953 405 581 452 8B840s 7524075 BO03 ise  T53 40 T1d 449
Proteins 68.8:28  T00 406 TIB 4oz 689 434 729 420 TL3 w0z 737 tos 68.4 134 T2.6 +1
Enzymes 836420 724150 B36 406 324 450 B50 4102 BLO 10w 688 £z 848 £32 854 pan
DD Bl.1saa 75611 825 e OOR O0R BO4 409 TOAN 4297 79.6 412 T8.3 420
Mutagen. 780:s 762404 T390 703 06 753000 58 40s 769D wia 769 £1a 742 4os
ModelNet 810205 704 224 759 42 O0OR O0R T4.1 430 TLO 426 T7.1 26 839 4as

Rank * 4.43 2.57 7.14 4.29 4.71 3.86 4.29 4.29

Recent results call into question if it is worth pooling at all...
https://arxiv.org/pdf/2110.05292.pdf

U.S. DEPARTMENT OF _ Argonne National Laboratory is a
US. Department of Energy laboratory A
ENERGY .05y ceilis et reonne
NATIONAL LABORATORY
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GRAPH U NETS

sigmoid

1
[1z1] idx
¥ wopk
P ‘
A £+1
Inputs Projection Top k Node Selection Gate Outputs

https://arxiv.org/abs/1905.05178

U.S. DEPARTMENT OF  Argonne National Laboratory is a
ENERGY U.S. Department of Energy laboratory
managed by UChicago Argonne, LLC.

Downsampling learns a
trainable projection
layer, per downsample,
to select nodes.

Also used in a sigmoid
to gate information flow
(and make it
differentiable!)

Argonne &


https://arxiv.org/abs/1905.05178

GRAPH U NETS

Table 4. Results of inductive learning experiments in terms of graph classification accuracies on D&D, PROTEINS, and COLLAB datasets.
g-U-Nets denotes our proposed graph U-Nets model.

Models D&D PROTEINS COLLAB
PSCN (Niepert et al., 2016) 76.27% 75.00% 712.60%
DGCNN (Zhang et al., 2018) 19.37% 76.26% 13.76%
DiffPool-DET (Ying et al., 2018) 15.47% 715.62% 82.13%
DiffPool-NOLP (Ying et al., 2018) 79.98% 76.22% 715.58%
DiffPool (Ying et al., 2018) 80.64% 76.25% 75.48%
g-U-Nets (Ours) 82.43% 77.68% 77.56%

(% ENERGY

Results improve upon contemporary models but not in all cases....

https://arxiv.org/abs/1905.05178



https://arxiv.org/abs/1905.05178

CONNECTING YOUR GNN

« Usually, defining nodes is easy in graphs, especially physics graphs.
» Typically have some “position” (x/y/z or similar) and some “feature”.
* You can often just concatenated these together and have node features.
* Much like MLPs and dense neural networks, feature normalization can be useful.

« Connecting nodes and defining edges:
» Sometimes easy (particle flow data) °*
e Sometimes ambiguous.
* When in doubt, try k-NN algorithm -
e Usually, don’t connect all-to-all! ) ¥ .

» Defining Edge features?
 If nothing else, displacement vector of features

AAAAAAAAAAAAAAAAAA




CONNECTING YOUR GNN

« Usually, defining nodes is easy in graphs, especially physics graphs.
» Typically have some “position” (x/y/z or similar) and some “feature”.
* You can often just concatenated these together and have node features.
* Much like MLPs and dense neural networks, feature normalization can be useful.

« Connecting nodes and defining edges:
» Sometimes easy (particle flow data) °*
e Sometimes ambiguous.
* When in doubt, try k-NN algorithm -
e Usually, don’t connect all-to-all! ) ¥ .

» Defining Edge features?
 If nothing else, displacement vector of features
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EXAMPLE: CLASSIFICATION WITH GNNS

Icecube, at the south pole, has regular but
not rectangular sensor layouts - CNNs are
not a great fit. GNNs instead are an
improvement.

https://arxiv.org/pdf/1809.06166.pdf

Argonne &



https://arxiv.org/pdf/1809.06166.pdf

EXAMPLE: CLASSIFICATION WITH GNNS

GConv(X®) = [AX®), X®)(a)T 4 )1,

Both GNNs and CNNs (on transformed
data) are tested, using a Graph Convolution
operator. GNNs significantly outperform

CNNE.
# events per yedar
Method Signal  Background  Signal:Noise
Physics Baseline 0.922 0.934 (.987
D CNN 1.815 1.937 0.937
GNN 5772 1.937 2.980

True Positive Rate {Signal Efficiency)

L0

0.0

® CNN
m  GNM
@ Baseline

107

10-%

105 104 10-3 1012 101

False Positive Rate (1- BG rejection)

https://arxiv.org/pdf/1809.06166.pdf
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https://arxiv.org/pdf/1809.06166.pdf

EXAMPLE: CLASSIFICATION WITH GNNS

Imput Graph
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https://arxiv.org/abs/2209.03042

EXAMPLE: CLASSIFICATION WITH GNNS

Targets  Description Residual Definition 200 I dynedge 7
v/u Classification of neutrino vs. muon events — — £ 4 dynedge ¢
: oo ; g Retro T
Deposited energy of neutrino interaction Ri =log g (Erco) — 1084 (Eirue) -% 150 Retro ¢
6. ¢ Zenith and azimuth angles of neutrino Rypele = angle ., — angle . ‘2125
r Direction vector of neutrino R; = arccos IFFN?I’I-IF??C I irﬂn e
Viyz Vertex position of neutrino interaction Ry, = Iﬁm = f_"mcl E’ 75 o
T/C Classification into tracks and cascades - H 50 o
24 T T T T T
v/u T/C
- 1.0
=i
i
g 097 al - 0.8
=] |
]
i . L 0.6
B 0.8 4
& !
g 071 " Improvement in classification metrics as well as in
=
A ©035078) e T g g ~— Qeosn (02 regression variables (energy, angles) compared to
0.6 .
Rl S == Dyl;ladg’e — Dynedge L. R
® (0.003,0.602) AUC: 0.062 Wetag) traditional reconstruction.

00 01 02 03 04 05 0600 02 04 06 08 1.0

https://arxiv.org/abs/1902.08570
oty Argonne -
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https://arxiv.org/abs/1902.08570

EXAMPLE: SEGMENTATION WITH GNNS

30 Image: Hx L x W pixels Graph: K nodes « N edges

\
Challenge: 2D scintillator data projected to - 5
3D images can produce fake 3D hits from > <83
crosstalk or coincidence hits (ghost) - can a L B o
GNN label everything correctly looking at I § L @ ek
all 3D hits? X A A S

Illjl L

Graph neural network for 3D classification of ambiguities and optical
S ey crosstalk in scintillator-based neutrino detectors. Argonne &
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Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-based neutrino detectors.

EXAMPLE: SEGMENTATION WITH GNNS

a | : Ly . -\”’:- . .'-:,-'.I
- -
L& L 3 ot

i:l.
.r L]

] GNN Charge Cut
3 layers of GraphSAGE + aggregation + ok Diles Track Other
fully connected + per-node segmentation Efficiency 94% °96% |Efficlency 93% 80%
Purity 96% 95% |Purity B0% 91%

TABLE IV: Mean efficiencies and purities of voxel
classification for the GNN and a simple charge cut.

Graph neural network for 3D classification of ambiguities and optical
(@ ENERGY 5ttty crosstalk in scintillator-based neutrino detectors. Argonne &



Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-based neutrino detectors.

EXAMPLE: CLASSIFICATION WITH GNNS

§558, U.s. DEPARTMENT OF  Argonne National Laboratory is a
6042 ENERGY U.S. Department of Energy laboratory
EN managed by UChicago Argonne, LLC.

Challenge: Jet images are
sparse and CNNs are highly
inefficienct - can GNNs
improve over CNNs?

Input features include

significant derived physics
information.

Jet Tagqging via Particle Clouds

EdgeConv Block
=16,C=

r—i

EdgeConv Block
k=16, C=(128, 128, 128)

—

EdgeConv Block
k=186, C = (256, 256, 256)
p ¥
{ Global Average Pooling ]

+

Fully Connected
256, RelL U, Dropout = 0.1 |

¥

Fully Connected
2

¥
Softmax J

(a) ParticleNet

EdgeConv Block
,32,32)

{ EdgeConv Block ‘

64 64, 64)

Global Average Pooling J

Fully Connected
128, RelLU, Dropout = 0.1

|

{ Fully Connected
2

|

‘ Softmax

(b) ParticleNet-Lite
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https://arxiv.org/pdf/1902.08570.pdf

EXAMPLE: CLASSIFICATION WITH GNNS

) Parameters Time (CPU) [ms] Time (GPU) [ms]
In tests, ParticleNet ResNeXt-50 TA6M 74 0.22
P-CNN 348k 1.6 0.020
outperforms other PEN 89k 0.8 0.018
H ParticleNet-Lite 26k 2.4 0.084
methOdS In accuracy ParticleNet 366k 23 0.92
metrics.
Accuracy AUC 1/ep at e5 = 50% 1/cp at 5 = 30%
ResNeXt-50 0.936 0.9837 302+5 1147 £ 58
P-CNN 0.930 0.9803 201 +4 759 + 24
PFN - 0.9819 247 £ 3 888 +£ 17
ParticleNet-Lite 0.937 0.9844 325+ 5 1262 + 49
ParticleNet 0.940 0.9858 397+ 7 1615 + 93

Jet Tagqging via Particle Clouds

nnnnnnnnnnnnnnnnnn



https://arxiv.org/pdf/1902.08570.pdf

EXAMPLE: CLASSIFICATION WITH GNNS

But, it is hard to compete
against vendor optimized
convolutional kernels for
performance

Parameters Time (CPU) [ms] Time (GPU) [ms]
ResNeXt-50 1.46M 7.4 0.22
P-CNN 348k 1.6 0.020
PEFN 82k 0.8 0.018
ParticleNet-Lite 26k 24 0.084
ParticleNet 366k 23 0.92

Accuracy AUC 1/ep at e5 = 50% 1/cp at 5 = 30%
ResNeXt-50 0.936 0.9837 302 +5 1147 4+ 58
P-CNN 0.930 0.9803 201 +4 759 + 24
PFN - 0.9819 247+ 3 888 + 17
ParticleNet-Lite 0.937 0.9844 325 +5 1262 + 49
ParticleNet 0.940 0.9858 397+ 7 1615 + 93

Jet Tagqging via Particle Clouds

nnnnnnnnnnnnnnnnnn


https://arxiv.org/pdf/1902.08570.pdf

EXAMPLE: THEORY WITH GNNS

» Variational Monte Carlo is a numerical technique for solutions to the Schrodinger
Equation:
* Requires an “ansatz” aka a trial wavefunction that can be optimized.
« The wavefunction must obey physial principles (twice differentiable, continous,
antisymmetric under exchange of Fermions)
» The wavefunction must be sufficiently general to capture all the physics of the

system. I
Uy |H | Wy 5 i
—_— v > E
Wy Uy Vv Z Lo
Graph Neural Networks are an ideal candidate
for building an ansatz.
G ERERGY e https://github.com/google-deepmind/ferminet Argonne &
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https://github.com/google-deepmind/ferminet

EXAMPLE: FERMINET

Ferminet solves molecular physics by encoding
electron locations in a dynamic graph.

https://github.com/google-deepmind/ferminet

AAAAAAAAAAAAAAAAAA


https://github.com/google-deepmind/ferminet

EXAMPLE: FERMINET

* Nuclei locations are “constants” while electron
positions are inputs to the network.

» Two-body correlations directly learned by the

network. i S
» Ferminet beats traditional methods of encoding E "
wavefunctions by applying permutation “;
invariant methods to the particle positions. a |t
« Antisymmetry is enforced through the use of i _
Slater Determinants - the permutation I e —
i C M

- Slater-Jastrow, Seth (2011}
m:= Slater-Jastrow-backflow, Seth (2011}
—=— Slater-jastrow Net
remee Slaber-Jadtrow-badk flow Net
Farmi Net
== Chemical acturacy

invariance of GNNs is critical to constructing a
physical wavefunction.

https://github.com/google-deepmind/ferminet

AAAAAAAAAAAAAAAAAA


https://github.com/google-deepmind/ferminet

EXAMPLE: VARIATIONAL MONTE CARLO

Simpler than FermiNet: dump a bunch

2 = 0 .
Hpo = - Z f" + Y (C1+ Cadi - ay) eThA A of protons and neutrons together in an
TV TR
¥ i all-to-all GNN and solve for the
r,'—o-rz Al 1 - .
+ Do ;kz ( minimum energy.
] cycC

F{xl._....xA}—;J;(Zé}—{x ) .FZHV

| — MO
1.2 1 ¥ ANN
Lol = :_l _ A |[VMC-ANN VMC-JS GFMC GFMC.
g ] \ oy |2E0T| —2224(1) —2.223(1) —2.224(1)
" 0 6fm~'| —2.224(4) —2.220(1) —2.225(1)
<06 o 1| ™l frh— Sy 4fm™"| —8.26(1) -7.80(1) —8.38(2) -7.82(1)
=" ] i A 6fm=!| —8.27(1) -7.74(1) —8.38(2) —7.81(1)
| s s \ . |A0m T| —23.30(2) —22.54(1) —23.62(3) —22.77(2)
0.2t L P = :‘.' Hﬂ N =1 <
2 N | Y 6 fn~'| —24.47(3) —23.44(2) —25.06(3) —24.10(2)
. | \
0.0 ey - & = '
0o 0 T G 0 75 0 15 30

o fm)
https://arxiv.org/abs/2007.14282
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EXAMPLE: VARIATIONAL MONTE CARLO

“Ultra cold Fermi Gas” - apply a message passing GNN to transform electron positions
and features (spin) before applying an antisymmetric function (“pfaffian’).

0.601 === DMC-PW  —8— SI-PW
0.58 4 — DMC-BCS —&— SJ-BF
5 0.56 4 .-—___—-._ _.*'_ p]—BF
N ons body 054 pom————————————————————— ===l
g;' 0.52 4
-...::::: ____ s ..______._
00,50 1 —8
o 0.48 -
0.46 4
layer T
0441 A— =
I 2 5

MPNN Depth T

https://arxiv.org/pdf/2305.08831.pdf
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https://arxiv.org/pdf/2305.08831.pdf

WRITING A GNN FOR YOURSELF

o Use the libraries out there!
o Pytorch Geometric
» Dynamic dispatch (just like torch), fast and easy to use
* Probably leaves performance on the table
* Jraph (JAX)
o Disclaimer: | haven’t used it!
* Probably very fast, due to JIT compilation
» Pads data to enable static runtime shapes (required in JAX).
e TEGNN
o It also exists?

557, Uss. DEPARTMENT OF  Argonne National Laboratory is a
7 ENERGY U.S. Department of Energy laboratory
NP managed by go Argonne, LLC.
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https://pytorch-geometric.readthedocs.io/en/latest/
https://github.com/google-deepmind/jraph
https://github.com/tensorflow/gnn

WRAPPING UP GNNS

 |f you want to apply machine learning and your dataset doesn’t have rectangular
structure, Graph Neural Networks can be a powerful tool.

« Compared to CNNs, there is much less consensus about what makes a good GNN.
» Part of this is because the variety in graphs is much much larger than in image data!

* What I’ve covered is really the tip of the iceberg:
e Graph Transformers
* Graph Residual Networks
» Going Deeper with GNNs

« All of the challenges with CNNs may still apply! (data/mc in particular)

77, Us. DEPARTMENT OF  Argonne National Laboratory is a
ENERGY USS. Department of Energy laboratory
managed by go Argonne, LLC.
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https://arxiv.org/abs/2012.09699v2
https://arxiv.org/pdf/1909.05729.pdf
https://arxiv.org/pdf/2007.09296.pdf

THANK YOU FOR LISTENING, AND I HOPE I'T
WAS USEFUL!

QUESTIONS?

’5/?\\"\ U.S. DEPARTMENT OF _ Argonne National Laboratory is a
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