Office of

#Fermilab g@ EﬁPAERTﬁEFY Science

Simulation-based inference
[Deserved] hype, tutorial, and future outlook and challenges

Becky Nevin and DeepSkies Lab

December, 2023
COFI Al/ML Winter School



About me

% Fermilab



The Deqoskie,s Lob SBI teawm

¥, <
gy

L '/J ’ “"'.\ G

RN \

Aleksano(m é?pﬁ:\omovié Marcos T amargo

—m

(Moonzaﬁn Re_zo.j

Yuomyuo.n Zhang




It’s Saturday, prizes!
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Ilteratively updating our presentation prior

Jason Poh

Sreevani Tarugula
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Ilteratively updating our presentation prior

This presentation is Bayesian

Jason Poh

Sreevani Tarugula
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What do you know about simulation-based inference?

 Heard of it? N Also sometimes called
« Talked about it in a class? “likelihood-free inference” or

* Done research with it? “approximate bayesian
computation”
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What do you know about simulation-based inference?

 Heard of it? Also sometimes called
« Talked about it in a class? “likelihood-free inference” or

* Done research with it? “approximate bayesian
computation”

« Have you heard of likelihood-based inference? Ever run
MCMC?
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Visual outline

S

Simulation-based versus likelihood-based inference
Advantages of SBI relative to LBI

Tutorial

Applications / future outlook / challenges
Deepskies Lab SBI projects
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In physics, [and science in general], we love our simulations
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These simulators are giving us a picture of the universe (x)

prediction, x ~ ()

e —= x
model data
parame,te,f‘s
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But what we really want is to be able to say thing
statistically about the likely Os

prediction, x ~ ()
v =X
modlel data
para\me'ters
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Inference

Given an observation x, we want to infer the distribution of
probable parameters 6 of the model
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Inference

Given an observation x, we want to infer the distribution of
probable parameters 0 of the model, p(0|x)

important astrophysical
p phys N—
parameter +#1 estimate of posterior

from o posterior
inference method

e important o\s‘tr‘ophys.ical
MOO(el Par‘ame’tef‘ #2
parame‘ters

% Fermilab
14



(Classic) Bayesian Inference (Bayes’ Rule)

15
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(Classic) Bayesian Inference (Bayes’ Rule)

Bau./esiom Inference
- i

Your doata More data

16
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Bayesian Inference (Bayes’ Rule), likelihood-based

p(xle) p(e)

p(@lx) = " ®
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Bayesian Inference (Bayes’ Rule)

p(xle) 9(9)

p(@lx) = . ®

I’m going to try to convince you why this is

often hard/impractical/intractable/impossible
to do practically in physics
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Bayesian Inference (Bayes’ Rule)

Posterior

p(@lx) =

19
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Bayesian Inference (Bayes’ Rule)

Ma(‘s?no;ﬁ

P OS’teﬁOf‘ Distribution
§ploalx) dot
(el)() - (Al
6 1 ﬂ il
SP(Gﬂx) O

0 #2
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Bayesian Inference (Bayes’ Rule)

Like_hhood

p(xle)

21
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Bayesian Inference (Bayes’ Rule)
Likelihood = SP(X' Zle)dz
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Bayesian Inference (Bayes’ Rule)

Likelihood

(d0)

= Sp(x, 210)d=

23

% Fermilab



Bayesian Inference (Bayes’ Rule)

24
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Bayesian Inference (Bayes’ Rule)

25
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Bayesian Inference (Bayes’ Rule)

Elonee’ P(x )—
_ S‘ P( X[G)P(G)Je
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Likelihood-based inference versus simulation-based

Likelihood-based inference: Bayes’ rule (analytically do some
math), MCMC sampling approaches

Simulation-based inference: ??77??

2% Fermilab
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Bayesian Inference (Bayes’ Rule)

Elonee’ P(x )—
_ S‘ P( X[G)P(G)Je
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Likelihood-based inference

oS
R ==
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The goal of MCMC is to sample from the approximate
posterior manifold
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MCMC works iteratively by evaluating the likelihood and
prior at a given (thetai, theta2) value
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Then it takes a step; this can use a gradient or not
depending on the algo
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By taking a series of steps, it will walk towards areas of
high probability space
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The idea is to do this enough times with enough walkers
that you build up a picture of the approximate posterior
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But back to the elephant in the room - what does
calculating this likelihood entail?

LIke!Ihooo‘

_E(xle)

= Sp(xie,z)dz
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An example simulation from Deepskies lab; generating
iImages of gravitational strong lenses

P arameters
of interest

e

Stuff like...
sersic profile
location
enstein radius
c"ip‘tici‘ty, ete
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An example simulation from Deepskies lab; generating
iImages of gravitational strong lenses

; Morgan+2021
deepskies/ . Birrer+2021
deeplenstronomy Birrer & Amara 2018

A pipeline for versatile strong lens sample

simulations

Parometers
a9 ®228 Qe %2 V7 of interest
Contributors lssues Discussions Stars Forks
X =
£& Fermilab
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https://lss.fnal.gov/archive/2021/pub/fermilab-pub-21-039-scd.pdf

Latent parameters

Cosmic Poarawmeters
Observables evolution of interest
cosmo<€ o

x

~N
cosmol%ical

parameters,
couphv\g of

dark matter
ond la:des
G
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Observables

39

Rou/ ‘tmcing and

thin lens approximation

Loatent parame‘t ers

Coswmic
e_volu‘tion

hgh‘t <

ro(eter‘minis‘ta
pw,sics

equations,

in‘tegro:ting
along the line

Poarameters
of interest

o

coSmoE€

~
co&nolosicoJ

parameters,
coupling of

dark matter

Gy
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Observables

Lotent parame’t ers

Detector / survey

interactions

Rou/ ‘tt‘acing and

thin lens approximation

Coswmic
evolution

x <

40

detect €

$oi$$on v\oise,w
detector
properties,
various
stochastic

\ processes J

Iigh't <

(deterministic )
pw.,sics

equations,

in‘tegmting
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—
cosMo|¢>gica|
Pmme_‘ters,
coupling of
dark matter

\__of signt
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W,
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of interest
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Observables

41

Detector / survey

nteractions

Rat/ ‘tr‘acing andl

thin lens approximation

X ~ p(xle)

Coswmic
evolution

licjh‘t <

detect <

<

ﬁiss::w\ noise,\

detector
properties,
various
stochastic

\_ processes

ro(e,'terw\?nis'ta
pw./sics
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parameters,
coupling of
o(od‘k ma‘t‘tej‘

J

Parameters
of interest

cosmo€—— O

Stuff like...
sersic profile
location
enstein radius

ellipticity, ete
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Likelihood-based inference is challenging if the
simulation is very high dimensional with lots of params

Loatent parame‘t ers

Detector / survey Roay tracing ond Cosmic Parameters
Observables interactions thin lens approximation evolution of interest
x detect |igh‘t cosmo 2]

>
(d6) = (¢ | detect) pldetect | light) pllight | cosmo) pllicht | 8) ddetect dlicht deosmo
P P e gHk) pulig Pl i

This is a nightmare ﬁisson noise, ) (deterministic ) cos-mologch B
o(e,te.ct‘d‘ physics parameters,
Proper‘tles, equations, couplin? of
various ntegrating dark matter
stochastic along the line ond galaxies
\__processes \__of sight . J
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Likelihood-based inference is challenging if the
simulation is very high dimensional with lots of params

Loatent parame‘t ers

Detector / survey Roay tracing ond Cosmic Parameters
Observables interactions thin lens approximation evolution of interest
x detect |igh‘t cosmo 2]
>

(d6) = (¢ | detect) pldetect | light) pllight | cosmo) pllicht | 8) ddetect dlicht deosmo
P P e gHk) pulig Pl i

This is a nightmare ﬁisson noise, ) (deterministic ) cos-mologch B
o(e,te.ct‘d‘ physics parameters,
Proper‘tles, equations, couplin? of
various ntegrating dark matter
stochastic along the line ond galaxies
\__processes \__of sight . J
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|dea credit: Kyle Cranmer
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Disadvantages of MCMC / Likelihood-based inference

1. You need to evaluate the likelihood
2. You have to do this for every piece of data

% Fermilab
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Disadvantages of MCMC / Likelihood-based inference

1. You need to evaluate the likelihood
2. You have to do this for every piece of data (trash)

Big surveys are like:

I Just want it:to stop.
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But what if | told you:
Is not always necessary to evaluate the likelihood
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Simulation-based inference does not require that you
write out or evaluate a likelihood

A word on “likelihood-free” inference

« (Can still be floating around in there, “implicit likelihood”
* There might still be a likelihood you can write out

% Fermilab
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Approximate bayesian computation (ABC)
is an example of SBI

Marriage of Bayesian inference and computation

If you have access to an efficient simulation...

48
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1\ the data

M IS o Summary statistic,
here 1 = 1

X<
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A the data

M is a summary statistic,
here 1 = 1

—> AR —>x

% Fermilab
50



,1\ the data

S The sim —>x
the oal
-.lllll-- J
p is o summary statistic,
here 1 = 1

% Fermilab
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4\ the data

Mo 'S a Summary statisti <,
here u = 1

Miles Cranmer Blog

52
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http://astroautomata.com//blog/simulation-based-inference/

/T\ the data

A  The prior
M iS a Summanry stoctnst.c,

L,
here p = 1 91

o4
simulation 1 62 63

I $|mulat‘on 2 $|MUlO\thV\ 3 s;MUIQ‘t;OV\ q
l |'."‘ ll"ll-

I'lll- ool llll 9 v« = 1.05

n =11
Miles Cranmer Blo
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http://astroautomata.com//blog/simulation-based-inference/

A The dota

A the prior
M iS a Summary stod:ust.c,

iy
here = 1 91

simulation 1 2 63

simulation 3

.l'llll..
1.1

o4

simulation ¢

now compare The u values with

that of the data, SlMUlO\‘tIOV\ A
i ot sloiiog el €. repSilony ' l
keep that simulation, '
here e,psilon =101 ..-—

= 1.05
p = 3
X >< v v
3F Fermilab
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combine the 0 values from the simulators that pass the test
use These To construet The posterior distribution as o Fsxn of 6

A

--l'll" -0
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ABC involves the likelihood implicitly via sampling

[ x ~ p(xle)
_00iln -6
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Surprise! ABC is an early form of simulation-based

inference! It uses a simulation and not an explicit
likelihood to approximate the posterior landscape.

==00000 , A
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Simulation-based inference 25 %

has undergone a recent 2.2k
glow-up 1.8k

First normalizing flows article | 1.2k
could find: 800

Agnelli+ 2010 “Clustering and
Classification through
Normalizing Flows in Feature
Space”

Rezende & Mohamad 2015

£%= Fermilab
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The SBI landscape circa 2020 Credit: Cranmer et al (2020)
“The Frontier of SBI"

Approximate Bayesian Computation Approximate Bayesian Computation Probabilistic Programming Probabilistic Programming
with Monte Carlo sampling with learned summary statistics with Monte Carlo sampling with Inference Compilation

6
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https://www.pnas.org/doi/10.1073/pnas.1912789117

A HUGE advantage of modern SBI methods is that they
are amortized

Amortized likelihood

proposal

3]

simulator

il

unsupervised

Y

learning

approximate
likelihood

confidence

E [ se:ts

________________________________________
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simulator
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unsupervised
learning

posterior

Amortized posterior
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S

simulator

e

supervised

optional active learning

Y

learning

approximate
likelihood
ratio

Amortized likelihood ratio

sets
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A HUGE advantage of modern SBI methods is that they

are amortized

Amortized likelihood Amortized posterior Amortized likelihood ratio

proposal  [«-------ooooeooooeoos ) ‘ prior }—» proposal [e------------------ : proposal  [e-------s-seeooy

unsupervised unsupervised| supervised
learning learning learning
approximate

likelihood
ratio

optional active learning
optional active learning

'
approximate
posterior

E

Likelihood Posterior Likelihood ratio

61
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Targets of SBI

» Likelihood ratio

» Likelihood / evidence = posterior / prior

 Likelihood (Neural likelihood estimation), estimating the
probability density of the data conditional on parameters

* Neural posterior estimation

« Dimensionality of data and parameter vector

% Fermilab
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Advantages of SBI

* No likelihood required, skips integrating over latent
parameters

* You don’t have to re-run the inference for every data point

* Very advantageous in cases of large latent dimensionality

2% Fermilab
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Additional resources

64

Talk by Stephen Green about gravitational wave parameter
estimation

Talk by Kyle Cranmer also about SBI
https://www.youtube.com/watch?v=315xKcYX-1w&ab cha
nnel=TheTWIMLAIPodcastwithSamCharrington — an ML
podcast with George Papamakarios about masked
autoregressive flows
https://www.youtube.com/watch?v=7g4ueFiJjAY&ab chan
nel=KapilSachdeva — MADE paper review

This awesome blog about flow models:
https://lilianweng.qgithub.io/posts/2018-10-13-flow-models/

% Fermilab



https://www.youtube.com/watch?v=SzWH2Xd2jEA&ab_channel=InstituteforPure%26AppliedMathematics%28IPAM%29
https://www.youtube.com/watch?v=SzWH2Xd2jEA&ab_channel=InstituteforPure%26AppliedMathematics%28IPAM%29
https://www.youtube.com/watch?v=As62uZVVXBk&ab_channel=InstituteforPure%26AppliedMathematics%28IPAM%29
https://www.youtube.com/watch?v=315xKcYX-1w&ab_channel=TheTWIMLAIPodcastwithSamCharrington
https://www.youtube.com/watch?v=315xKcYX-1w&ab_channel=TheTWIMLAIPodcastwithSamCharrington
https://www.youtube.com/watch?v=7q4ueFiJjAY&ab_channel=KapilSachdeva
https://www.youtube.com/watch?v=7q4ueFiJjAY&ab_channel=KapilSachdeva
https://lilianweng.github.io/posts/2018-10-13-flow-models/

Details of the neural density estimation

* Review of normalizing flows

 Masked autoregressive flows

65
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Modern SBI methods,
neural posterior estimation (NPE)

Modern SBI methods leverage machine learning Amortized posterior
techniques to overcome the issues faced by [ pror ] proposat fe ;
traditional SBI methods. 10
The general workflow:

0 unsupervised
1. Pay upfront simulation cost of generating many 7| teaming

pairs of {0]x}.

2. Use ML model (neural density estimators) to
model the posterior distribution from the
simulation data.

3. Evaluate new observations x__ using the
trained model.

approximate
posterior

evaluate

posterior  t-------ssmeseneooost

Credit: Cranmer et al (2020)

% Fermilab
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https://www.pnas.org/doi/10.1073/pnas.1912789117

Sequential slide

When the posterior is way more concentrated than the prior
you don’t really need to explore the likelihood everywhere in
parameter space

Motivates active learning aka sequential methods such as:
— Sequential Neural Llkelihood Estimation [SNLE]

— Sequential Neural Posterior Estimation [SNPE]

— Sequential Neural Ratio Estimation [SNRE]
« NOT amortized, partially amortized

% Fermilab
67



Modern SBI methods

Modern SBI methods leverage machine learning Amortized posterior
techniques to overcome the issues faced by [ pror ] proposat fe ;
traditional SBI methods. 10
The general workflow:

0 unsupervised
1. Pay upfront simulation cost of generating many 7| teaming

approximate
posterior

pairs of {0]x}.

2. Use ML model (neural density estimators) to
model the posterior distribution from the
simulation data.

3. Evaluate new observations x__ using the
trained model.

evaluate

posterior  t-------ssmeseneooost

Credit: Cranmer et al (2020)

% Fermilab
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https://www.pnas.org/doi/10.1073/pnas.1912789117

Neural density estimators

Problem statement: \We have some data {x.,...x_} generated

from a process p(x). We want to fit a parametric model, g ¢( ) to
approximate p(x).

 We want to fit g ¢(x) to the data such that g ¢(x) IS most likely
to generate {x_,...x }.

0qy GoOd fit
Generative model 1
learning algorithm & 3 f L = — log g4 (x
1 I —_— §0_2_ Bad fit (¢) N; 8 ¢( n)
0 1 2 3 0 :
Variable 1

1 2 3
Variable 1

Training samples P
Each arrow represent a sample Loamiad BiShbulicn

Credit: Jason Poh
69
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Neural density estimators
There are non-neural density estimators, think Gaussians
(parametric) or kernel density estimators (non-parametric)

But neural network based density estimators have more
freedom

% Fermilab
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t‘-r'v F a  w w &/a i |t | o v s v 4 4 r'ur'v Ny | Wy R RBR NS W SA W AN R W

5068f1 20682381 5f661 02863 Paper. pdf

Fast c-free Inference of Simulation Models with
Bayesian Conditional Density Estimation

George Papamakarios Iain Murray
School of Informatics School of Informatics
University of Edinburgh University of Edinburgh
g.papamakarios@ed.ac.uk i.murray@ed.ac.uk
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https://proceedings.neurips.cc/paper/2016/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/6aca97005c68f1206823815f66102863-Paper.pdf

Building blocks of modern NDEs
Ji(zo) filzi—1) i+1(2)
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A 1 minute description

Video Tutorial (12 mins)

.
’
f )
| \
\ I
Y ’
N ’
\ ’

“““““

Initial density

] |
3 1
\ !
\ ’
\ .
~ -

Normalizing Flow

>

\\\\\

2z ~ prlzK)

(@)
Credit: Flow models
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https://www.youtube.com/watch?v=s27I7b3-FMY
https://www.youtube.com/watch?v=i7LjDvsLWCg
https://lilianweng.github.io/posts/2018-10-13-flow-models/

Normalizing flows (and the other methods within this
family) can transform any distribution into a simpler
distribution in an invertile way (bijective)

% Fermilab
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Masked Autoregressive Flows
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Autoregressive models model densities conditionally

75

* A class of models where a target
joint distribution is factorized over
n-dimensional probability
conditionals, and those conditionals
are modeled in turn.

* For example, if we are interested in

the probability density of an image in
an autoregressive model, the joint
probability of an image could be the
combination of the probability of all
its pixels (as was used in Pixel CNN)

p(x) = p(xy, x3, ..., X,)
p(x) = p(x1)p(x2) . p(xn)

p(x) = l—[p(x.-)
i=1
n
p(z) = | [ p@ilz1, - @i1)
=1

Likelihood of Probability of i'th pixel value
image x given all previous pixels

Credits: PixelCNN

Slide credit: Jason Poh
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https://towardsdatascience.com/autoregressive-models-pixelcnn-e30734ede0c1
https://towardsdatascience.com/autoregressive-models-pixelcnn-e30734ede0c1

An autoregressive network uses the previous inputs to
estimate the density

T 1 \' yl X Pil) __/‘{' \\_ﬁ
Z2 m Y2 pa(- | :1) Ai
T3 Y3

" 00 L B )

Ln Yn

plx) = pylixy ) pal x| ) palxs | xy.x2)
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Masked Autoencoders for Density Estimation (MADE)
Ld = P(ib“d \ X<d)

p(z1]|z2,73)  p(r2) po3|w2)

X A A
@ @ @ Video Tutorial
': MV Germain+2015 MADE
paper
@ @ Papamakarios+2018
- 7 MAF paper
Ll =MW y
=" GO0
\

I 006

I Z2 L3

Autoencoder x Masks —> MADE Slide credit: Jason Poh
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https://www.youtube.com/watch?v=7q4ueFiJjAY
https://arxiv.org/pdf/1502.03509.pdf
https://arxiv.org/pdf/1705.07057.pdf

plo) = ma (709 [ 22 )

u; = (o; — pi) exp(—oy) where p; = f,, (X1:-1) and o = fo,(X1:6-1).

of 1
det( rm )

= exp(—z,ai) where «a; = fo, (X1.5-1)-

% Fermilab



Masked Autoregressive Flows are stacks of MADEs

NPE is constructed from stacks of MADE that are flow
transformed.

Flow Transform

More
P ]x) MADE MADE MADE Base density (gaussian) | hidden freatures

More num_transforms

Slide credit: Jason Poh
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Embedding network to learn summary statistics

Simulator Simulator Embedding Embedding
Input output network input network output
parameters images images Summary stats

Slide credit: Jason Poh

% Fermilab
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Overall trains to learn embedding network and NPE

Training an NPE + embedding

Simulator Simulator Embedding Embedding | NPE input | | NPE output
Input output network input network output
parameters images images Summary stats  [Summary stats] p(param | data)

+
[parameter set]

Slide credit: Jason Poh

£%= Fermilab
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Masked Autoregressive Flows

There are mainly two families of neural density estimators that
are both flexible and tractable:

* Normalizing flows

— Transform a base density into target density by invertible
transformation with tractable jacobian.
« Autoregressive models

— Decomposes target density as a product of conditionals
and models each conditional in turn.

This method is both - it is a normalizing flow of autoregressive
models (Masked Autoencoders for Density Estimation (MADEs
to be exact)

% Fermilab



Neural Density Estimators

 An estimate of the exact posterior p(0|x) can be learnt from

neural density estimators g ¢(¢9|x) ,

- Maximize the average log probability NZIOg q94(0,1x,)

| think I'd like to get more into NPE because that's what we'll do in the tutorial. I'm
planning on talking about normalizing flows and I"ll probably mention
autoregressive flows, but not focus on them. | understand that a normalizing flow
can estimate the likelihood, since we're sampling from x ~ p(x|theta), but I'm
struggling with how to explain that it does this also for the posterior. | understand
that it's accounting for the prior via drawing from it, but how is it accounting for the

evidence?

% Fermilab
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Take a break

% Fermilab
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sbi: A toolkit for simulation-based inference

Alvaro Tejero-Cantero® !, Jan Boelts® !, Michael Deistler® !,
Jan-Matthis Lueckmann® !, Conor Durkan® 2, Pedro J. Goncalves' 3,
David S. Greenberg! 4, and Jakob H. Macke!: > ©

https://joss.theoj.orag/papers/10.21105/joss.02505
https://github.com/sbi-dev/sbi

from sbi.inference import infer
# import your simulator, define your prior over the parameters
parameter_posterior = infer(simulator, prior, method='SNPE', num_simulations=100)

85
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https://joss.theoj.org/papers/10.21105/joss.02505
https://github.com/sbi-dev/sbi

Tutorial

» Linefit example:
https://colab.research.qgoogle.com/drive/1CRBQaSim3KZV6
sbhcwz-zMVmbJzTeaWz?usp=sharing

* Lenstronomy example:
https://colab.research.google.com/drive/1NpwdTy98Ifo-vPul
S5Rt-HTFTalgP3cZH?usp=sharing

2% Fermilab
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https://colab.research.google.com/drive/1CRBQqSim3KZV6s5hcwz-zMVmbJzTeaWz?usp=sharing
https://colab.research.google.com/drive/1CRBQqSim3KZV6s5hcwz-zMVmbJzTeaWz?usp=sharing
https://colab.research.google.com/drive/1NpwdTy98Ifo-vPuI5Rt-HTFTalgP3cZH?usp=sharing
https://colab.research.google.com/drive/1NpwdTy98Ifo-vPuI5Rt-HTFTalgP3cZH?usp=sharing

Flavors/algorithms of SNPE

SNPE-A: only allows Gaussian mixtures and mixture density
models for modeling density

SNPE-B: more flexible but has some technical issues that are
documented on github, having to do with the proposal
distribution

SNPE-C: current state-of-the-art
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Challenges / the future of SBI / State of the art / things
that should keep you up at night

)
IT’S THE FUTURE
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Challenges / the future of SBI / State of the art / things
that should keep you up at night

General papers: https://simulation-based-inference.ora/papers/

Applying to different areas for dramatic speed-up in inference:
Khullar+2022
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Challenges / the future of SBI / State of the art / things
that should keep you up at night

General papers: https://simulation-based-inference.ora/papers/

Applying to different areas for dramatic speed-up in inference:
Khullar+2022

Differentiable simulators: Zhegal+2022

Calibration / a “crisis” in SBI?: Hermans+2021
SBI with many variables: Poh+2022
Guarantees on error?

Hierarchical
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Challenges / the future of SBI / State of the art / things
that should keep you up at night

General papers: https://simulation-based-inference.ora/papers/

Applying to different areas for dramatic speed-up in inference:
Khullar+2022

Differentiable simulators: Zhegal+2022
Calibration / a “crisis” in SBI?: Hermans+2021
SBI with many variables: Poh+2022
Guarantees on error?

Hierarchical

Graph neural nets / other architectures
Understanding really complicated simulations?
Domain adaptation!

Sl
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https://arxiv.org/abs/2211.09126
https://arxiv.org/abs/2207.05636
https://arxiv.org/abs/2110.06581
https://arxiv.org/abs/2211.05836

The Deepskies Lab SBI team
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Dark Energy equation of state parameter 1 :
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Dark Energy equation of state parameter i h
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SBI to infer astrophysics parameters from strong lensing
Jason Poh+ and DeepSkies Posterior coverage plot!
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https://arxiv.org/abs/2211.05836

SBI to infer galaxy properties from spectra
Khullar et al. 2022 and DeepSkies

Network Architecture

=1
=1 | I
2 SED Models : [E—
: ) 2 Proposal
1. I - Posteriors
Pri = I \
riors :
I
(5-parameter I sbi.SNPE |—p| SEDs mapped to
SED model) regions in the
parameter space

MAF

Hidden Features = 25,
No. of Transforms=10

I
|
I
|
+ I Simulated galaxy spectrum
I
|
I

Gaussian :
Noise f‘[\
__________ . Gourav Khullar

5000 7500
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Figure 2. The architecture used in this work to infer galaxy SED properties with spectroscopic data. We use a five-parameter
model and a training set with realistic spectra, that is trained by an NPE to generate approximate posteriors.
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https://iopscience.iop.org/article/10.1088/2632-2153/ac98f4

Domain adaptation to improve the performance of SBI
on real observational lenses with noise!

Source domain:
low noise
simulated

lenses

Target domain:
DES noise
simulated
lenses

| Marcos Tamofgo
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Domain adaptation to improve the performance of SBI
on real observational lenses with noise!

Source domain:
low noise
simulated
lenses

Target domain:
DES noise
simulated
lenses
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SBI for alternate networks, like graph neural networks

|
Goal: Infer key
cosmological
parameters o_8 and
Q_matter
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If you take anything from this let it be:

« Simulation-based Inference is an alternative to likelihood-based inference

- Does not require the computation of a likelihood

- Machine learning methods are amortized, i.e. can evaluate posterior
from new data without retraining the model

- Computationally more efficient than MCMC based methods
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If you take anything from this let it be:

 Simulation-based Inference is an alternative to likelihood-based inference

» Lots of options for what type of probability you want to target (likelihood,
likelihood ratio, posterior)

» The future is exciting, lots of research here into expanding into new data
types, looking at uncertainty guarantees, lots of opportunities, especially
for those interested in explainability, ie the HEP community

% Fermilab
101



Join the Deepskies Lab!

https://deepskieslab.com/

Google form to join.
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https://deepskieslab.com/
https://docs.google.com/forms/d/e/1FAIpQLSfrEGcKi9BPtvd4TQhVYL0z12bWbuljD0PAh6KBgu-8dCbWLQ/viewform

The end

% Fermilab




If you take anything from this let it be:

 Simulation-based Inference is an alternative to likelihood-based inference

» Lots of options for what type of probability you want to target (likelihood,
likelihood ratio, posterior)

» The future is exciting, lots of research here into expanding into new data
types, looking at uncertainty guarantees, lots of opportunities, especially
for those interested in explainability, ie the HEP community
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EXTRAS
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Notes from Jason’s SBIl session

« Where to not use SBI - if your simulator is not good, doesn’t
capture actual physics?

— Activation energy of it being worth it — if MCMC is quick
enough don’t need to use it, it has additional upfront
cost,

 How complex model can be before you switch?

— Sam: curse of dimensionality, SBI can do 20 or so
parameters, also embedding network

— Complexity of likelihood versus complexity of
parameters
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Density Estimators (Thanks to Jason!) 3& Fermilab

« Unsupervised method of getting structure from data:
e« Given, whatis ?
e« Given, whatis ?

e Gaussian Density Model

Model: q6(x) 7 €XPp (—%(x -t (x - u)) where ¢ = {u,X}.

 |det(27X)|

Trainin g: Parametric density models are typically estimated by maximum likelihood. Given a set of training
datapoints {xi,...,xy} that have been independently and identically generated by a process
with density p(x), we seek a setting of the model’s parameters ¢ that maximize the average log
likelihood on the training data:

L(#) = 3 X logas(xn). (213)

o.
Generative model
learning algorithm 'E
_— &
1 1 Q02

0 1 2 3 0 1 2 3
Variable 1 Variable 1

From Papamakarios (2019)

Training samples

Each arrow represent a sample Learned Distribution



Neural Density Estimators 3& Fermilab

« Neural Networks to parameterize density model
L(¢) = Nzlogqcp(x NZfd»(x

« The parameters of the Neural network are updated through gradient descent

A 1
V¢L(¢) = M Z V¢f¢(xnm )

« SBI has 4 built-in density estimators:
« Masked Autoregressive Flow (MAF)
 Neural Spline Flow (NSF)
o Masked Autoencoder for Distribution Estimation (MADE)
« Mixture Density Network (MDN)



