Adding uncertainties

Topics: dealing with systematics

- Statistical model with auxiliary measurements
- Profiling and marginalizing nuisance parameters
- Tools and techniques for building models using simulation

Coming back to P(cheat)

• Visualizing
$$f(n_r; n, p_c) = \sum_{n_t=0}^n f_{Bi}(n_t; n, 1/2) f_{Bi}(n_r + n_t - n; n_t, p_c)$$

• What if we observed $n_r = 6$?

Coming back to P(cheat)

Re-introduce
$$p_t$$
: $f_c(n_r; n, p_t, p_c) = \sum_{n_t=0}^n f_{Bi}(n_t; n, p_t) f_{Bi}(n_r + n_t - n; n_t, p_c)$

- We could ask everyone to flip the same fair coin
 - If tails (T), raise your hand (\bigcup) ; if heads, don't raise
 - The sampling distribution for $n_{r'}$ raised hands is $f_{Bi}(n_{r'}, n, p_t)$
- This is a *control region* for p_t , with *auxiliary measurement* $n_{r'}$

Full statistical model

- Split likelihood parameters into *parameters of interest* (POIs) θ and nuisance parameters ν , and define *auxiliary measurements* y that target the latter
 - Then the joint pdf factorizes $P(x, y; \theta, \nu) = P(x; \theta, \nu)P(y; \nu)$
 - N.B. y are global observables in RooFit
- To frequentists, $P(x, y; \theta, \nu)$ can be used as a likelihood in (θ, ν) _ *Profile* away ν -dependence: $\mathscr{L}_p(\theta; x, y) = \max \mathscr{L}(\theta, \nu)$
 - With \mathscr{L}_p we can do all of what was shown before (in approximation)
- Bayesians can insert a *ur-prior* $\pi(\nu)$ and use Bayes' theorem to get $P(\nu \mid y)$ _ Then *marginalize* out ν : $P(x \mid \theta) = \int P(x \mid \theta, \nu)P(\nu \mid y) d\nu = \int P(x \mid \theta, \nu) \frac{P(y \mid \nu)\pi(\nu)}{P(y)} d\nu$

🛠 Fermilab

- Proceed as before with $P(x \mid \theta)$
- Renewed interest in publishing full statistical models: <u>arxiv:2109.04981</u>
 - Enables recasting in either language

Profiling P(tails)

- If we observe $n_r = 15$, $n_{r'} = 15$, we get the following result:
- Building toys for given p_c now requires p_t assumption to sample $(n_r, n_{r'})$
 - A-priori vs. a-posteriori: our initial parameter guess (0.5) vs. best-fit (0.62)

Marginalizing P(tails)

• If we observe $n_r = 15$, $n_{r'} = 15$, we get the following result: - Using flat prior $f_{Beta}(p_t; 1, 1)$, get a posterior $f(p_t | n_{r'}) = f_{Beta}(p_t; 1 + n_{r'}, 1 + n - n_{r'})$ Marginalize $f(n_r | p_c) = \int f(n_r | p_c, p_t) f(p_t | n_{r'}) dp_t$ and proceed as before

🛠 Fermilab

An uncertain background

- Adding some background uncertainty to our counting model $-f_P(n; \mu s + b)$ for some fixed s, b, and a varying signal strength μ
- Option 1:
 - $f(n, \nu_{b0}; \mu, \nu_b) = f_P(n; \mu s + (1 + \delta \nu_b)b)f_N(\nu_{b0}; \nu_b, 1)$
 - (for some δ close to 0) Not great: b can go negative
- Option 2:
 - $f(n, \nu_{b0}; \mu, \nu_b) = f_P(n; \mu s + b\kappa^{\nu_b}) f_N(\nu_{b0}; \nu_b, 1)$
 - (for some κ close to 1) Better: log-normal
- Option 3:
 - $f(n, n_{cr}; \mu, \nu_b) = f_P(n; \mu s + \nu_b b) f_P(n_{cr}; \nu_b b_{cr})$
 - Best, if such a background-pure control region can be constructed
- ...and many more
 - In all cases we now have a new observable (ν_{b0} , n_{cr}), a new nuisance parameter ν_b , and several new constants (δ , κ , b_{cr}) to compute (e.g. from simulation)

Profiling example

- Profile likelihood for the single-bin background uncertainty example
 - Option 1: Normal-distributed auxiliary constraint
 - Option 2: Log-normal auxiliary constraint
 - Option 3: Poisson-distributed auxiliary control region
 - s=10, b=25, x=37

Fermilab

Typical tasks in building a model

- Enumerate effects to get dimension of ν
 - Don't forget anything! Unknown unknowns?
- Find good auxiliary measurements y
- Choose a parameterization $f_{\phi}(\mathbf{y};\boldsymbol{\nu})$
 - e.g. the options 1-3 from before
- Evaluate the constants ϕ
 - In practice: interpolate between shifted or weighted MC
- Iterate
 - Compromise: fidelity/computability/practicality
 - Prune low-impact effects
 - Initial model might not fit observed y well

Modeling techniques

- · Can be a whole workshop
 - Was: PHYSTAT-Systematics 2021
 - Excellent presentations covering a wide range of techniques
 - A one-slide overview was produced (more on types than techniques)

Modeling techniques

- Rich set of interpolation/extrapolation techniques at end-stage
 - Morphing: vertical, horizontal, moment; splines; gaussian process; asymmetric shift interpolation; additive/multiplicative effects; MC stat uncertainty, <u>BB-lite;</u> ...
 - i.e. what is done in <u>RooFit/pyhf/zfit/iMinuit/combine</u>/etc.
 - What features do each of these tools offer? Nobody has it all!

Modeling techniques

- Simpler taxonomy of techniques to get inputs to fitting tools?
 - This is the dominant analysis-stage computation expense (process billions of events)
- Posit three basic techniques for binned fits
 - Just need functions $w(x,\theta)$ and $\Delta(x,\theta)$

🚰 Fermilab

Systematic-aware optimization

- Analysis design and optimization often involves ML these days
- Learn salient features, ignore features affected by nuisance params
- Dozens of proposals, see <u>HEPML LivingReview</u> sections:
 - Decorrelation methods allow for construction of control regions
 - Inference-aware: maximize sensitivity or exclusion power of POI in full likelihood model
 - Can be deployed in more "traditional" analyses for e.g. region/binning optimization
 - Domain adaptation: ensure marginalized observables are modeled well

🛠 Fermilab

neos: N. Simpson, L. Heinrich

92

Differentiable analysis

- Rather than θ up/down variation, compute value and gradient
 - Auto-diff vs. finite-diff performance
- Higher order derivatives? How analytic are these things?
 - Need second order to get asymmetric (and it probably does not extrapolate well :)

$$\lambda(\theta) = \frac{\sigma}{N} \sum_{x_i \sim P(x)}^{N} w(x_i, \theta) 1(x_i \in \text{bin})$$
$$\approx \lambda(\theta_0) + \frac{d\lambda}{d\theta} \Big|_{\theta = \theta_0} (\theta - \theta_0) + \cdots$$
(reweight, e.g. efficiency)

$$\lambda(\theta) = \frac{\sigma}{N} \sum_{x_i \sim P(x)}^{N} \mathbb{1}(x_i + \Delta(x_i, \theta) \in \text{bin})$$
(shift, e.g. energy scale)

🛠 Fermilab

93

Analysis task graph

- Simplest solution: re-run everything with alternate ν
- Better: loop over event while in-memory (likely CPU cache)
 - Why? Because IO is very expensive
- Best: compute all weights, compute shifts only as necessary

S. Hageboeck

Reduced data formats

- Goal: maximize usability, minimize disk space
 - Keep minimal subset of observables x
- Tradeoff with functions $w(x,\theta)$ and $\Delta(x,\theta)$:
 - Large subset of x needed to evaluate: better to save output for θ_0 , θ_1 , θ_2
 - Small subset of x needed to evaluate: better to save those inputs, evaluate "on-the-fly"
 - Overlap with what is needed to identify the bin \rightarrow more likely on-the-fly
- CMS NanoAOD: calibrated objects, very few systematics
 - Keep only those too difficult to parameterize
 - Unclustered energy \varDelta for MET: per-PF candidate species energy scale uncertainty
 - ATLAS DAOD_PhysLite: similar goals
- Other considerations
 - CMS MiniAOD: lossy compression of track covariance matrices
 - Common weight trick: store 1-w with reduced-precision mantissa

On-the-fly evaluation

- Often calibrations and systematics go hand-in-hand
 - Redefine $f(y'; \nu') = f(y + (y' y); \nu' y)$ so auxiliary measurement is "spot-on"
- In CMS, corrections+uncertainty have long been parameterized
 - Lately, move towards standardizing to reduce proliferation of (often poorly-designed) serialization formats and (often slow) evaluation frameworks
- <u>Correctionlib</u>
 - A well-structured JSON data format for a wide variety of ad-hoc correction factors encountered in a typical HEP analysis and a companion evaluation tool suitable for use in C++ and python programs.
 - Development started Nov. 2020, all CMS analysis-stage corrections now compatible
 - Presented at PyHEP '22: youtube

Metadata systems

- For reconstruction-level corrections *conditions* database is standard
 - Correctionlib json in database?
 - ML models in database?
- Book-keeping alternative samples
 - At least in CMS, no automated access to generation config at analysis stage
 - Most book-keeping by hand: key on dataset name
- Ongoing R&D here!

$$\int_{\text{bin}} P(x|\theta = \theta_1) dx \approx \frac{\sigma}{N} \sum_{x_i \sim P(x|\theta = \theta_1)}^N \mathbb{1}(x_i \in \text{bin})$$

(alternative sample, e.g. 2-point)

A flowchart

P. Laycock, T.J. Khoo

A flowchart

P. Laycock, T.J. Khoo

Experimental prescriptions

- Non-trivial to agree on parameterization, but crucial for combinations
- Correlate (i.e. use same subset of θ for) common effects
 - Experimental effects (simplest: luminosity unc.)
 - Theory uncertainties for common processes
 - Etc.
 - Profit from increased sensitivity!
- CMS Higgs group: "datacards" (likelihood serialization format) are reviewed
 - Standard nuisances, naming conventions, sign, etc.
 - Simplifies combination later
- Is it worth establishing cross-experiment parameterization/nomenclature?

Template storage

- Multi-dimensional histograms: axis for systematic variation
- Filling histograms with weights vector
 - Save repeated bin lookup for same observables
 - Planned feature for boost::histogram boostorg/histogram#211
- Better to have serializable object tailored to our use case
 - RooDataFrame has part of the answer:

hx = ROOT.RDF.VariationsFor(nominal_hx) hx["nominal"].Draw() hx["pt:down"].Draw("SAME")

Template storage

<u>cabinetry</u> is a Python package to build and steer template fits

A point of convergence

Several aspects of Analysis Systems converge in a typical physics plot:

- Specification of signal / validation / control regions
- Specification of variables to be used for stat analysis
- Reduction to that format running on data and MC
- Management of MC samples, data driven backgrounds, etc.
- Management of systematic variations
- Feed reduced data (eg. histograms) into specification for statistical model / likelihood function
- Fitting & statistical tools
- Publishing results & derived data products
- Analysis preservation & gateways targeting reinterpretation

b-tags

>4b

bin

200

D 1.25

0.75 0.5

0.75

Single Lepton

🛠 Fermilab

A. Held

Publishing statistical models

- More specifically the model $P(x, y; \theta, \nu) = P(x; \theta, \nu)P(y; \nu)$
- Why?
 - "The statistical models used to derive the results of experimental analyses are of incredible scientific value and are essential information for analysis preservation and reuse ... [and] can enhance the short- and long-term impact of experimental results." (arxiv:2109.04981)
- A goal now 22 years old (<u>K. Cranmer</u>)
- Need a good data format, contenders:
 - pyhf JSON (HistFactory XML)
 - CMS combine datacard
 - RooWorkspace json: HS3
 - "A round-trip-capable, human-readable declarative format for statistical models was missing"

The end

Hopefully you have some idea now what this means

"An observed (expected) upper limit is placed on the signal strength μ , using the profile likelihood ratio test statistic, following the CL_s criterion, under asymptotic assumptions, and found to be ..."

Scrap bin:

- Look-elsewhere effect
- Goodness of fit

Additional references

- Procedure for LHC Higgs combination http://cdsweb.cern.ch/record/1379837
- R. Cousins, Statistics in Theory https://arxiv.org/abs/1807.05996
- Asymptotic formulae for likelihood-based tests "CCGV" <u>https://arxiv.org/abs/1007.1727</u>
- Publishing statistical models https://arxiv.org/abs/2109.04981

