
Simulation &  
Generative Models

Gregor Kasieczka

Email: gregor.kasieczka@uni-hamburg.de

Twitter/X: @GregorKasieczka 

COFI Winter School 2023

http://xkcd.com
mailto:gregor.kasieczka@uni-hamburg.de
https://twitter.com/GregorKasieczka










6



7



8

Have: input examples

(collision events,

detector readouts, …)

Want: more data 


Specifically: new data similar to 
the input, but not exact copies


How to encode in neural net?


Uses:

• Detector Simulation

• In-situ background estimation

• Surrogate models

• …


Motivation



9

1. Common  
architectures* 
-> GANs, VAEs, NF today 
-> Diffusion & CNF tomorrow

2. Physics 
applications

3. Quality 
metrics

*excluding transformers

Overview



Generative Adversarial Networks



14
06

.2
66

1 
lili

an
w

en
g.

gi
th

ub
.io

Generative Adversarial Networks

Maps random noise to 
realistic examples

Provides feedback on 
quality of examples

Generative Adversarial 
Networks (GANs) 
consist of 2 networks



Generative Adversarial Networks

Training objective:  
Binary cross entropy

True examples Fake examples

14
06

.2
66

1



Generative Adversarial Networks

Training objective:  
Binary cross entropy

Maximise for 
discriminator

14
06

.2
66

1



Generative Adversarial Networks

Training objective:  
Binary cross entropy Minimise for generator

14
06

.2
66

1



Generative Adversarial Networks

At (Nash) equilibrium:  
Generator produces realistic examples 
Discriminator is maximally confused

Training objective:  
Binary cross entropy

14
06

.2
66

1



Generative Adversarial Networks

For generation: 
Sample from Generator 
Discard Discriminator

Training objective:  
Binary cross entropy

14
06

.2
66

1



Architecture:


• Low complexity, fast and adaptable 

Learning:


• Unstable training 


• Matching of generator/discriminator 
(vanishing gradients)


• Mode collapse


• Loss function not interpretable


Maturity:


• Well established,  
many variants and extensions


Comments on GANs

16
11

.0
21

63

Mode collapse



Wasserstein GAN

17
04

.0
00

28

• Standard GANs minimise Jensen-Shannon  
divergence of generator output and true data


• Not best measure, e.g. for non-overlapping distributions


• Replace with Wasserstein / Earth-Mover-Distance  



Wasserstein GAN

17
04

.0
00

28

Critic

C(x)

GAN loss:

Wasserstein GAN  
loss*:

* Some mathematics 
involved from earth 
mover distance to here

Requires bounded Lipschitz norm, 
e.g. via term in loss



Wasserstein GAN

17
04

.0
00

28

Critic

C(x)

GAN loss:

Wasserstein GAN  
loss:

Improves training stability and 
sample quality (e.g. mode collapse)



Variational Autoencoders



13
12

.6
11

4 
lili

an
w

en
g.

gi
th

ub
.io

Autoencoder

Two networks 
Encoder: data → latent space

Decoder: latent space → data

<latexit sha1_base64="xpWGGCB8UMNYuYhQw+sjDuO8MJc=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh5l7X6fb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHb02N2g==</latexit>

f(x)
<latexit sha1_base64="Byif/cWtH5QoRUXoVy/lKlOAX8g=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBCSS9iVoB6DXjxGMA9IQpid9CZDZmeXmVkxLPkILx4U8er3ePNvnCR70MSChqKqm+4uPxZcG9f9dtbWNza3tnM7+d29/YPDwtFxU0eJYthgkYhU26caBZfYMNwIbMcKaegLbPnj25nfekSleSQfzCTGXkiHkgecUWOl1rAUlJ7K5X6h6FbcOcgq8TJShAz1fuGrO4hYEqI0TFCtO54bm15KleFM4DTfTTTGlI3pEDuWShqi7qXzc6fk3CoDEkTKljRkrv6eSGmo9ST0bWdIzUgvezPxP6+TmOC6l3IZJwYlWywKEkFMRGa/kwFXyIyYWEKZ4vZWwkZUUWZsQnkbgrf88ippXlS8y0r1vlqs3WRx5OAUzqAEHlxBDe6gDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP+WGOsA==</latexit>

g(f(x))



13
12

.6
11

4

Autoencoder

Two networks 
Encoder: data → latent space

Decoder: latent space → data

Training objective:  
Minimise input/output difference

<latexit sha1_base64="obOE4SYMjo8llTEChlH5RTMyoXE=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHShSUpRd0IRTcuXFSwD2hjmUwn7dDJJMxMpCHUX3HjQhG3fog7/8Zpm4W2HrhwOOde7r3HixiVyra/jZXVtfWNzdxWfntnd2/fPDhsyjAWmDRwyELR9pAkjHLSUFQx0o4EQYHHSMsbXU/91iMRkob8XiURcQM04NSnGCkt9czCLbyE1hieQt8aWONSqfRQ6ZlFu2zPAJeJk5EiyFDvmV/dfojjgHCFGZKy49iRclMkFMWMTPLdWJII4REakI6mHAVEuuns+Ak80Uof+qHQxRWcqb8nUhRImQSe7gyQGspFbyr+53Vi5V+4KeVRrAjH80V+zKAK4TQJ2KeCYMUSTRAWVN8K8RAJhJXOK69DcBZfXibNStk5K1fvqsXaVRZHDhyBY2ABB5yDGrgBddAAGCTgGbyCN+PJeDHejY9564qRzRTAHxifPy79keg=</latexit>

L = (x� f(g(x)))2

EncoderDecoder

<latexit sha1_base64="xpWGGCB8UMNYuYhQw+sjDuO8MJc=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh5l7X6fb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHb02N2g==</latexit>

f(x)
<latexit sha1_base64="Byif/cWtH5QoRUXoVy/lKlOAX8g=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBCSS9iVoB6DXjxGMA9IQpid9CZDZmeXmVkxLPkILx4U8er3ePNvnCR70MSChqKqm+4uPxZcG9f9dtbWNza3tnM7+d29/YPDwtFxU0eJYthgkYhU26caBZfYMNwIbMcKaegLbPnj25nfekSleSQfzCTGXkiHkgecUWOl1rAUlJ7K5X6h6FbcOcgq8TJShAz1fuGrO4hYEqI0TFCtO54bm15KleFM4DTfTTTGlI3pEDuWShqi7qXzc6fk3CoDEkTKljRkrv6eSGmo9ST0bWdIzUgvezPxP6+TmOC6l3IZJwYlWywKEkFMRGa/kwFXyIyYWEKZ4vZWwkZUUWZsQnkbgrf88ippXlS8y0r1vlqs3WRx5OAUzqAEHlxBDe6gDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP+WGOsA==</latexit>

g(f(x))



Autoencoder

Two networks 
Encoder: data → latent space

Decoder: latent space → data

Training objective:  
Minimise input/output difference

<latexit sha1_base64="obOE4SYMjo8llTEChlH5RTMyoXE=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHShSUpRd0IRTcuXFSwD2hjmUwn7dDJJMxMpCHUX3HjQhG3fog7/8Zpm4W2HrhwOOde7r3HixiVyra/jZXVtfWNzdxWfntnd2/fPDhsyjAWmDRwyELR9pAkjHLSUFQx0o4EQYHHSMsbXU/91iMRkob8XiURcQM04NSnGCkt9czCLbyE1hieQt8aWONSqfRQ6ZlFu2zPAJeJk5EiyFDvmV/dfojjgHCFGZKy49iRclMkFMWMTPLdWJII4REakI6mHAVEuuns+Ak80Uof+qHQxRWcqb8nUhRImQSe7gyQGspFbyr+53Vi5V+4KeVRrAjH80V+zKAK4TQJ2KeCYMUSTRAWVN8K8RAJhJXOK69DcBZfXibNStk5K1fvqsXaVRZHDhyBY2ABB5yDGrgBddAAGCTgGbyCN+PJeDHejY9564qRzRTAHxifPy79keg=</latexit>

L = (x� f(g(x)))2

EncoderDecoder

Uses: 
Dimension reduction

Denoising 

Anomaly detection

Generation? 

<latexit sha1_base64="xpWGGCB8UMNYuYhQw+sjDuO8MJc=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3mdx6p0iySD2YaU1/gkWQhI9hkUlh9Oh+UK27NnQOtEi8nFcjRHJS/+sOIJIJKQzjWuue5sfFTrAwjnM5K/UTTGJMJHtGepRILqv10fusMnVlliMJI2ZIGzdXfEykWWk9FYDsFNmO97GXif14vMeG1nzIZJ4ZKslgUJhyZCGWPoyFTlBg+tQQTxeytiIyxwsTYeEo2BG/55VXSvqh5l7X6fb3SuMnjKMIJnEIVPLiCBtxBE1pAYAzP8ApvjnBenHfnY9FacPKZY/gD5/MHb02N2g==</latexit>

f(x)
<latexit sha1_base64="Byif/cWtH5QoRUXoVy/lKlOAX8g=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBCSS9iVoB6DXjxGMA9IQpid9CZDZmeXmVkxLPkILx4U8er3ePNvnCR70MSChqKqm+4uPxZcG9f9dtbWNza3tnM7+d29/YPDwtFxU0eJYthgkYhU26caBZfYMNwIbMcKaegLbPnj25nfekSleSQfzCTGXkiHkgecUWOl1rAUlJ7K5X6h6FbcOcgq8TJShAz1fuGrO4hYEqI0TFCtO54bm15KleFM4DTfTTTGlI3pEDuWShqi7qXzc6fk3CoDEkTKljRkrv6eSGmo9ST0bWdIzUgvezPxP6+TmOC6l3IZJwYlWywKEkFMRGa/kwFXyIyYWEKZ4vZWwkZUUWZsQnkbgrf88ippXlS8y0r1vlqs3WRx5OAUzqAEHlxBDe6gDg1gMIZneIU3J3ZenHfnY9G65mQzJ/AHzucP+WGOsA==</latexit>

g(f(x))

13
12

.6
11

4



Variational Autoencoder

Variational Autoencoder (VAE):

Split latent space


<latexit sha1_base64="JWVediLW7cbTRw6PQTQY2dhh3Sw=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxCC1JmpKgboejGZQX7gM5QMmmmDU0yQ5IR61D8FTcuFHHrf7jzb0zbWWjrgQuHc+7l3nuCmFGlHefbyi0tr6yu5dcLG5tb2zv27l5TRYnEpIEjFsl2gBRhVJCGppqRdiwJ4gEjrWB4PfFb90QqGok7PYqJz1Ff0JBipI3UtQ/C0kMZXsKSx5MT6Cna56jctYtOxZkCLhI3I0WQod61v7xehBNOhMYMKdVxnVj7KZKaYkbGBS9RJEZ4iPqkY6hAnCg/nV4/hsdG6cEwkqaEhlP190SKuFIjHphOjvRAzXsT8T+vk+jwwk+piBNNBJ4tChMGdQQnUcAelQRrNjIEYUnNrRAPkERYm8AKJgR3/uVF0jytuGeV6m21WLvK4siDQ3AESsAF56AGbkAdNAAGj+AZvII368l6sd6tj1lrzspm9sEfWJ8/pQuTcA==</latexit>

f(x) = (µ,�)

13
12

.6
11

4



Variational Autoencoder

Variational Autoencoder (VAE):

Split latent space

Sample before decoder


<latexit sha1_base64="JWVediLW7cbTRw6PQTQY2dhh3Sw=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxCC1JmpKgboejGZQX7gM5QMmmmDU0yQ5IR61D8FTcuFHHrf7jzb0zbWWjrgQuHc+7l3nuCmFGlHefbyi0tr6yu5dcLG5tb2zv27l5TRYnEpIEjFsl2gBRhVJCGppqRdiwJ4gEjrWB4PfFb90QqGok7PYqJz1Ff0JBipI3UtQ/C0kMZXsKSx5MT6Cna56jctYtOxZkCLhI3I0WQod61v7xehBNOhMYMKdVxnVj7KZKaYkbGBS9RJEZ4iPqkY6hAnCg/nV4/hsdG6cEwkqaEhlP190SKuFIjHphOjvRAzXsT8T+vk+jwwk+piBNNBJ4tChMGdQQnUcAelQRrNjIEYUnNrRAPkERYm8AKJgR3/uVF0jytuGeV6m21WLvK4siDQ3AESsAF56AGbkAdNAAGj+AZvII368l6sd6tj1lrzspm9sEfWJ8/pQuTcA==</latexit>

f(x) = (µ,�)

<latexit sha1_base64="hXZ6vFbW8aFAFzxS6gPkPHiC9EY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRaxXsquFPUiFL14rGA/pC0lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2Fmnh9xpo3rfjuZpeWV1bXsem5jc2t7J7+7V9dhrAitkZCHquljTTmTtGaY4bQZKYqFz2nDH15P/MYDVZqF8s6MItoRuC9ZwAg2Vrp/PEaXqF98OunmC27JnQItEi8lBUhR7ea/2r2QxIJKQzjWuuW5kekkWBlGOB3n2rGmESZD3KctSyUWVHeS6cFjdGSVHgpCZUsaNFV/TyRYaD0Svu0U2Az0vDcR//NasQkuOgmTUWyoJLNFQcyRCdHke9RjihLDR5Zgopi9FZEBVpgYm1HOhuDNv7xI6qcl76xUvi0XKldpHFk4gEMoggfnUIEbqEINCAh4hld4c5Tz4rw7H7PWjJPO7MMfOJ8/4lSPKw==</latexit>

x0 = g(z)

<latexit sha1_base64="D4pI1Q09Gva3h/ci9qGwF0WbDzE=">AAACC3icbVDLSgNBEJyNrxhfUY9ehgQhgoRdCepFCHrQYwTzgGwIvZNJMmRmdpmZFeKSuxd/xYsHRbz6A978GyePgyYWNBRV3XR3BRFn2rjut5NaWl5ZXUuvZzY2t7Z3srt7NR3GitAqCXmoGgFoypmkVcMMp41IURABp/VgcDX26/dUaRbKOzOMaEtAT7IuI2Cs1M7mHvAF9gWYvhLJNcRaM5Cjgi/iY+xr1hNw1M7m3aI7AV4k3ozk0QyVdvbL74QkFlQawkHrpudGppWAMoxwOsr4saYRkAH0aNNSCYLqVjL5ZYQPrdLB3VDZkgZP1N8TCQithyKwneOr9bw3Fv/zmrHpnrcSJqPYUEmmi7oxxybE42BwhylKDB9aAkQxeysmfVBAjI0vY0Pw5l9eJLWTondaLN2W8uXLWRxpdIByqIA8dIbK6AZVUBUR9Iie0St6c56cF+fd+Zi2ppzZzD76A+fzB/PXml8=</latexit>

z = Gaussian(µ,�)

13
12

.6
11

4



Variational Autoencoder

Variational Autoencoder (VAE):

Split latent space

Sample before decoder

Penalty so mean/std are close to unit Gaussian


<latexit sha1_base64="JWVediLW7cbTRw6PQTQY2dhh3Sw=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxCC1JmpKgboejGZQX7gM5QMmmmDU0yQ5IR61D8FTcuFHHrf7jzb0zbWWjrgQuHc+7l3nuCmFGlHefbyi0tr6yu5dcLG5tb2zv27l5TRYnEpIEjFsl2gBRhVJCGppqRdiwJ4gEjrWB4PfFb90QqGok7PYqJz1Ff0JBipI3UtQ/C0kMZXsKSx5MT6Cna56jctYtOxZkCLhI3I0WQod61v7xehBNOhMYMKdVxnVj7KZKaYkbGBS9RJEZ4iPqkY6hAnCg/nV4/hsdG6cEwkqaEhlP190SKuFIjHphOjvRAzXsT8T+vk+jwwk+piBNNBJ4tChMGdQQnUcAelQRrNjIEYUnNrRAPkERYm8AKJgR3/uVF0jytuGeV6m21WLvK4siDQ3AESsAF56AGbkAdNAAGj+AZvII368l6sd6tj1lrzspm9sEfWJ8/pQuTcA==</latexit>

f(x) = (µ,�)
<latexit sha1_base64="D4pI1Q09Gva3h/ci9qGwF0WbDzE=">AAACC3icbVDLSgNBEJyNrxhfUY9ehgQhgoRdCepFCHrQYwTzgGwIvZNJMmRmdpmZFeKSuxd/xYsHRbz6A978GyePgyYWNBRV3XR3BRFn2rjut5NaWl5ZXUuvZzY2t7Z3srt7NR3GitAqCXmoGgFoypmkVcMMp41IURABp/VgcDX26/dUaRbKOzOMaEtAT7IuI2Cs1M7mHvAF9gWYvhLJNcRaM5Cjgi/iY+xr1hNw1M7m3aI7AV4k3ozk0QyVdvbL74QkFlQawkHrpudGppWAMoxwOsr4saYRkAH0aNNSCYLqVjL5ZYQPrdLB3VDZkgZP1N8TCQithyKwneOr9bw3Fv/zmrHpnrcSJqPYUEmmi7oxxybE42BwhylKDB9aAkQxeysmfVBAjI0vY0Pw5l9eJLWTondaLN2W8uXLWRxpdIByqIA8dIbK6AZVUBUR9Iie0St6c56cF+fd+Zi2ppzZzD76A+fzB/PXml8=</latexit>

z = Gaussian(µ,�)
<latexit sha1_base64="hXZ6vFbW8aFAFzxS6gPkPHiC9EY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRaxXsquFPUiFL14rGA/pC0lm2bb0CS7JFmxLv0VXjwo4tWf481/Y9ruQVsfDDzem2Fmnh9xpo3rfjuZpeWV1bXsem5jc2t7J7+7V9dhrAitkZCHquljTTmTtGaY4bQZKYqFz2nDH15P/MYDVZqF8s6MItoRuC9ZwAg2Vrp/PEaXqF98OunmC27JnQItEi8lBUhR7ea/2r2QxIJKQzjWuuW5kekkWBlGOB3n2rGmESZD3KctSyUWVHeS6cFjdGSVHgpCZUsaNFV/TyRYaD0Svu0U2Az0vDcR//NasQkuOgmTUWyoJLNFQcyRCdHke9RjihLDR5Zgopi9FZEBVpgYm1HOhuDNv7xI6qcl76xUvi0XKldpHFk4gEMoggfnUIEbqEINCAh4hld4c5Tz4rw7H7PWjJPO7MMfOJ8/4lSPKw==</latexit>

x0 = g(z)
<latexit sha1_base64="Wu2woahU1yaPP09xdvYgY20VGpk=">AAACH3icbVDLTgIxFO3gC/GFunTTSEyGGMgMIejGhOjGhQtM5JEAkk7pDA3tzKTtGHHCn7jxV9y40Bjjjr+xwCwUPEnT03Puze09TsioVJY1MVIrq2vrG+nNzNb2zu5edv+gIYNIYFLHAQtEy0GSMOqTuqKKkVYoCOIOI01neDX1mw9ESBr4d2oUki5Hnk9dipHSUi9buYEX0HyEBeiZT/n8fQmewo6kHkdzyiN9F2CHBZ451/P6afeyOatozQCXiZ2QHEhQ62W/O/0AR5z4CjMkZdu2QtWNkVAUMzLOdCJJQoSHyCNtTX3EiezGs/3G8EQrfegGQh9fwZn6uyNGXMoRd3QlR2ogF72p+J/XjpR73o2pH0aK+Hg+yI0YVAGchgX7VBCs2EgThAXVf4V4gATCSkea0SHYiysvk0apaFeK5dtyrnqZxJEGR+AYmMAGZ6AKrkEN1AEGz+AVvIMP48V4Mz6Nr3lpykh6DsEfGJMfP9udmQ==</latexit>

L = (x� g(z))2 + �2 + µ2 � log(�)� 1
(Calculate KL-divergence  
between Gaussians)


13
12

.6
11

4



28

VAE Example

to
w

ar
ds

da
ta

sc
ie

nc
e.

co
m

http://towardsdatascience.com


29

Loss terms

Latent space of MNIST VAE


<latexit sha1_base64="Wu2woahU1yaPP09xdvYgY20VGpk=">AAACH3icbVDLTgIxFO3gC/GFunTTSEyGGMgMIejGhOjGhQtM5JEAkk7pDA3tzKTtGHHCn7jxV9y40Bjjjr+xwCwUPEnT03Puze09TsioVJY1MVIrq2vrG+nNzNb2zu5edv+gIYNIYFLHAQtEy0GSMOqTuqKKkVYoCOIOI01neDX1mw9ESBr4d2oUki5Hnk9dipHSUi9buYEX0HyEBeiZT/n8fQmewo6kHkdzyiN9F2CHBZ451/P6afeyOatozQCXiZ2QHEhQ62W/O/0AR5z4CjMkZdu2QtWNkVAUMzLOdCJJQoSHyCNtTX3EiezGs/3G8EQrfegGQh9fwZn6uyNGXMoRd3QlR2ogF72p+J/XjpR73o2pH0aK+Hg+yI0YVAGchgX7VBCs2EgThAXVf4V4gATCSkea0SHYiysvk0apaFeK5dtyrnqZxJEGR+AYmMAGZ6AKrkEN1AEGz+AVvIMP48V4Mz6Nr3lpykh6DsEfGJMfP9udmQ==</latexit>

L = (x� g(z))2 + �2 + µ2 � log(�)� 1
<latexit sha1_base64="Wu2woahU1yaPP09xdvYgY20VGpk=">AAACH3icbVDLTgIxFO3gC/GFunTTSEyGGMgMIejGhOjGhQtM5JEAkk7pDA3tzKTtGHHCn7jxV9y40Bjjjr+xwCwUPEnT03Puze09TsioVJY1MVIrq2vrG+nNzNb2zu5edv+gIYNIYFLHAQtEy0GSMOqTuqKKkVYoCOIOI01neDX1mw9ESBr4d2oUki5Hnk9dipHSUi9buYEX0HyEBeiZT/n8fQmewo6kHkdzyiN9F2CHBZ451/P6afeyOatozQCXiZ2QHEhQ62W/O/0AR5z4CjMkZdu2QtWNkVAUMzLOdCJJQoSHyCNtTX3EiezGs/3G8EQrfegGQh9fwZn6uyNGXMoRd3QlR2ogF72p+J/XjpR73o2pH0aK+Hg+yI0YVAGchgX7VBCs2EgThAXVf4V4gATCSkea0SHYiysvk0apaFeK5dtyrnqZxJEGR+AYmMAGZ6AKrkEN1AEGz+AVvIMP48V4Mz6Nr3lpykh6DsEfGJMfP9udmQ==</latexit>

L = (x� g(z))2 + �2 + µ2 � log(�)� 1
Both terms

to
w

ar
ds

da
ta

sc
ie

nc
e.

co
m

Reconstruction Regularisation

http://towardsdatascience.com


30

Loss terms

How did we get here?


<latexit sha1_base64="Wu2woahU1yaPP09xdvYgY20VGpk=">AAACH3icbVDLTgIxFO3gC/GFunTTSEyGGMgMIejGhOjGhQtM5JEAkk7pDA3tzKTtGHHCn7jxV9y40Bjjjr+xwCwUPEnT03Puze09TsioVJY1MVIrq2vrG+nNzNb2zu5edv+gIYNIYFLHAQtEy0GSMOqTuqKKkVYoCOIOI01neDX1mw9ESBr4d2oUki5Hnk9dipHSUi9buYEX0HyEBeiZT/n8fQmewo6kHkdzyiN9F2CHBZ451/P6afeyOatozQCXiZ2QHEhQ62W/O/0AR5z4CjMkZdu2QtWNkVAUMzLOdCJJQoSHyCNtTX3EiezGs/3G8EQrfegGQh9fwZn6uyNGXMoRd3QlR2ogF72p+J/XjpR73o2pH0aK+Hg+yI0YVAGchgX7VBCs2EgThAXVf4V4gATCSkea0SHYiysvk0apaFeK5dtyrnqZxJEGR+AYmMAGZ6AKrkEN1AEGz+AVvIMP48V4Mz6Nr3lpykh6DsEfGJMfP9udmQ==</latexit>

L = (x� g(z))2 + �2 + µ2 � log(�)� 1



31

Loss terms

Sample from latent 
variables z


Produce data points x


ht
tp

s:
//j

aa
n.

io
/w

ha
t-i

s-
va

ria
tio

na
l-a

ut
oe

nc
od

er
-v

ae
-tu

to
ria

l/



32

Loss terms

Sample from latent 
variables z


Produce data points x


To choose correct latent 
distribution given data, 
could use Bayes theorem:
 Difficult due to p(x)


ja
an

.io

Conditional
 Prior


Evidence




33

Loss terms
To choose correct latent 
distribution given data, 
could use Bayes theorem:


Instead, approximate with family of posterior 
distributions (variational inference): 


And find optimal approximation:


Still difficult due to (hidden) p(x) term!

ja
an

.io



34

Loss terms
To choose correct latent 
distribution given data, 
could use Bayes theorem:


Instead, approximate with family of posterior 
distributions (variational inference): 


And find optimal approximation:


Still difficult due to p(x) term!

ja
an

.io

<latexit sha1_base64="xnM7y4O/lu8kUP2MLC4PaFpvxEg=">AAACNnicbVDLSgMxFM3Ud32NunQTLEILtcyIqBuh6EZQQcHaQjOUTJppg5mHSUYs0/kqN36HOzcuFHHrJ5gZu9DWA4HDOeeSe48bcSaVZb0Yhanpmdm5+YXi4tLyyqq5tn4jw1gQ2iAhD0XLxZJyFtCGYorTViQo9l1Om+7tSeY376mQLAyu1SCijo97AfMYwUpLHfMC+Vj1XTc5O0/Ld+WHCqoOh6gaaVaBR3AHIhYomIeEn3TTB1TNUhDxsAeRJzBJsmyaZGraMUtWzcoBJ4k9IiUwwmXHfEbdkMQ+DRThWMq2bUXKSbBQjHCaFlEsaYTJLe7RtqYB9ql0kvzsFG5rpQu9UOinl8zV3xMJ9qUc+K5OZvvLcS8T//PasfIOnYQFUaxoQH4+8mIOVQizDmGXCUoUH2iCiWB6V0j6WHehdNNFXYI9fvIkudmt2fu1vau9Uv14VMc82ARboAxscADq4BRcggYg4BG8gDfwbjwZr8aH8fkTLRijmQ3wB8bXN6cBqiA=</latexit>

KL(q(x) || p(x)) = �
Z

dx q(x) log
p(x)

q(x)

Kullback-Leibler 
definition


<latexit sha1_base64="2LwORddJ5th0E5JQ6lKjvgx/9QU=">AAAB/XicbVDLSgMxFM34rPU1PnZugkVoQcqMFHUjFN24rGAf0A4lk2ba0EwmJBlpOxZ/xY0LRdz6H+78G9N2Ftp64HIP59xLbo4vGFXacb6tpeWV1bX1zEZ2c2t7Z9fe26+pKJaYVHHEItnwkSKMclLVVDPSEJKg0Gek7vdvJn79gUhFI36vh4J4IepyGlCMtJHa9qHID05HBXgFRX70OCiYNii07ZxTdKaAi8RNSQ6kqLTtr1YnwnFIuMYMKdV0HaG9BElNMSPjbCtWRCDcR13SNJSjkCgvmV4/hidG6cAgkqa4hlP190aCQqWGoW8mQ6R7at6biP95zVgHl15CuYg14Xj2UBAzqCM4iQJ2qCRYs6EhCEtqboW4hyTC2gSWNSG4819eJLWzonteLN2VcuXrNI4MOALHIA9ccAHK4BZUQBVgMALP4BW8WU/Wi/VufcxGl6x05wD8gfX5A5Bmk2A=</latexit>

p(x, z) = p(z|x)p(x)

Reminder




35

Loss terms

Introduce


Rewrite


As KL is >=0, ELBO is a lower 
limit for p(X)  
ELBO:  Evidence Lower Bound

ja
an

.io



36

Loss terms

Rewrite for samples, using neural 
networks:

Reconstruction term Regularisation term

Maximise

ja
an

.io

<latexit sha1_base64="Wu2woahU1yaPP09xdvYgY20VGpk=">AAACH3icbVDLTgIxFO3gC/GFunTTSEyGGMgMIejGhOjGhQtM5JEAkk7pDA3tzKTtGHHCn7jxV9y40Bjjjr+xwCwUPEnT03Puze09TsioVJY1MVIrq2vrG+nNzNb2zu5edv+gIYNIYFLHAQtEy0GSMOqTuqKKkVYoCOIOI01neDX1mw9ESBr4d2oUki5Hnk9dipHSUi9buYEX0HyEBeiZT/n8fQmewo6kHkdzyiN9F2CHBZ451/P6afeyOatozQCXiZ2QHEhQ62W/O/0AR5z4CjMkZdu2QtWNkVAUMzLOdCJJQoSHyCNtTX3EiezGs/3G8EQrfegGQh9fwZn6uyNGXMoRd3QlR2ogF72p+J/XjpR73o2pH0aK+Hg+yI0YVAGchgX7VBCs2EgThAXVf4V4gATCSkea0SHYiysvk0apaFeK5dtyrnqZxJEGR+AYmMAGZ6AKrkEN1AEGz+AVvIMP48V4Mz6Nr3lpykh6DsEfGJMfP9udmQ==</latexit>

L = (x� g(z))2 + �2 + µ2 � log(�)� 1

Assume normal 
distribution

Difference between normal and 
standard normal



37

Loss terms

Rewrite for samples, using neural 
networks:

Reconstruction term Regularisation term

Maximise

ja
an

.io

<latexit sha1_base64="Wu2woahU1yaPP09xdvYgY20VGpk=">AAACH3icbVDLTgIxFO3gC/GFunTTSEyGGMgMIejGhOjGhQtM5JEAkk7pDA3tzKTtGHHCn7jxV9y40Bjjjr+xwCwUPEnT03Puze09TsioVJY1MVIrq2vrG+nNzNb2zu5edv+gIYNIYFLHAQtEy0GSMOqTuqKKkVYoCOIOI01neDX1mw9ESBr4d2oUki5Hnk9dipHSUi9buYEX0HyEBeiZT/n8fQmewo6kHkdzyiN9F2CHBZ451/P6afeyOatozQCXiZ2QHEhQ62W/O/0AR5z4CjMkZdu2QtWNkVAUMzLOdCJJQoSHyCNtTX3EiezGs/3G8EQrfegGQh9fwZn6uyNGXMoRd3QlR2ogF72p+J/XjpR73o2pH0aK+Hg+yI0YVAGchgX7VBCs2EgThAXVf4V4gATCSkea0SHYiysvk0apaFeK5dtyrnqZxJEGR+AYmMAGZ6AKrkEN1AEGz+AVvIMP48V4Mz6Nr3lpykh6DsEfGJMfP9udmQ==</latexit>

L = (x� g(z))2 + �2 + µ2 � log(�)� 1

Assume normal 
distribution

Difference between normal and 
standard normal



Architecture:

• Low complexity, fast and adaptable

• Target: Maximise lower bound on likelihood  

Learning:

• Stable training 

• Average prediction → blurrier output

• Interpretable latent space  

Maturity:

• Well established,  

many variants and extensions


Comments on VAEs

16
07

.0
75

39

VAE

DCGAN



Applications I



Calorimeter 
ShowersFlow Matching Beyond Kinematics: Generating Jets with Particle-ID and

Trajectory Displacement Information

Joschka Birk,1, ⇤ Erik Buhmann,1 Cedric Ewen,1 Gregor Kasieczka,1, 2 and David Shih3

1
Institute for Experimental Physics, Universität Hamburg

Luruper Chaussee 149, 22761 Hamburg, Germany
2
Center for Data and Computing in Natural Sciences (CDCS),

Universität Hamburg, 22176 Hamburg, Hamburg, Germany
3
New High Energy Theory Center, Rutgers University

Piscataway, New Jersey 08854-8019, USA

(Dated: November 22, 2023)

In this paper, we introduce a method for e�ciently generating jets in the field of High Energy
Physics. Our model is designed to generate ten di↵erent types of jets, expanding the versatility of jet
generation techniques. Beyond the kinematic features of the jet constituents, our model also excels in
generating informative features that provide insight into the types of jet constituents, such as features
that indicate if a constituent is an electron or a photon, o↵ering a more comprehensive understanding
of the generated jets. Furthermore, our model incorporates valuable impact parameter information,
enhancing its potential utility in high-energy physics research.

I. INTRODUCTION

Recently there has been considerable interest and
activity in generative modeling for jet constituents.
While showering and hadronization with standard
programs such as Pythia and Herwig is not a ma-
jor computational bottleneck at the LHC [1] what

about NLO generators?, generative modeling at
the jet constituent level still has potentially far-
reaching applications to anomaly detection [2] and
beyond. More generally it is also an interesting
laboratory for method development. In particular,
it has been fruitful and e↵ective to view the jet
constituents as a high-dimensional point cloud, and
to devise methods for point cloud generative mod-
els that incorporate permutation invariance. This
route has led to a number of state-of-the-art ap-
proaches, recently explored in [3–11], that combine
di↵erent permutation-invariant layers such as trans-
formers [12] and the EPiC layer [4], with state-of-
the-art generative modeling frameworks such as dif-
fusion [13–17] and flow-matching [18–21]. Successful
models developed for jet point clouds can also po-
tentially be adapted to other important point cloud
generative modeling problems such as for fast emu-
lation of GEANT4 calorimeter showers [9, 11].
So far this activity has focused almost exclusively

on the JetNet dataset of [22, 23]. Originally gener-
ated by [24], this dataset was subsequently adopted
in the works of [3] as a useful benchmark dataset
for jet generative modeling. However, the JetNet
dataset has a number of drawbacks that are readily
becoming apparent. First and foremost is the size –
since it is limited in size, there are not enough jets
in JetNet to facilitate the training of state-of-the-art
generative models as well as metrics such as the bi-
nary classifier metric which require additional train-
ing data. Second, JetNet uses small-radius (R = 0.4)
jets, despite saying otherwise in their papers. This

⇤
joschka.birk@uni-hamburg.de

FIG. 1: Schematic overview of the di↵erent jet con-
stituent features available in the JetClass dataset.
The horizontal line at the bottom represents the
beam axis and the circle on this line represents the
primary vertex (PV).

can lead to the problem that the decay products are
not fully contained in the jet, which can be seen e.g.
in distributions such as the jet mass for top quarks,
where there is a prominent secondary mass peak.
Finally, JetNet focuses solely on the kinematics of
the jet constituents, whereas there is a wealth of ad-
ditional information inside the jets that could also
be modeled, such as trajectory displacement, charge,
and particle ID as illustrated in Figure 1.

In this work, we introduce the first jet cloud
modeling on the much larger dataset of JetClass.
Other than demonstrating that existing techniques
scale well to this new dataset, we also tackle new
challenges introduced by the JetClass dataset, in-

Jet Constituents

Reduce computational bottleneck

Predict background from 
data

(Some) Simulation targets

Classification and 
Reconstruction tasks

Act as surrogate models



Calorimeter 
ShowersFlow Matching Beyond Kinematics: Generating Jets with Particle-ID and

Trajectory Displacement Information

Joschka Birk,1, ⇤ Erik Buhmann,1 Cedric Ewen,1 Gregor Kasieczka,1, 2 and David Shih3

1
Institute for Experimental Physics, Universität Hamburg

Luruper Chaussee 149, 22761 Hamburg, Germany
2
Center for Data and Computing in Natural Sciences (CDCS),

Universität Hamburg, 22176 Hamburg, Hamburg, Germany
3
New High Energy Theory Center, Rutgers University

Piscataway, New Jersey 08854-8019, USA

(Dated: November 22, 2023)

In this paper, we introduce a method for e�ciently generating jets in the field of High Energy
Physics. Our model is designed to generate ten di↵erent types of jets, expanding the versatility of jet
generation techniques. Beyond the kinematic features of the jet constituents, our model also excels in
generating informative features that provide insight into the types of jet constituents, such as features
that indicate if a constituent is an electron or a photon, o↵ering a more comprehensive understanding
of the generated jets. Furthermore, our model incorporates valuable impact parameter information,
enhancing its potential utility in high-energy physics research.

I. INTRODUCTION

Recently there has been considerable interest and
activity in generative modeling for jet constituents.
While showering and hadronization with standard
programs such as Pythia and Herwig is not a ma-
jor computational bottleneck at the LHC [1] what

about NLO generators?, generative modeling at
the jet constituent level still has potentially far-
reaching applications to anomaly detection [2] and
beyond. More generally it is also an interesting
laboratory for method development. In particular,
it has been fruitful and e↵ective to view the jet
constituents as a high-dimensional point cloud, and
to devise methods for point cloud generative mod-
els that incorporate permutation invariance. This
route has led to a number of state-of-the-art ap-
proaches, recently explored in [3–11], that combine
di↵erent permutation-invariant layers such as trans-
formers [12] and the EPiC layer [4], with state-of-
the-art generative modeling frameworks such as dif-
fusion [13–17] and flow-matching [18–21]. Successful
models developed for jet point clouds can also po-
tentially be adapted to other important point cloud
generative modeling problems such as for fast emu-
lation of GEANT4 calorimeter showers [9, 11].
So far this activity has focused almost exclusively

on the JetNet dataset of [22, 23]. Originally gener-
ated by [24], this dataset was subsequently adopted
in the works of [3] as a useful benchmark dataset
for jet generative modeling. However, the JetNet
dataset has a number of drawbacks that are readily
becoming apparent. First and foremost is the size –
since it is limited in size, there are not enough jets
in JetNet to facilitate the training of state-of-the-art
generative models as well as metrics such as the bi-
nary classifier metric which require additional train-
ing data. Second, JetNet uses small-radius (R = 0.4)
jets, despite saying otherwise in their papers. This

⇤
joschka.birk@uni-hamburg.de

FIG. 1: Schematic overview of the di↵erent jet con-
stituent features available in the JetClass dataset.
The horizontal line at the bottom represents the
beam axis and the circle on this line represents the
primary vertex (PV).

can lead to the problem that the decay products are
not fully contained in the jet, which can be seen e.g.
in distributions such as the jet mass for top quarks,
where there is a prominent secondary mass peak.
Finally, JetNet focuses solely on the kinematics of
the jet constituents, whereas there is a wealth of ad-
ditional information inside the jets that could also
be modeled, such as trajectory displacement, charge,
and particle ID as illustrated in Figure 1.

In this work, we introduce the first jet cloud
modeling on the much larger dataset of JetClass.
Other than demonstrating that existing techniques
scale well to this new dataset, we also tackle new
challenges introduced by the JetClass dataset, in-

Jet Constituents

Reduce computational bottleneck

Predict background from 
data

(Some) Simulation targets

Classification and 
Reconstruction tasks

Act as surrogate models



Generative Models
This happens in the experiment

This is what we want to know

Simulation is crucial to connect 
experimental data with theory 

predictions



Generative Models
This happens in the experiment

This is what we want to know

Simulation is crucial to connect 
experimental data with theory 

predictions, but computationally 
very costly 

Year

2020 2022 2024 2026 2028 2030 2032 2034

ye
ar

s]
⋅

An
nu

al
 C

PU
 C

on
su

m
pt

io
n 

 [M
H

S0
6

0

10

20

30

40

50

60

70

80
=55)µRun 3 ( =88-140)µRun 4 ( =165-200)µRun 5 (

2020 Computing Model - CPU
Baseline
Conservative R&D
Aggressive R&D
Sustained budget model
(+10% +20% capacity/year)

ATLAS Preliminary



Generative Models
This happens in the experiment

This is what we want to know

Simulation is crucial to connect 
experimental data with theory 

predictions, but computationally 
very costly 

→Use generative models trained on 
simulation or data to augment 
simulations




Simulation targets

How to represent?




Simulation targets

How to represent?

Tabular data:  
Easy, insufficient for high-dimensions




Simulation targets

How to represent?

Tabular data

Fixed grid (voxels)




24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 18

Bounded Information Bottleneck Autoencoder

•Combines VAE and GAN approaches

•Final Post Processor network for fine tuning

������� �������

	
����
��
�
�

����

��
�
�

	
����
�����

� ��

�
�	�

���

���

����
���������
�������

�
�

�

��������������

��

 

Slava Voloshynovskiy et al.: 
Information bottleneck through 
variational glasses: 1912.00830


Bounded Information 
Bottleneck AE

BIB-AE (GAN + VAE)

Generative results

(Transposed) Convolution
Latent Critic

Critic
Difference 
Critic

Latent Regularisation 

19
12

.0
08

30
, 2

00
5.

05
33

4



24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 18

Bounded Information Bottleneck Autoencoder

•Combines VAE and GAN approaches

•Final Post Processor network for fine tuning

������� �������

	
����
��
�
�

����

��
�
�

	
����
�����

� ��

�
�	�

���

���

����
���������
�������

�
�

�

��������������

��

 

Slava Voloshynovskiy et al.: 
Information bottleneck through 
variational glasses: 1912.00830


Generative results

20
05

.0
53

34



24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 18

Bounded Information Bottleneck Autoencoder

•Combines VAE and GAN approaches

•Final Post Processor network for fine tuning

������� �������

	
����
��
�
�

����

��
�
�

	
����
�����

� ��

�
�	�

���

���

����
���������
�������

�
�

�

��������������

��

 

Slava Voloshynovskiy et al.: 
Information bottleneck through 
variational glasses: 1912.00830


24.10.2022 S. Diefenbacher Generative Models for Fast (Calorimeter) Simulation 2020

Cell Energy Spectrum
Photons Pions

Generative results

20
05

.0
53

34



(Normalising) Flows

Go with the…



lili
an

w
en

g.
gi

th
ub

.io

Generative models

In auto-encoders, the decoder learns to ‘undo’ 
the encoder


Can we make this exact?



Generative models

Learn a diffeomorphism between data 
and latent-space


 

Choose latent space, e.g. standard 
normal distribution (normalising flow!)

Same dimension as data!

15
05

.0
57

70
, 1

90
8.

09
25

7



Generative models

Learn a diffeomorphism between data 
and latent-space


Bijective, invertable 

f-1 is not a learned inversion, but 
exact inverse by construction



Generative models

Learn a diffeomorphism between data 
and latent-space


Bijective, invertable 

Learn likelihood of data

Take into account Jacobian 
determinant to evaluate 
probability density

15
05

.0
57

70
, 1

90
8.

09
25

7



Generative models

2 challenges:

Invertible 

Easy-to-calculate Jacobean 


Take into account Jacobian 
determinant to evaluate 
probability density

15
05

.0
57

70
, 1

90
8.

09
25

7



Coupling flows
March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 260

260 Deep Learning for Physics Research

s2

z1 z1

t2 s1 t1

+භ

භ +

z

z2

exp

exp

s2

z1 z1

t2 s1 t1

-

-

z

z2

exp

exp

඲

඲

x

x1

x2

x

x1

x2 x2

x2

Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

Coupling layers: Not the most expressive,  
but useful for illustration/understanding


15
05

.0
57

70
, 1

90
8.

09
25

7



March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 260

260 Deep Learning for Physics Research

s2

z1 z1

t2 s1 t1

+භ

භ +

z

z2

exp

exp

s2

z1 z1

t2 s1 t1

-

-

z

z2

exp

exp

඲

඲

x

x1

x2

x

x1

x2 x2

x2

Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

Simple (e.g. dense) 
neural networks


Coupling flows

15
05

.0
57

70
, 1

90
8.

09
25

7



March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 260

260 Deep Learning for Physics Research

s2

z1 z1

t2 s1 t1

+භ

භ +

z

z2

exp

exp

s2

z1 z1

t2 s1 t1

-

-

z

z2

exp

exp

඲

඲

x

x1

x2

x

x1

x2 x2

x2

Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 260

260 Deep Learning for Physics Research

s2

z1 z1

t2 s1 t1

+භ

භ +

z

z2

exp

exp

s2

z1 z1

t2 s1 t1

-

-

z

z2

exp

exp

඲

඲

x

x1

x2

x

x1

x2 x2

x2

Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

Forward direction


Inverse  
direction


Coupling flows

15
05

.0
57

70
, 1

90
8.

09
25

7



Generative models

2 challenges:

Invertible 

Easy-to-calculate Jacobian 


Take into account Jacobian 
determinant to evaluate 
probability density

15
05

.0
57

70
, 1

90
8.

09
25

7



March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 260

260 Deep Learning for Physics Research

s2

z1 z1

t2 s1 t1

+භ

භ +

z

z2

exp

exp

s2

z1 z1

t2 s1 t1

-

-

z

z2

exp

exp

඲

඲

x

x1

x2

x

x1

x2 x2

x2

Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

Calculating Jacobian determinant

March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 260

260 Deep Learning for Physics Research

s2

z1 z1

t2 s1 t1

+භ

භ +

z

z2

exp

exp

s2

z1 z1

t2 s1 t1

-

-

z

z2

exp

exp

඲

඲

x

x1

x2

x

x1

x2 x2

x2

Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 260

260 Deep Learning for Physics Research

s2

z1 z1

t2 s1 t1

+භ

භ +

z

z2

exp

exp

s2

z1 z1

t2 s1 t1

-

-

z

z2

exp

exp

඲

඲

x

x1

x2

x

x1

x2 x2

x2

Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 261

Generative models: data from noise 261

The Jacobian matrix for this transformation J1 reads:

J1 =

 
@z1
@x1

@z1
@x2

@x2
@x1

@x2
@x2

!
(18.25)

=

✓
diag(exp(s2(x2)))

@z1
@x2

0 1

◆
. (18.26)

By construction, we arrived at a triangular matrix. This shape greatly
simplifies the calculation of the determinant:

detJ1 =
Y

exp(s2(x2)) = exp
⇣X

s2(x2)
⌘

. (18.27)

Here, the sum goes over the output dimension of s2. In the same way, the
Jacobian determinant for the second half of the transformation f2 can be
calculated to be

detJ2 = exp
⇣X

s1(z1)
⌘

. (18.28)

Combining these shows the simple form of the overall determinant of the
forward pass:

|detJf | = exp
⇣X

s2(x2) +
X

s1(z1)
⌘

= exp
⇣X

s(x)
⌘
. (18.29)

For the last equality, we simplified the notation to highlight that the deter-
minant is the exponential function applied to a sum of network predictions
s. When multiple such blocks are applied in sequence, due to (18.21), we
just gain additional terms in that sum.

To summarize, by splitting the input features into two parts we no-
tice how a transformation block, that is invertible and allows calculat-
ing the change in probability volume, can be constructed from standard
(i.e., non-invertible networks) and basic mathematical operations. When
more expressiveness is needed, multiple such blocks can be applied subse-
quently. An alternative construction based on autoregressive transforma-
tions is sketched in Example 18.6.

Example 18.6. Autoregressive flows: A popular alternative build-
ing block for invertible networks are masked autoregressive flows
(MAFs) [210]. An autoregressive flow is a bijective function of a number
of inputs yt which for each output xt is conditioned on all preceding

with

March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 261

Generative models: data from noise 261

The Jacobian matrix for this transformation J1 reads:

J1 =

 
@z1
@x1

@z1
@x2

@x2
@x1

@x2
@x2

!
(18.25)

=

✓
diag(exp(s2(x2)))

@z1
@x2

0 1

◆
. (18.26)

By construction, we arrived at a triangular matrix. This shape greatly
simplifies the calculation of the determinant:

detJ1 =
Y

exp(s2(x2)) = exp
⇣X

s2(x2)
⌘

. (18.27)

Here, the sum goes over the output dimension of s2. In the same way, the
Jacobian determinant for the second half of the transformation f2 can be
calculated to be

detJ2 = exp
⇣X

s1(z1)
⌘

. (18.28)

Combining these shows the simple form of the overall determinant of the
forward pass:

|detJf | = exp
⇣X

s2(x2) +
X

s1(z1)
⌘

= exp
⇣X

s(x)
⌘
. (18.29)

For the last equality, we simplified the notation to highlight that the deter-
minant is the exponential function applied to a sum of network predictions
s. When multiple such blocks are applied in sequence, due to (18.21), we
just gain additional terms in that sum.

To summarize, by splitting the input features into two parts we no-
tice how a transformation block, that is invertible and allows calculat-
ing the change in probability volume, can be constructed from standard
(i.e., non-invertible networks) and basic mathematical operations. When
more expressiveness is needed, multiple such blocks can be applied subse-
quently. An alternative construction based on autoregressive transforma-
tions is sketched in Example 18.6.

Example 18.6. Autoregressive flows: A popular alternative build-
ing block for invertible networks are masked autoregressive flows
(MAFs) [210]. An autoregressive flow is a bijective function of a number
of inputs yt which for each output xt is conditioned on all preceding

March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 261

Generative models: data from noise 261

The Jacobian matrix for this transformation J1 reads:

J1 =

 
@z1
@x1

@z1
@x2

@x2
@x1

@x2
@x2

!
(18.25)

=

✓
diag(exp(s2(x2)))

@z1
@x2

0 1

◆
. (18.26)

By construction, we arrived at a triangular matrix. This shape greatly
simplifies the calculation of the determinant:

detJ1 =
Y

exp(s2(x2)) = exp
⇣X

s2(x2)
⌘

. (18.27)

Here, the sum goes over the output dimension of s2. In the same way, the
Jacobian determinant for the second half of the transformation f2 can be
calculated to be

detJ2 = exp
⇣X

s1(z1)
⌘

. (18.28)

Combining these shows the simple form of the overall determinant of the
forward pass:

|detJf | = exp
⇣X

s2(x2) +
X

s1(z1)
⌘

= exp
⇣X

s(x)
⌘
. (18.29)

For the last equality, we simplified the notation to highlight that the deter-
minant is the exponential function applied to a sum of network predictions
s. When multiple such blocks are applied in sequence, due to (18.21), we
just gain additional terms in that sum.

To summarize, by splitting the input features into two parts we no-
tice how a transformation block, that is invertible and allows calculat-
ing the change in probability volume, can be constructed from standard
(i.e., non-invertible networks) and basic mathematical operations. When
more expressiveness is needed, multiple such blocks can be applied subse-
quently. An alternative construction based on autoregressive transforma-
tions is sketched in Example 18.6.

Example 18.6. Autoregressive flows: A popular alternative build-
ing block for invertible networks are masked autoregressive flows
(MAFs) [210]. An autoregressive flow is a bijective function of a number
of inputs yt which for each output xt is conditioned on all preceding

Triangular by construction

15
05

.0
57

70
, 1

90
8.

09
25

7



Composition

March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 260

260 Deep Learning for Physics Research

s2

z1 z1

t2 s1 t1

+භ

භ +

z

z2

exp

exp

s2

z1 z1

t2 s1 t1

-

-

z

z2

exp

exp

඲

඲

x

x1

x2

x

x1

x2 x2

x2

Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 260

260 Deep Learning for Physics Research

s2

z1 z1

t2 s1 t1

+භ

භ +

z

z2

exp

exp

s2

z1 z1

t2 s1 t1

-

-

z

z2

exp

exp

඲

඲

x

x1

x2

x

x1

x2 x2

x2

Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 260

260 Deep Learning for Physics Research

s2

z1 z1

t2 s1 t1

+භ

භ +

z

z2

exp

exp

s2

z1 z1

t2 s1 t1

-

-

z

z2

exp

exp

඲

඲

x

x1

x2

x

x1

x2 x2

x2

Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 260

260 Deep Learning for Physics Research

s2

z1 z1

t2 s1 t1

+භ

භ +

z

z2

exp

exp

s2

z1 z1

t2 s1 t1

-

-

z

z2

exp

exp

඲

඲

x

x1

x2

x

x1

x2 x2

x2

Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 260

260 Deep Learning for Physics Research

s2

z1 z1

t2 s1 t1

+භ

භ +

z

z2

exp

exp

s2

z1 z1

t2 s1 t1

-

-

z

z2

exp

exp

඲

඲

x

x1

x2

x

x1

x2 x2

x2

Figure 18.10: Example for an invertible mapping using a real-valued non-
volume preserving (real NVP) transformation [208]. Here, si and ti (i =
1, 2) denote networks. The upper diagram gives the forward pass x ! z for
training the network. The lower diagram shows the backward pass z ! x

enabling generation of distributions in x from the normally distributed z.

The backward pass operates with reversed signs. The division can be
achieved by element-wise multiplication by exp (�si) where i = 1, 2. While
the networks si and ti themselves are not invertible — and do not need
to be, as they are always used in forward mode — the overall block which
maps between x and z is invertible.

For the invertible block to be useful in practice, we also need to calculate
the determinant of the Jacobian. We can view the forward pass as two
subsequent transformations f1 and f2 — corresponding to the left and
right halves of Figure 18.10 respectively — applying the following changes
to the data:

✓
x1

x2

◆
f1�!

✓
z1
x2

◆
f2�!

✓
z1
z2

◆
(18.22)

As the structure for f1 and f2 is similar, we first focus on f1:

x1
f1�! z1 = x1 � exp(s2(x2)) + t2(x2) (18.23)

x2
f1�! x2. (18.24)

Composition of bijective functions 
remains bijective


Chain rule: Jacobian determinant of 
composition is product of determinants


15
05

.0
57

70
, 1

90
8.

09
25

7



How to train NF?

March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 263

Generative models: data from noise 263

For high-dimensional distributions we use the Euclidean squared distance
||f(x))||22. Also inserting the explicit form of the Jacobian determinant
(18.29) yields:

L = �Ex⇠pdata


�1

2
||f(x))||22 +

X
s(x)

�

Using the batch size k, the objective function to be minimized finally be-
comes

L =
1

k

kX

i=1

✓
1

2
||f(xi))||22 �

X
s(xi)

◆
. (18.36)

In this way, the network in the lower Figure 18.10 will generate new data x
from Gaussian distributed latent variables z which approximate pdata(x).
The precise form will be di↵erent for other implementations of normalizing
flows, but the underlying idea of building bijective mappings that allow
tracking the change in probability volume remains.

Example 18.7. Flows in lattice QCD: The theory of Quantum Chro-
modynamics (QCD) describes the so-called strong interaction of funda-
mental constituents of matter. Its coupling strength is inversely pro-
portional to the energy, leading to asymptotic freedom at high energies
and to strongly coupled theories at low energies. In this strong coupling
limit, the theory becomes non-perturbative, meaning that an expansion
in powers of the coupling strength will, in general, not converge. To
circumvent this problem, calculations are carried out on a discretized
spacetime lattice, often using Monte Carlo methods. However, these be-
come increasingly ine�cient in some phase space regions. Learning the
probability distribution of physical observables and sampling from it —
using generative models — is a promising alternative. A popular solu-
tion consists of training normalizing flow models for this problem. We
point to Ref. [211] for a hands-on pedagogical introduction of flows in
the context of lattice field theory.

A particularly interesting aspect is including symmetries of the un-
derlying theory in constructing the flow model. In Ref. [212], the au-
thors consider gauge transformations and show how the building blocks
of normalizing flows (the coupling layers) can be made equivariant under
certain symmetries — i.e., constructed in such a way that applying the
symmetry commutes with the coupling layer.

Training objective: Minimise negative 
log likelihood of data


Sample points from training data

15
05

.0
57

70
, 1

90
8.

09
25

7



How to train NF?

March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 263

Generative models: data from noise 263

For high-dimensional distributions we use the Euclidean squared distance
||f(x))||22. Also inserting the explicit form of the Jacobian determinant
(18.29) yields:

L = �Ex⇠pdata


�1

2
||f(x))||22 +

X
s(x)

�

Using the batch size k, the objective function to be minimized finally be-
comes

L =
1

k

kX

i=1

✓
1

2
||f(xi))||22 �

X
s(xi)

◆
. (18.36)

In this way, the network in the lower Figure 18.10 will generate new data x
from Gaussian distributed latent variables z which approximate pdata(x).
The precise form will be di↵erent for other implementations of normalizing
flows, but the underlying idea of building bijective mappings that allow
tracking the change in probability volume remains.

Example 18.7. Flows in lattice QCD: The theory of Quantum Chro-
modynamics (QCD) describes the so-called strong interaction of funda-
mental constituents of matter. Its coupling strength is inversely pro-
portional to the energy, leading to asymptotic freedom at high energies
and to strongly coupled theories at low energies. In this strong coupling
limit, the theory becomes non-perturbative, meaning that an expansion
in powers of the coupling strength will, in general, not converge. To
circumvent this problem, calculations are carried out on a discretized
spacetime lattice, often using Monte Carlo methods. However, these be-
come increasingly ine�cient in some phase space regions. Learning the
probability distribution of physical observables and sampling from it —
using generative models — is a promising alternative. A popular solu-
tion consists of training normalizing flow models for this problem. We
point to Ref. [211] for a hands-on pedagogical introduction of flows in
the context of lattice field theory.

A particularly interesting aspect is including symmetries of the un-
derlying theory in constructing the flow model. In Ref. [212], the au-
thors consider gauge transformations and show how the building blocks
of normalizing flows (the coupling layers) can be made equivariant under
certain symmetries — i.e., constructed in such a way that applying the
symmetry commutes with the coupling layer.

Training objective: Minimise negative 
log likelihood of data


Transform into latent space and 

evaluate probability there<latexit sha1_base64="wxt0fGwrL7ngoHZJyoJJPclr67c=">AAACPnicbVDLSgMxFM3UV62vqks3wSLUhWWmFHUjFN24rGAf0GlLJs20oZmHSaZQw3yZG7/BnUs3LhRx69J0OqC2XgicnHMu997jhIwKaZrPRmZpeWV1Lbue29jc2t7J7+41RBBxTOo4YAFvOUgQRn1Sl1Qy0go5QZ7DSNMZXU315phwQQP/Vk5C0vHQwKcuxUhqqpev22PEwyEt2h6SQ8dV9/ExvIC2yxFWVqxsccelKkM7pHEMExP3FIm76uTHVE6VpL2rf718wSyZScFFYKWgANKq9fJPdj/AkUd8iRkSom2ZoewoxCXFjMQ5OxIkRHiEBqStoY88IjoqOT+GR5rpQzfg+vkSJuzvDoU8ISaeo53TLcW8NiX/09qRdM87ivphJImPZ4PciEEZwGmWsE85wZJNNECYU70rxEOkQ5E68ZwOwZo/eRE0yiXrtFS5qRSql2kcWXAADkERWOAMVME1qIE6wOABvIA38G48Gq/Gh/E5s2aMtGcf/Cnj6xvOObAY</latexit>

'(z) =
1p
2⇡

e�
1
2z

2

<latexit sha1_base64="twyOLvp5lD6xKsFdc5WGntmAWCk=">AAACo3ichVHbahsxENVuL0ndm9M+9kXUBGxKzK4JTV4CoYVS6EPdEicBa2O08qwtor1Emg01Qj/Wz+hb/6ZaewtNUtoBweEcndHoTFopaTCKfgbhvfsPHm5tP+o8fvL02fPuzotTU9ZawESUqtTnKTegZAETlKjgvNLA81TBWXr5vtHPrkEbWRYnuKogyfmikJkUHD01637v7DFVLvrsmutqKftZn+Ucl2lmv7nBgB7RVs40FzZ2lpkrjXZEWSWdG9A92shMQYYbo84tuAvr+d+OkaM3ml6MHNNyscT/d6dv/tVm1u1Fw2hd9C6IW9AjbY1n3R9sXoo6hwKF4sZM46jCxHKNUihwHVYbqLi45AuYeljwHExi1xk7uuuZOc1K7U+BdM3+6bA8N2aVp/5mM6S5rTXk37RpjdlhYmVR1QiF2DyU1YpiSZuF0bnUIFCtPOBCSz8rFUvuU0G/1o4PIb795bvgdDSM3w73v+z3jt+1cWyTV+Q16ZOYHJBj8pGMyYSIgAYfgs/BONwNP4Vfw5PN1TBoPS/JjQqTX4rhzQU=</latexit>

� log('(f(x)) = � log(
1p
2⇡

)� log
⇣
e�

1
2 f(x)

2
⌘
= � log(

1p
2⇡

) +
1

2
f(x)2



How to train NF?

March 1, 2022 15:5 ws-book9x6 Deep Learning for Physics Research output page 263

Generative models: data from noise 263

For high-dimensional distributions we use the Euclidean squared distance
||f(x))||22. Also inserting the explicit form of the Jacobian determinant
(18.29) yields:

L = �Ex⇠pdata


�1

2
||f(x))||22 +

X
s(x)

�

Using the batch size k, the objective function to be minimized finally be-
comes

L =
1

k

kX

i=1

✓
1

2
||f(xi))||22 �

X
s(xi)

◆
. (18.36)

In this way, the network in the lower Figure 18.10 will generate new data x
from Gaussian distributed latent variables z which approximate pdata(x).
The precise form will be di↵erent for other implementations of normalizing
flows, but the underlying idea of building bijective mappings that allow
tracking the change in probability volume remains.

Example 18.7. Flows in lattice QCD: The theory of Quantum Chro-
modynamics (QCD) describes the so-called strong interaction of funda-
mental constituents of matter. Its coupling strength is inversely pro-
portional to the energy, leading to asymptotic freedom at high energies
and to strongly coupled theories at low energies. In this strong coupling
limit, the theory becomes non-perturbative, meaning that an expansion
in powers of the coupling strength will, in general, not converge. To
circumvent this problem, calculations are carried out on a discretized
spacetime lattice, often using Monte Carlo methods. However, these be-
come increasingly ine�cient in some phase space regions. Learning the
probability distribution of physical observables and sampling from it —
using generative models — is a promising alternative. A popular solu-
tion consists of training normalizing flow models for this problem. We
point to Ref. [211] for a hands-on pedagogical introduction of flows in
the context of lattice field theory.

A particularly interesting aspect is including symmetries of the un-
derlying theory in constructing the flow model. In Ref. [212], the au-
thors consider gauge transformations and show how the building blocks
of normalizing flows (the coupling layers) can be made equivariant under
certain symmetries — i.e., constructed in such a way that applying the
symmetry commutes with the coupling layer.

Training objective: Minimise negative 
log likelihood of data


Contribution from Jacobian 
determinant

<latexit sha1_base64="zfF/Wf3hACgn2KDKJoXjPvkQeOg=">AAACZXicdVFNSyNBEO2Z9SPGr+iKFw82BiEBDTMiu14WRC/iScGokA6hp1OTNHbPDN01YpidP+ltr3vZv7E9McKuHwUNr96rqq5+HWVKWgyCX57/ZW5+YbG2VF9eWV1bb2xs3to0NwK6IlWpuY+4BSUT6KJEBfeZAa4jBXfRw3ml3z2CsTJNbnCSQV/zUSJjKTg6atD4yTTHsdHFELBkB3SaRnFxWdIflMFTxhTE2KLM5pra1qv8VLYpM3I0xjZj9UOm0lHr00ltN+rwgwn1QaMZdIJp0PcgnIEmmcXVoPHMhqnINSQoFLe2FwYZ9gtuUAoFZZ3lFjIuHvgIeg4mXIPtF1OXSrrvmCGNU+NOgnTK/ttRcG3tREeustrRvtUq8iOtl2N80i9kkuUIiXi5KM4VxZRWltOhNCBQTRzgwki3KxVjbrhA9zGVCeHbJ78Ht0ed8Fvn+Pq4eXo2s6NGdsgeaZGQfCen5IJckS4R5LdX8za8Te+Pv+pv+dsvpb436/lK/gt/9y+icLbH</latexit>

detJ = exp
⇣X

s(x)
⌘

� log(detJ) = �
X

s(x)

15
05

.0
57

70
, 1

90
8.

09
25

7



Animation



Autoregressive Flows

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Fig. 3. Coupling architecture. a) A single coupling flow described in
Equation (15). A coupling function h is applied to one part of the space,
while its parameters depend on the other part. b) Two subsequent multi-
scale flows in the generative direction. A flow is applied to a relatively low
dimensional vector z; its parameters no longer depend on the rest part
zaux. Then new dimensions are gradually introduced to the distribution.

Sometimes, however, the conditioner can be constant
(i.e., not depend on xB at all). This allows for the construc-
tion of a “multi-scale flow” Dinh et al. [2017] which gradually
introduces dimensions to the distribution in the generative
direction (Figure 3b). In the normalizing direction, the di-
mension reduces by half after each iteration step, such that
most of semantic information is retained. This reduces the
computational costs of transforming high dimensional dis-
tributions and can capture the multi-scale structure inherent
in certain kinds of data like natural images.

The question remains of how to partition x. This is
often done by splitting the dimensions in half [Dinh et al.,
2015], potentially after a random permutation. However,
more structured partitioning has also been explored and
is common practice, particularly when modelling images.
For instance, Dinh et al. [2017] used “masked” flows that
take alternating pixels or blocks of channels in the case
of an image in non-volume preserving flows (RealNVP).
In place of permutation Kingma and Dhariwal [2018] used
1 ⇥ 1 convolution (Glow). For the partition for the multi-
scale flow in the normalizing direction, Das et al. [2019]
suggested selecting features at which the Jacobian of the
flow has higher values for the propagated part.

3.4.2 Autoregressive Flows

Kingma et al. [2016] used autoregressive models as a form
of normalizing flow. These are non-linear generalizations of
multiplication by a triangular matrix (Section 3.2.2).

Let h(· ; ✓) : R ! R be a bijection parameterized by ✓.
Then an autoregressive model is a function g : RD

! RD ,
which outputs each entry of y = g(x) conditioned on the
previous entries of the input:

yt = h(xt;⇥t(x1:t�1)), (18)

where x1:t = (x1, . . . , xt). For t = 2, . . . , D we choose
arbitrary functions ⇥t(·) mapping Rt�1 to the set of all
parameters, and ⇥1 is a constant. The functions ⇥t(·) are
called conditioners.

The Jacobian matrix of the autoregressive transformation
g is triangular. Each output yt only depends on x1:t, and so
the determinant is just a product of its diagonal entries:

det (Dg) =
DY

t=1

@yt

@xt
. (19)

In practice, it’s possible to efficiently compute all the entries
of the direct flow (Equation (18)) in one pass using a single
network with appropriate masks [Germain et al., 2015].
This idea was used by Papamakarios et al. [2017] to create
masked autoregressive flows (MAF).

However, the computation of the inverse is more chal-
lenging. Given the inverse of h, the inverse of g can be found
with recursion: we have x1 = h

�1(y1;⇥1) and for any
t = 2, . . . , D, xt = h

�1(yt;⇥t(x1:t�1)). This computation is
inherently sequential which makes it difficult to implement
efficiently on modern hardware as it cannot be parallelized.

Note that the functional form for the autoregressive
model is very similar to that for the coupling flow. In both
cases a bijection h is used, which has as an input one part
of the space and which is parameterized conditioned on
the other part. We call this bijection a coupling function in
both cases. Note that Huang et al. [2018] used the name
“transformer” (which has nothing to do with transformers
in NLP).

Alternatively, Kingma et al. [2016] introduced the “in-
verse autoregressive flow” (IAF), which outputs each entry
of y conditioned the previous entries of y (with respect to
the fixed ordering). Formally,

yt = h(xt; ✓t(y1:t�1)). (20)

One can see that the functional form of the inverse autore-
gressive flow is the same as the form of the inverse of
the flow in Equation (18), hence the name. Computation
of the IAF is sequential and expensive, but the inverse of
IAF (which is a direct autoregressive flow) can be computed
relatively efficiently (Figure 4).

Fig. 4. Autoregressive flows. On the left, is the direct autoregressive
flow given in Equation (18). Each output depends on the current and
previous inputs and so this operation can be easily parallelized. On
the right, is the inverse autoregressive flow from Equation (20). Each
output depends on the current input and the previous outputs and so
computation is inherently sequential and cannot be parallelized.

In Section 2.2.1 we noted that papers typically model
flows in the “normalizing flow” direction (i.e., in terms of f
from data to the base density) to enable efficient evaluation
of the log-likelihood during training. In this context one can
think of IAF as a flow in the generative direction: i.e.in terms
of g from base density to data. Hence Papamakarios et al.

Alternative to coupling flows: 
Outputs conditioned on previous inputs


15
05

.0
57

70
, 1

90
8.

09
25

7



Autoregressive Flows

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Fig. 3. Coupling architecture. a) A single coupling flow described in
Equation (15). A coupling function h is applied to one part of the space,
while its parameters depend on the other part. b) Two subsequent multi-
scale flows in the generative direction. A flow is applied to a relatively low
dimensional vector z; its parameters no longer depend on the rest part
zaux. Then new dimensions are gradually introduced to the distribution.

Sometimes, however, the conditioner can be constant
(i.e., not depend on xB at all). This allows for the construc-
tion of a “multi-scale flow” Dinh et al. [2017] which gradually
introduces dimensions to the distribution in the generative
direction (Figure 3b). In the normalizing direction, the di-
mension reduces by half after each iteration step, such that
most of semantic information is retained. This reduces the
computational costs of transforming high dimensional dis-
tributions and can capture the multi-scale structure inherent
in certain kinds of data like natural images.

The question remains of how to partition x. This is
often done by splitting the dimensions in half [Dinh et al.,
2015], potentially after a random permutation. However,
more structured partitioning has also been explored and
is common practice, particularly when modelling images.
For instance, Dinh et al. [2017] used “masked” flows that
take alternating pixels or blocks of channels in the case
of an image in non-volume preserving flows (RealNVP).
In place of permutation Kingma and Dhariwal [2018] used
1 ⇥ 1 convolution (Glow). For the partition for the multi-
scale flow in the normalizing direction, Das et al. [2019]
suggested selecting features at which the Jacobian of the
flow has higher values for the propagated part.

3.4.2 Autoregressive Flows

Kingma et al. [2016] used autoregressive models as a form
of normalizing flow. These are non-linear generalizations of
multiplication by a triangular matrix (Section 3.2.2).

Let h(· ; ✓) : R ! R be a bijection parameterized by ✓.
Then an autoregressive model is a function g : RD

! RD ,
which outputs each entry of y = g(x) conditioned on the
previous entries of the input:

yt = h(xt;⇥t(x1:t�1)), (18)

where x1:t = (x1, . . . , xt). For t = 2, . . . , D we choose
arbitrary functions ⇥t(·) mapping Rt�1 to the set of all
parameters, and ⇥1 is a constant. The functions ⇥t(·) are
called conditioners.

The Jacobian matrix of the autoregressive transformation
g is triangular. Each output yt only depends on x1:t, and so
the determinant is just a product of its diagonal entries:

det (Dg) =
DY

t=1

@yt

@xt
. (19)

In practice, it’s possible to efficiently compute all the entries
of the direct flow (Equation (18)) in one pass using a single
network with appropriate masks [Germain et al., 2015].
This idea was used by Papamakarios et al. [2017] to create
masked autoregressive flows (MAF).

However, the computation of the inverse is more chal-
lenging. Given the inverse of h, the inverse of g can be found
with recursion: we have x1 = h

�1(y1;⇥1) and for any
t = 2, . . . , D, xt = h

�1(yt;⇥t(x1:t�1)). This computation is
inherently sequential which makes it difficult to implement
efficiently on modern hardware as it cannot be parallelized.

Note that the functional form for the autoregressive
model is very similar to that for the coupling flow. In both
cases a bijection h is used, which has as an input one part
of the space and which is parameterized conditioned on
the other part. We call this bijection a coupling function in
both cases. Note that Huang et al. [2018] used the name
“transformer” (which has nothing to do with transformers
in NLP).

Alternatively, Kingma et al. [2016] introduced the “in-
verse autoregressive flow” (IAF), which outputs each entry
of y conditioned the previous entries of y (with respect to
the fixed ordering). Formally,

yt = h(xt; ✓t(y1:t�1)). (20)

One can see that the functional form of the inverse autore-
gressive flow is the same as the form of the inverse of
the flow in Equation (18), hence the name. Computation
of the IAF is sequential and expensive, but the inverse of
IAF (which is a direct autoregressive flow) can be computed
relatively efficiently (Figure 4).

Fig. 4. Autoregressive flows. On the left, is the direct autoregressive
flow given in Equation (18). Each output depends on the current and
previous inputs and so this operation can be easily parallelized. On
the right, is the inverse autoregressive flow from Equation (20). Each
output depends on the current input and the previous outputs and so
computation is inherently sequential and cannot be parallelized.

In Section 2.2.1 we noted that papers typically model
flows in the “normalizing flow” direction (i.e., in terms of f
from data to the base density) to enable efficient evaluation
of the log-likelihood during training. In this context one can
think of IAF as a flow in the generative direction: i.e.in terms
of g from base density to data. Hence Papamakarios et al.

Alternative to coupling flows: 
Outputs conditioned on previous inputs


Again: simple Jacobian and invertible functions


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Fig. 3. Coupling architecture. a) A single coupling flow described in
Equation (15). A coupling function h is applied to one part of the space,
while its parameters depend on the other part. b) Two subsequent multi-
scale flows in the generative direction. A flow is applied to a relatively low
dimensional vector z; its parameters no longer depend on the rest part
zaux. Then new dimensions are gradually introduced to the distribution.

Sometimes, however, the conditioner can be constant
(i.e., not depend on xB at all). This allows for the construc-
tion of a “multi-scale flow” Dinh et al. [2017] which gradually
introduces dimensions to the distribution in the generative
direction (Figure 3b). In the normalizing direction, the di-
mension reduces by half after each iteration step, such that
most of semantic information is retained. This reduces the
computational costs of transforming high dimensional dis-
tributions and can capture the multi-scale structure inherent
in certain kinds of data like natural images.

The question remains of how to partition x. This is
often done by splitting the dimensions in half [Dinh et al.,
2015], potentially after a random permutation. However,
more structured partitioning has also been explored and
is common practice, particularly when modelling images.
For instance, Dinh et al. [2017] used “masked” flows that
take alternating pixels or blocks of channels in the case
of an image in non-volume preserving flows (RealNVP).
In place of permutation Kingma and Dhariwal [2018] used
1 ⇥ 1 convolution (Glow). For the partition for the multi-
scale flow in the normalizing direction, Das et al. [2019]
suggested selecting features at which the Jacobian of the
flow has higher values for the propagated part.

3.4.2 Autoregressive Flows

Kingma et al. [2016] used autoregressive models as a form
of normalizing flow. These are non-linear generalizations of
multiplication by a triangular matrix (Section 3.2.2).

Let h(· ; ✓) : R ! R be a bijection parameterized by ✓.
Then an autoregressive model is a function g : RD

! RD ,
which outputs each entry of y = g(x) conditioned on the
previous entries of the input:

yt = h(xt;⇥t(x1:t�1)), (18)

where x1:t = (x1, . . . , xt). For t = 2, . . . , D we choose
arbitrary functions ⇥t(·) mapping Rt�1 to the set of all
parameters, and ⇥1 is a constant. The functions ⇥t(·) are
called conditioners.

The Jacobian matrix of the autoregressive transformation
g is triangular. Each output yt only depends on x1:t, and so
the determinant is just a product of its diagonal entries:

det (Dg) =
DY

t=1

@yt

@xt
. (19)

In practice, it’s possible to efficiently compute all the entries
of the direct flow (Equation (18)) in one pass using a single
network with appropriate masks [Germain et al., 2015].
This idea was used by Papamakarios et al. [2017] to create
masked autoregressive flows (MAF).

However, the computation of the inverse is more chal-
lenging. Given the inverse of h, the inverse of g can be found
with recursion: we have x1 = h

�1(y1;⇥1) and for any
t = 2, . . . , D, xt = h

�1(yt;⇥t(x1:t�1)). This computation is
inherently sequential which makes it difficult to implement
efficiently on modern hardware as it cannot be parallelized.

Note that the functional form for the autoregressive
model is very similar to that for the coupling flow. In both
cases a bijection h is used, which has as an input one part
of the space and which is parameterized conditioned on
the other part. We call this bijection a coupling function in
both cases. Note that Huang et al. [2018] used the name
“transformer” (which has nothing to do with transformers
in NLP).

Alternatively, Kingma et al. [2016] introduced the “in-
verse autoregressive flow” (IAF), which outputs each entry
of y conditioned the previous entries of y (with respect to
the fixed ordering). Formally,

yt = h(xt; ✓t(y1:t�1)). (20)

One can see that the functional form of the inverse autore-
gressive flow is the same as the form of the inverse of
the flow in Equation (18), hence the name. Computation
of the IAF is sequential and expensive, but the inverse of
IAF (which is a direct autoregressive flow) can be computed
relatively efficiently (Figure 4).

Fig. 4. Autoregressive flows. On the left, is the direct autoregressive
flow given in Equation (18). Each output depends on the current and
previous inputs and so this operation can be easily parallelized. On
the right, is the inverse autoregressive flow from Equation (20). Each
output depends on the current input and the previous outputs and so
computation is inherently sequential and cannot be parallelized.

In Section 2.2.1 we noted that papers typically model
flows in the “normalizing flow” direction (i.e., in terms of f
from data to the base density) to enable efficient evaluation
of the log-likelihood during training. In this context one can
think of IAF as a flow in the generative direction: i.e.in terms
of g from base density to data. Hence Papamakarios et al.

Bijective function Parameters



Autoregressive Flows

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Fig. 3. Coupling architecture. a) A single coupling flow described in
Equation (15). A coupling function h is applied to one part of the space,
while its parameters depend on the other part. b) Two subsequent multi-
scale flows in the generative direction. A flow is applied to a relatively low
dimensional vector z; its parameters no longer depend on the rest part
zaux. Then new dimensions are gradually introduced to the distribution.

Sometimes, however, the conditioner can be constant
(i.e., not depend on xB at all). This allows for the construc-
tion of a “multi-scale flow” Dinh et al. [2017] which gradually
introduces dimensions to the distribution in the generative
direction (Figure 3b). In the normalizing direction, the di-
mension reduces by half after each iteration step, such that
most of semantic information is retained. This reduces the
computational costs of transforming high dimensional dis-
tributions and can capture the multi-scale structure inherent
in certain kinds of data like natural images.

The question remains of how to partition x. This is
often done by splitting the dimensions in half [Dinh et al.,
2015], potentially after a random permutation. However,
more structured partitioning has also been explored and
is common practice, particularly when modelling images.
For instance, Dinh et al. [2017] used “masked” flows that
take alternating pixels or blocks of channels in the case
of an image in non-volume preserving flows (RealNVP).
In place of permutation Kingma and Dhariwal [2018] used
1 ⇥ 1 convolution (Glow). For the partition for the multi-
scale flow in the normalizing direction, Das et al. [2019]
suggested selecting features at which the Jacobian of the
flow has higher values for the propagated part.

3.4.2 Autoregressive Flows

Kingma et al. [2016] used autoregressive models as a form
of normalizing flow. These are non-linear generalizations of
multiplication by a triangular matrix (Section 3.2.2).

Let h(· ; ✓) : R ! R be a bijection parameterized by ✓.
Then an autoregressive model is a function g : RD

! RD ,
which outputs each entry of y = g(x) conditioned on the
previous entries of the input:

yt = h(xt;⇥t(x1:t�1)), (18)

where x1:t = (x1, . . . , xt). For t = 2, . . . , D we choose
arbitrary functions ⇥t(·) mapping Rt�1 to the set of all
parameters, and ⇥1 is a constant. The functions ⇥t(·) are
called conditioners.

The Jacobian matrix of the autoregressive transformation
g is triangular. Each output yt only depends on x1:t, and so
the determinant is just a product of its diagonal entries:

det (Dg) =
DY

t=1

@yt

@xt
. (19)

In practice, it’s possible to efficiently compute all the entries
of the direct flow (Equation (18)) in one pass using a single
network with appropriate masks [Germain et al., 2015].
This idea was used by Papamakarios et al. [2017] to create
masked autoregressive flows (MAF).

However, the computation of the inverse is more chal-
lenging. Given the inverse of h, the inverse of g can be found
with recursion: we have x1 = h

�1(y1;⇥1) and for any
t = 2, . . . , D, xt = h

�1(yt;⇥t(x1:t�1)). This computation is
inherently sequential which makes it difficult to implement
efficiently on modern hardware as it cannot be parallelized.

Note that the functional form for the autoregressive
model is very similar to that for the coupling flow. In both
cases a bijection h is used, which has as an input one part
of the space and which is parameterized conditioned on
the other part. We call this bijection a coupling function in
both cases. Note that Huang et al. [2018] used the name
“transformer” (which has nothing to do with transformers
in NLP).

Alternatively, Kingma et al. [2016] introduced the “in-
verse autoregressive flow” (IAF), which outputs each entry
of y conditioned the previous entries of y (with respect to
the fixed ordering). Formally,

yt = h(xt; ✓t(y1:t�1)). (20)

One can see that the functional form of the inverse autore-
gressive flow is the same as the form of the inverse of
the flow in Equation (18), hence the name. Computation
of the IAF is sequential and expensive, but the inverse of
IAF (which is a direct autoregressive flow) can be computed
relatively efficiently (Figure 4).

Fig. 4. Autoregressive flows. On the left, is the direct autoregressive
flow given in Equation (18). Each output depends on the current and
previous inputs and so this operation can be easily parallelized. On
the right, is the inverse autoregressive flow from Equation (20). Each
output depends on the current input and the previous outputs and so
computation is inherently sequential and cannot be parallelized.

In Section 2.2.1 we noted that papers typically model
flows in the “normalizing flow” direction (i.e., in terms of f
from data to the base density) to enable efficient evaluation
of the log-likelihood during training. In this context one can
think of IAF as a flow in the generative direction: i.e.in terms
of g from base density to data. Hence Papamakarios et al.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Fig. 3. Coupling architecture. a) A single coupling flow described in
Equation (15). A coupling function h is applied to one part of the space,
while its parameters depend on the other part. b) Two subsequent multi-
scale flows in the generative direction. A flow is applied to a relatively low
dimensional vector z; its parameters no longer depend on the rest part
zaux. Then new dimensions are gradually introduced to the distribution.

Sometimes, however, the conditioner can be constant
(i.e., not depend on xB at all). This allows for the construc-
tion of a “multi-scale flow” Dinh et al. [2017] which gradually
introduces dimensions to the distribution in the generative
direction (Figure 3b). In the normalizing direction, the di-
mension reduces by half after each iteration step, such that
most of semantic information is retained. This reduces the
computational costs of transforming high dimensional dis-
tributions and can capture the multi-scale structure inherent
in certain kinds of data like natural images.

The question remains of how to partition x. This is
often done by splitting the dimensions in half [Dinh et al.,
2015], potentially after a random permutation. However,
more structured partitioning has also been explored and
is common practice, particularly when modelling images.
For instance, Dinh et al. [2017] used “masked” flows that
take alternating pixels or blocks of channels in the case
of an image in non-volume preserving flows (RealNVP).
In place of permutation Kingma and Dhariwal [2018] used
1 ⇥ 1 convolution (Glow). For the partition for the multi-
scale flow in the normalizing direction, Das et al. [2019]
suggested selecting features at which the Jacobian of the
flow has higher values for the propagated part.

3.4.2 Autoregressive Flows

Kingma et al. [2016] used autoregressive models as a form
of normalizing flow. These are non-linear generalizations of
multiplication by a triangular matrix (Section 3.2.2).

Let h(· ; ✓) : R ! R be a bijection parameterized by ✓.
Then an autoregressive model is a function g : RD

! RD ,
which outputs each entry of y = g(x) conditioned on the
previous entries of the input:

yt = h(xt;⇥t(x1:t�1)), (18)

where x1:t = (x1, . . . , xt). For t = 2, . . . , D we choose
arbitrary functions ⇥t(·) mapping Rt�1 to the set of all
parameters, and ⇥1 is a constant. The functions ⇥t(·) are
called conditioners.

The Jacobian matrix of the autoregressive transformation
g is triangular. Each output yt only depends on x1:t, and so
the determinant is just a product of its diagonal entries:

det (Dg) =
DY

t=1

@yt

@xt
. (19)

In practice, it’s possible to efficiently compute all the entries
of the direct flow (Equation (18)) in one pass using a single
network with appropriate masks [Germain et al., 2015].
This idea was used by Papamakarios et al. [2017] to create
masked autoregressive flows (MAF).

However, the computation of the inverse is more chal-
lenging. Given the inverse of h, the inverse of g can be found
with recursion: we have x1 = h

�1(y1;⇥1) and for any
t = 2, . . . , D, xt = h

�1(yt;⇥t(x1:t�1)). This computation is
inherently sequential which makes it difficult to implement
efficiently on modern hardware as it cannot be parallelized.

Note that the functional form for the autoregressive
model is very similar to that for the coupling flow. In both
cases a bijection h is used, which has as an input one part
of the space and which is parameterized conditioned on
the other part. We call this bijection a coupling function in
both cases. Note that Huang et al. [2018] used the name
“transformer” (which has nothing to do with transformers
in NLP).

Alternatively, Kingma et al. [2016] introduced the “in-
verse autoregressive flow” (IAF), which outputs each entry
of y conditioned the previous entries of y (with respect to
the fixed ordering). Formally,

yt = h(xt; ✓t(y1:t�1)). (20)

One can see that the functional form of the inverse autore-
gressive flow is the same as the form of the inverse of
the flow in Equation (18), hence the name. Computation
of the IAF is sequential and expensive, but the inverse of
IAF (which is a direct autoregressive flow) can be computed
relatively efficiently (Figure 4).

Fig. 4. Autoregressive flows. On the left, is the direct autoregressive
flow given in Equation (18). Each output depends on the current and
previous inputs and so this operation can be easily parallelized. On
the right, is the inverse autoregressive flow from Equation (20). Each
output depends on the current input and the previous outputs and so
computation is inherently sequential and cannot be parallelized.

In Section 2.2.1 we noted that papers typically model
flows in the “normalizing flow” direction (i.e., in terms of f
from data to the base density) to enable efficient evaluation
of the log-likelihood during training. In this context one can
think of IAF as a flow in the generative direction: i.e.in terms
of g from base density to data. Hence Papamakarios et al.

Masked autoregressive flow (MAF):

Fast: Data → latent space 
Slow: Latent space → data




Autoregressive Flows

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Fig. 3. Coupling architecture. a) A single coupling flow described in
Equation (15). A coupling function h is applied to one part of the space,
while its parameters depend on the other part. b) Two subsequent multi-
scale flows in the generative direction. A flow is applied to a relatively low
dimensional vector z; its parameters no longer depend on the rest part
zaux. Then new dimensions are gradually introduced to the distribution.

Sometimes, however, the conditioner can be constant
(i.e., not depend on xB at all). This allows for the construc-
tion of a “multi-scale flow” Dinh et al. [2017] which gradually
introduces dimensions to the distribution in the generative
direction (Figure 3b). In the normalizing direction, the di-
mension reduces by half after each iteration step, such that
most of semantic information is retained. This reduces the
computational costs of transforming high dimensional dis-
tributions and can capture the multi-scale structure inherent
in certain kinds of data like natural images.

The question remains of how to partition x. This is
often done by splitting the dimensions in half [Dinh et al.,
2015], potentially after a random permutation. However,
more structured partitioning has also been explored and
is common practice, particularly when modelling images.
For instance, Dinh et al. [2017] used “masked” flows that
take alternating pixels or blocks of channels in the case
of an image in non-volume preserving flows (RealNVP).
In place of permutation Kingma and Dhariwal [2018] used
1 ⇥ 1 convolution (Glow). For the partition for the multi-
scale flow in the normalizing direction, Das et al. [2019]
suggested selecting features at which the Jacobian of the
flow has higher values for the propagated part.

3.4.2 Autoregressive Flows

Kingma et al. [2016] used autoregressive models as a form
of normalizing flow. These are non-linear generalizations of
multiplication by a triangular matrix (Section 3.2.2).

Let h(· ; ✓) : R ! R be a bijection parameterized by ✓.
Then an autoregressive model is a function g : RD

! RD ,
which outputs each entry of y = g(x) conditioned on the
previous entries of the input:

yt = h(xt;⇥t(x1:t�1)), (18)

where x1:t = (x1, . . . , xt). For t = 2, . . . , D we choose
arbitrary functions ⇥t(·) mapping Rt�1 to the set of all
parameters, and ⇥1 is a constant. The functions ⇥t(·) are
called conditioners.

The Jacobian matrix of the autoregressive transformation
g is triangular. Each output yt only depends on x1:t, and so
the determinant is just a product of its diagonal entries:

det (Dg) =
DY

t=1

@yt

@xt
. (19)

In practice, it’s possible to efficiently compute all the entries
of the direct flow (Equation (18)) in one pass using a single
network with appropriate masks [Germain et al., 2015].
This idea was used by Papamakarios et al. [2017] to create
masked autoregressive flows (MAF).

However, the computation of the inverse is more chal-
lenging. Given the inverse of h, the inverse of g can be found
with recursion: we have x1 = h

�1(y1;⇥1) and for any
t = 2, . . . , D, xt = h

�1(yt;⇥t(x1:t�1)). This computation is
inherently sequential which makes it difficult to implement
efficiently on modern hardware as it cannot be parallelized.

Note that the functional form for the autoregressive
model is very similar to that for the coupling flow. In both
cases a bijection h is used, which has as an input one part
of the space and which is parameterized conditioned on
the other part. We call this bijection a coupling function in
both cases. Note that Huang et al. [2018] used the name
“transformer” (which has nothing to do with transformers
in NLP).

Alternatively, Kingma et al. [2016] introduced the “in-
verse autoregressive flow” (IAF), which outputs each entry
of y conditioned the previous entries of y (with respect to
the fixed ordering). Formally,

yt = h(xt; ✓t(y1:t�1)). (20)

One can see that the functional form of the inverse autore-
gressive flow is the same as the form of the inverse of
the flow in Equation (18), hence the name. Computation
of the IAF is sequential and expensive, but the inverse of
IAF (which is a direct autoregressive flow) can be computed
relatively efficiently (Figure 4).

Fig. 4. Autoregressive flows. On the left, is the direct autoregressive
flow given in Equation (18). Each output depends on the current and
previous inputs and so this operation can be easily parallelized. On
the right, is the inverse autoregressive flow from Equation (20). Each
output depends on the current input and the previous outputs and so
computation is inherently sequential and cannot be parallelized.

In Section 2.2.1 we noted that papers typically model
flows in the “normalizing flow” direction (i.e., in terms of f
from data to the base density) to enable efficient evaluation
of the log-likelihood during training. In this context one can
think of IAF as a flow in the generative direction: i.e.in terms
of g from base density to data. Hence Papamakarios et al.

Masked autoregressive flow (MAF):

Fast: Data → latent space 
Slow: Latent space → data


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Fig. 3. Coupling architecture. a) A single coupling flow described in
Equation (15). A coupling function h is applied to one part of the space,
while its parameters depend on the other part. b) Two subsequent multi-
scale flows in the generative direction. A flow is applied to a relatively low
dimensional vector z; its parameters no longer depend on the rest part
zaux. Then new dimensions are gradually introduced to the distribution.

Sometimes, however, the conditioner can be constant
(i.e., not depend on xB at all). This allows for the construc-
tion of a “multi-scale flow” Dinh et al. [2017] which gradually
introduces dimensions to the distribution in the generative
direction (Figure 3b). In the normalizing direction, the di-
mension reduces by half after each iteration step, such that
most of semantic information is retained. This reduces the
computational costs of transforming high dimensional dis-
tributions and can capture the multi-scale structure inherent
in certain kinds of data like natural images.

The question remains of how to partition x. This is
often done by splitting the dimensions in half [Dinh et al.,
2015], potentially after a random permutation. However,
more structured partitioning has also been explored and
is common practice, particularly when modelling images.
For instance, Dinh et al. [2017] used “masked” flows that
take alternating pixels or blocks of channels in the case
of an image in non-volume preserving flows (RealNVP).
In place of permutation Kingma and Dhariwal [2018] used
1 ⇥ 1 convolution (Glow). For the partition for the multi-
scale flow in the normalizing direction, Das et al. [2019]
suggested selecting features at which the Jacobian of the
flow has higher values for the propagated part.

3.4.2 Autoregressive Flows

Kingma et al. [2016] used autoregressive models as a form
of normalizing flow. These are non-linear generalizations of
multiplication by a triangular matrix (Section 3.2.2).

Let h(· ; ✓) : R ! R be a bijection parameterized by ✓.
Then an autoregressive model is a function g : RD

! RD ,
which outputs each entry of y = g(x) conditioned on the
previous entries of the input:

yt = h(xt;⇥t(x1:t�1)), (18)

where x1:t = (x1, . . . , xt). For t = 2, . . . , D we choose
arbitrary functions ⇥t(·) mapping Rt�1 to the set of all
parameters, and ⇥1 is a constant. The functions ⇥t(·) are
called conditioners.

The Jacobian matrix of the autoregressive transformation
g is triangular. Each output yt only depends on x1:t, and so
the determinant is just a product of its diagonal entries:

det (Dg) =
DY

t=1

@yt

@xt
. (19)

In practice, it’s possible to efficiently compute all the entries
of the direct flow (Equation (18)) in one pass using a single
network with appropriate masks [Germain et al., 2015].
This idea was used by Papamakarios et al. [2017] to create
masked autoregressive flows (MAF).

However, the computation of the inverse is more chal-
lenging. Given the inverse of h, the inverse of g can be found
with recursion: we have x1 = h

�1(y1;⇥1) and for any
t = 2, . . . , D, xt = h

�1(yt;⇥t(x1:t�1)). This computation is
inherently sequential which makes it difficult to implement
efficiently on modern hardware as it cannot be parallelized.

Note that the functional form for the autoregressive
model is very similar to that for the coupling flow. In both
cases a bijection h is used, which has as an input one part
of the space and which is parameterized conditioned on
the other part. We call this bijection a coupling function in
both cases. Note that Huang et al. [2018] used the name
“transformer” (which has nothing to do with transformers
in NLP).

Alternatively, Kingma et al. [2016] introduced the “in-
verse autoregressive flow” (IAF), which outputs each entry
of y conditioned the previous entries of y (with respect to
the fixed ordering). Formally,

yt = h(xt; ✓t(y1:t�1)). (20)

One can see that the functional form of the inverse autore-
gressive flow is the same as the form of the inverse of
the flow in Equation (18), hence the name. Computation
of the IAF is sequential and expensive, but the inverse of
IAF (which is a direct autoregressive flow) can be computed
relatively efficiently (Figure 4).

Fig. 4. Autoregressive flows. On the left, is the direct autoregressive
flow given in Equation (18). Each output depends on the current and
previous inputs and so this operation can be easily parallelized. On
the right, is the inverse autoregressive flow from Equation (20). Each
output depends on the current input and the previous outputs and so
computation is inherently sequential and cannot be parallelized.

In Section 2.2.1 we noted that papers typically model
flows in the “normalizing flow” direction (i.e., in terms of f
from data to the base density) to enable efficient evaluation
of the log-likelihood during training. In this context one can
think of IAF as a flow in the generative direction: i.e.in terms
of g from base density to data. Hence Papamakarios et al.

Inverse autoregressive flow (IAF):

Slow: Data → latent space 
Fast: Latent space → data


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Fig. 3. Coupling architecture. a) A single coupling flow described in
Equation (15). A coupling function h is applied to one part of the space,
while its parameters depend on the other part. b) Two subsequent multi-
scale flows in the generative direction. A flow is applied to a relatively low
dimensional vector z; its parameters no longer depend on the rest part
zaux. Then new dimensions are gradually introduced to the distribution.

Sometimes, however, the conditioner can be constant
(i.e., not depend on xB at all). This allows for the construc-
tion of a “multi-scale flow” Dinh et al. [2017] which gradually
introduces dimensions to the distribution in the generative
direction (Figure 3b). In the normalizing direction, the di-
mension reduces by half after each iteration step, such that
most of semantic information is retained. This reduces the
computational costs of transforming high dimensional dis-
tributions and can capture the multi-scale structure inherent
in certain kinds of data like natural images.

The question remains of how to partition x. This is
often done by splitting the dimensions in half [Dinh et al.,
2015], potentially after a random permutation. However,
more structured partitioning has also been explored and
is common practice, particularly when modelling images.
For instance, Dinh et al. [2017] used “masked” flows that
take alternating pixels or blocks of channels in the case
of an image in non-volume preserving flows (RealNVP).
In place of permutation Kingma and Dhariwal [2018] used
1 ⇥ 1 convolution (Glow). For the partition for the multi-
scale flow in the normalizing direction, Das et al. [2019]
suggested selecting features at which the Jacobian of the
flow has higher values for the propagated part.

3.4.2 Autoregressive Flows

Kingma et al. [2016] used autoregressive models as a form
of normalizing flow. These are non-linear generalizations of
multiplication by a triangular matrix (Section 3.2.2).

Let h(· ; ✓) : R ! R be a bijection parameterized by ✓.
Then an autoregressive model is a function g : RD

! RD ,
which outputs each entry of y = g(x) conditioned on the
previous entries of the input:

yt = h(xt;⇥t(x1:t�1)), (18)

where x1:t = (x1, . . . , xt). For t = 2, . . . , D we choose
arbitrary functions ⇥t(·) mapping Rt�1 to the set of all
parameters, and ⇥1 is a constant. The functions ⇥t(·) are
called conditioners.

The Jacobian matrix of the autoregressive transformation
g is triangular. Each output yt only depends on x1:t, and so
the determinant is just a product of its diagonal entries:

det (Dg) =
DY

t=1

@yt

@xt
. (19)

In practice, it’s possible to efficiently compute all the entries
of the direct flow (Equation (18)) in one pass using a single
network with appropriate masks [Germain et al., 2015].
This idea was used by Papamakarios et al. [2017] to create
masked autoregressive flows (MAF).

However, the computation of the inverse is more chal-
lenging. Given the inverse of h, the inverse of g can be found
with recursion: we have x1 = h

�1(y1;⇥1) and for any
t = 2, . . . , D, xt = h

�1(yt;⇥t(x1:t�1)). This computation is
inherently sequential which makes it difficult to implement
efficiently on modern hardware as it cannot be parallelized.

Note that the functional form for the autoregressive
model is very similar to that for the coupling flow. In both
cases a bijection h is used, which has as an input one part
of the space and which is parameterized conditioned on
the other part. We call this bijection a coupling function in
both cases. Note that Huang et al. [2018] used the name
“transformer” (which has nothing to do with transformers
in NLP).

Alternatively, Kingma et al. [2016] introduced the “in-
verse autoregressive flow” (IAF), which outputs each entry
of y conditioned the previous entries of y (with respect to
the fixed ordering). Formally,

yt = h(xt; ✓t(y1:t�1)). (20)

One can see that the functional form of the inverse autore-
gressive flow is the same as the form of the inverse of
the flow in Equation (18), hence the name. Computation
of the IAF is sequential and expensive, but the inverse of
IAF (which is a direct autoregressive flow) can be computed
relatively efficiently (Figure 4).

Fig. 4. Autoregressive flows. On the left, is the direct autoregressive
flow given in Equation (18). Each output depends on the current and
previous inputs and so this operation can be easily parallelized. On
the right, is the inverse autoregressive flow from Equation (20). Each
output depends on the current input and the previous outputs and so
computation is inherently sequential and cannot be parallelized.

In Section 2.2.1 we noted that papers typically model
flows in the “normalizing flow” direction (i.e., in terms of f
from data to the base density) to enable efficient evaluation
of the log-likelihood during training. In this context one can
think of IAF as a flow in the generative direction: i.e.in terms
of g from base density to data. Hence Papamakarios et al.



Only scratched the surface: 
more constructions available

Comments on Flows

19
08

.0
92

57

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Non-linear elementwise transform
Problem: no mixing of variables

Affine combination of variables
Problem: limited representational power

Non-linear transforms
Problem:  hard to compute inverse

Architectures that allow invertible 
non-linear transformations.

Continuous flows depending on ODEs or SDEs

Invertible residual networks 

Fig. 2. Overview of flows discussed in this review. We start with elemen-
twise bijections, linear flows, and planar and radial flows. All of these
have drawbacks and are limited in utility. We then discuss two architec-
tures (coupling flows and autoregressive flows) which support invertible
non-linear transformations. These both use a coupling function, and we
summarize the different coupling functions available. Finally, we discuss
residual flows and their continuous extension infinitesimal flows.

values of the derivatives of h. This can be generalized by
allowing each element to have its own distinct bijective
function which might be useful if we wish to only modify
portions of our parameter vector. In deep learning terminol-
ogy, h, could be viewed as an “activation function”. Note
that the most commonly used activation function ReLU is
not bijective and can not be directly applicable, however,
the (Parametric) Leaky ReLU [He et al., 2015; Maas et al.,
2013] can be used instead among others. Note that recently
spline-based activation functions have also been considered
[Durkan et al., 2019a,b] and will be discussed in Section
3.4.4.4.

3.2 Linear Flows
Elementwise operations alone are insufficient as they cannot
express any form of correlation between dimensions. Linear
mappings can express correlation between dimensions:

g(x) = Ax+ b (8)

where A 2 RD⇥D and b 2 RD are parameters. If A is an
invertible matrix, the function is invertible.

Linear flows are limited in their expressiveness. Con-
sider a Gaussian base distribution: pZ(z) = N (z, µ,⌃). Af-
ter transformation by a linear flow, the distribution remains
Gaussian with distribution pY = N (y,Aµ + b,AT⌃A).
More generally, a linear flow of a distribution from the expo-
nential family remains in the exponential family. However,
linear flows are an important building block as they form
the basis of affine coupling flows (Section 3.4.4.1).

Note that the determinant of the Jacobian is simply
det(A), which can be computed in O(D3), as can the
inverse. Hence, using linear flows can become expensive
for large D. By restricting the form of A we can avoid these
practical problems at the expense of expressive power. In
the following sections we discuss different ways of limiting
the form of linear transforms to make them more practical.

3.2.1 Diagonal

If A is diagonal with nonzero diagonal entries, then its
inverse can be computed in linear time and its determinant

is the product of the diagonal entries. However, the result is
an elementwise transformation and hence cannot express
correlation between dimensions. Nonetheless, a diagonal
linear flow can still be useful for representing normaliza-
tion transformations [Dinh et al., 2017] which have become
a ubiquitous part of modern neural networks [Ioffe and
Szegedy, 2015].

3.2.2 Triangular

The triangular matrix is a more expressive form of linear
transformation whose determinant is the product of its
diagonal. It is non-singular so long as its diagonal entries
are non-zero. Inversion is relatively inexpensive requiring a
single pass of back-substitution costing O(D2) operations.

Tomczak and Welling [2017] combined K triangular
matrices Ti, each with ones on the diagonal, and a K-
dimensional probability vector ! to define a more general
linear flow y = (

PK
i=1 !iTi)z. The determinant of this

bijection is one. However finding the inverse has O(D3)
complexity, if some of the matrices are upper- and some are
lower-triangular.

3.2.3 Permutation and Orthogonal

The expressiveness of triangular transformations is sensitive
to the ordering of dimensions. Reordering the dimensions
can be done easily using a permutation matrix which has
an absolute determinant of 1. Different strategies have been
tried, including reversing and a fixed random permutation
[Dinh et al., 2017; Kingma and Dhariwal, 2018]. However,
the permutations cannot be directly optimized and so re-
main fixed after initialization which may not be optimal.

A more general alternative is the use of orthogonal
transformations. The inverse and absolute determinant of an
orthogonal matrix are both trivial to compute which make
them efficient. Tomczak and Welling [2016] used orthogonal
matrices parameterized by the Householder transform. The
idea is based on the fact from linear algebra that any
orthogonal matrix can be written as a product of reflections.
To parameterize a reflection matrix H in RD one fixes a
nonzero vector v 2 RD , and then defines H = 1� 2

||v||2vv
T .

3.2.4 Factorizations

Instead of limiting the form of A, Kingma and Dhariwal
[2018] proposed using the LU factorization:

g(x) = PLUx+ b (9)

where L is lower triangular with ones on the diagonal, U is
upper triangular with non-zero diagonal entries, and P is a
permutation matrix. The determinant is the product of the
diagonal entries of U which can be computed in O(D). The
inverse of the function g can be computed using two passes
of backward substitution in O(D2). However, the discrete
permutation P cannot be easily optimized. To avoid this, P
is randomly generated initially and then fixed. Hoogeboom
et al. [2019a] noted that fixing the permutation matrix limits
the flexibility of the transformation, and proposed using the
QR decomposition instead where the orthogonal matrix Q

is described with Householder transforms.



Only scratched the surface: 
more constructions available

 
Exact learning of likelihood 
→ Better generative fidelity 
→ Can evaluate likelihood of 
data

More complex  
→ Slower, choice of fast direction


 
 

Comments on Flows

19
08

.0
92

57

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Non-linear elementwise transform
Problem: no mixing of variables

Affine combination of variables
Problem: limited representational power

Non-linear transforms
Problem:  hard to compute inverse

Architectures that allow invertible 
non-linear transformations.

Continuous flows depending on ODEs or SDEs

Invertible residual networks 

Fig. 2. Overview of flows discussed in this review. We start with elemen-
twise bijections, linear flows, and planar and radial flows. All of these
have drawbacks and are limited in utility. We then discuss two architec-
tures (coupling flows and autoregressive flows) which support invertible
non-linear transformations. These both use a coupling function, and we
summarize the different coupling functions available. Finally, we discuss
residual flows and their continuous extension infinitesimal flows.

values of the derivatives of h. This can be generalized by
allowing each element to have its own distinct bijective
function which might be useful if we wish to only modify
portions of our parameter vector. In deep learning terminol-
ogy, h, could be viewed as an “activation function”. Note
that the most commonly used activation function ReLU is
not bijective and can not be directly applicable, however,
the (Parametric) Leaky ReLU [He et al., 2015; Maas et al.,
2013] can be used instead among others. Note that recently
spline-based activation functions have also been considered
[Durkan et al., 2019a,b] and will be discussed in Section
3.4.4.4.

3.2 Linear Flows
Elementwise operations alone are insufficient as they cannot
express any form of correlation between dimensions. Linear
mappings can express correlation between dimensions:

g(x) = Ax+ b (8)

where A 2 RD⇥D and b 2 RD are parameters. If A is an
invertible matrix, the function is invertible.

Linear flows are limited in their expressiveness. Con-
sider a Gaussian base distribution: pZ(z) = N (z, µ,⌃). Af-
ter transformation by a linear flow, the distribution remains
Gaussian with distribution pY = N (y,Aµ + b,AT⌃A).
More generally, a linear flow of a distribution from the expo-
nential family remains in the exponential family. However,
linear flows are an important building block as they form
the basis of affine coupling flows (Section 3.4.4.1).

Note that the determinant of the Jacobian is simply
det(A), which can be computed in O(D3), as can the
inverse. Hence, using linear flows can become expensive
for large D. By restricting the form of A we can avoid these
practical problems at the expense of expressive power. In
the following sections we discuss different ways of limiting
the form of linear transforms to make them more practical.

3.2.1 Diagonal

If A is diagonal with nonzero diagonal entries, then its
inverse can be computed in linear time and its determinant

is the product of the diagonal entries. However, the result is
an elementwise transformation and hence cannot express
correlation between dimensions. Nonetheless, a diagonal
linear flow can still be useful for representing normaliza-
tion transformations [Dinh et al., 2017] which have become
a ubiquitous part of modern neural networks [Ioffe and
Szegedy, 2015].

3.2.2 Triangular

The triangular matrix is a more expressive form of linear
transformation whose determinant is the product of its
diagonal. It is non-singular so long as its diagonal entries
are non-zero. Inversion is relatively inexpensive requiring a
single pass of back-substitution costing O(D2) operations.

Tomczak and Welling [2017] combined K triangular
matrices Ti, each with ones on the diagonal, and a K-
dimensional probability vector ! to define a more general
linear flow y = (

PK
i=1 !iTi)z. The determinant of this

bijection is one. However finding the inverse has O(D3)
complexity, if some of the matrices are upper- and some are
lower-triangular.

3.2.3 Permutation and Orthogonal

The expressiveness of triangular transformations is sensitive
to the ordering of dimensions. Reordering the dimensions
can be done easily using a permutation matrix which has
an absolute determinant of 1. Different strategies have been
tried, including reversing and a fixed random permutation
[Dinh et al., 2017; Kingma and Dhariwal, 2018]. However,
the permutations cannot be directly optimized and so re-
main fixed after initialization which may not be optimal.

A more general alternative is the use of orthogonal
transformations. The inverse and absolute determinant of an
orthogonal matrix are both trivial to compute which make
them efficient. Tomczak and Welling [2016] used orthogonal
matrices parameterized by the Householder transform. The
idea is based on the fact from linear algebra that any
orthogonal matrix can be written as a product of reflections.
To parameterize a reflection matrix H in RD one fixes a
nonzero vector v 2 RD , and then defines H = 1� 2

||v||2vv
T .

3.2.4 Factorizations

Instead of limiting the form of A, Kingma and Dhariwal
[2018] proposed using the LU factorization:

g(x) = PLUx+ b (9)

where L is lower triangular with ones on the diagonal, U is
upper triangular with non-zero diagonal entries, and P is a
permutation matrix. The determinant is the product of the
diagonal entries of U which can be computed in O(D). The
inverse of the function g can be computed using two passes
of backward substitution in O(D2). However, the discrete
permutation P cannot be easily optimized. To avoid this, P
is randomly generated initially and then fixed. Hoogeboom
et al. [2019a] noted that fixing the permutation matrix limits
the flexibility of the transformation, and proposed using the
QR decomposition instead where the orthogonal matrix Q

is described with Householder transforms.

<latexit sha1_base64="KIBUPXdFc9jbwGmlyaMi3aNFjHE=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy5cVLAPmA4lk2ba0EwyJBmhDP0MNy4UcevXuPNvzLSz0NYDgcM595JzT5hwpo3rfjultfWNza3ydmVnd2//oHp41NEyVYS2ieRS9UKsKWeCtg0znPYSRXEcctoNJ7e5332iSjMpHs00oUGMR4JFjGBjJb8fYzMmmGf3s0G15tbdOdAq8QpSgwKtQfWrP5QkjakwhGOtfc9NTJBhZRjhdFbpp5ommEzwiPqWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzP81MTXQcZE0lqqCCLj6KUIyNRfj8aMkWJ4VNLMFHMZkVkjBUmxrZUsSV4yyevks5F3busNx4ateZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDnGeXHenY/FaMkpdo7hD5zPH4PzkWs=</latexit>

L



Applications II



Generative results II

How to flows for 
high-dimensional  
data?


L2LF����, we show the absolute relative deviation to G����4 for both generative networks per
voxel:

L2LF����relative
8, 9 :=

���L2LF����overlay
8, 9 � G����4overlay

8, 9

���
G����4overlay

8, 9

, (4.1)

BIB-AErelative
8, 9 :=

���BIB-AEoverlay
8, 9 � G����4overlay

8, 9

���
G����4overlay

8, 9

, (4.2)

where 8 and 9 denote voxel positions. We observe that in general the generative models capture the
overlay quite well, with L2LF���� having smaller deviations from G����4 than the BIB-AE.

To compare the performance of the generative models in more detail, we start by looking at
the showers on the voxel level. Figure 5 shows the distributions of voxel energies as well as the
sparsity, i.e. the number of non-zero voxels per shower. One characteristic that repeats itself in
several histograms is that the BIB-AE is not capable of capturing the full G����4 distribution,
which can e.g. be seen in the sparsity plot. L2LF���� is much better in this regard. Further, the
energy deposited around the energy of a minimum ionizing particle (MIP) in the voxel distribution
is better modeled by L2LF���� in comparison to the BIB-AE, which slightly overshoots it. While
L2LF���� does not learn the G����4 distribution perfectly, it learns the distributions much better
than the BIB-AE.

For ⇢inc 2 {20, 80} GeV, Fig. 6 shows the energy profiles in G-, H- and I-direction. As can be
seen, the larger the incident energy ⇢inc, the more the maximum in the energy profiles shifts to later
layers, which both the BIB-AE and L2LF���� are able to learn. Deviations for both simulators
mainly exist in a few initial and final layers.

The distributions in Fig. 7 show the total energy depositions (⇢depos :=
Õ

8 ⇢8), both for
continuous incident energies uniformly distributed in [10, 100] GeV (left) and for discrete incident
energies ⇢inc 2 {20, 50, 80} GeV (right). In both of these distributions we observe that L2LF����
is much closer to the G����4 distribution than the BIB-AE.

Figure 8 shows the linearity5 (and its relative deviation to G����4) as well as the width (again
with its relative deviation).6 For the linearity, the relative deviation is for the BIB-AE maximally

5This does not correspond to the actual calorimeter linearity or resolution, as the increased thickness of the last 10
ECal layers is not calibrated for. It is, however, still a vital means for determining the performance of the generative
approaches.

6The linearity `90 is defined as the mean deposited energy over the ECal for discrete ⇢inc of a 90% subset of the
samples that have the smallest range. The width d90 is defined as d90 := `90/f90, where f90 is the standard deviation
of the 90% subset of the energy deposition samples that have the smallest range.

Figure 3: BIB-AE–generated shower (left), G����4 test shower (middle) and L2LF����-generated
shower (right). The black arrow indicates the (hypothetical) direction of an incoming particle.

– 8 –

10x10 cells / layer 
30 layers

23
02

.1
15

94



Generative results II

ENERGY DISTRIBUTION FLOW

...

30-dim. base 
distribution

pr
ep

ro
ce

ss
in

g

Training direction

...

...

...

RQS

...

...

MADE block

permut. 

Einc

...

RQS

MADE block

...
permut. 

...

Einc

Generative direction

GEANT4 energies
Ei

Sampled energies
Ei

inverse logit 
transform

Figure 1: Architecture of the ������ ������������ ����.

3.2 ������ �����

Next, we turn to the second step of the generation process: generating shower shapes conditioned
on the total incident energy and the total deposited energies in each layer. Our overarching goal
here, as in the original CaloFlow, is to learn

?(I0, . . . ,I29 |⇢0, . . . , ⇢29, ⇢inc) (3.3)

where the ECal voxel energy depositions of layer 8 are denoted by I8 2 R100. Unlike in Sec. 3.1, no
cutoff is applied to the voxel energy depositions used in the ������ ����� training. This prevents
potential sharp edges in the voxel data, which would be caused by the cutoff, from interfering with
the training of the ������ �����. (For the ������ ������������ ����, this issue was already
circumvented, as each layer energy is the aggregate of multiple voxels, lessening any potential
edges.) The voxel energy depositions are preprocessed similarly to the layer energies used in the
������ ������������ ����. The precise nature of the preprocessing is outlined in App. B.

In the original CaloFlow, a single NF was trained on all the calorimeter voxels of every layer
together, to directly learn (3.3). Since the number of parameters of a single NF scales quadratically
with the dimensionality 3 of the samples, the single-NF approach of original CaloFlow applied to
the ILD dataset (which has 3 = 3000) would lead to a prohibitive number of parameters (> 1B).
One can attempt to reduce the number of parameters by decreasing the number of MADE blocks
as well as RQS bins, but this leads to a significantly reduced fidelity.

To reduce the number of parameters without sacrificing quality, our key idea here is to instead
train one NF per ECal layer. Since the evolution of a shower in layer 8 depends on what happened
in the previous layers, NF 8 has to be conditioned on the voxel energy depositions of the previous
layers. In other words, we endeavor to train 30 separate NFs to learn the distributions:

?8 (I8 |I0, . . . ,I8�1, ⇢0, . . . , ⇢29, ⇢inc), 8 = 0, . . . , 29 (3.4)

If each distribution ?8 could be learned perfectly, then they could be multiplied together to recon-
struct the full joint distribution (3.3). This would be in effect its own kind of autoregressive model.
However, in later layers, there are a lot of conditioning features, and we observed that attempting to
model the full conditional likelihood (3.4) resulted in suboptimal performance.

– 5 –

...

100-dim. base 
distribution

pr
ep

ro
ce

ss
in

g
po

stp
roc

ess
ing

NF i

...

...
GEANT4 cell energies 

layer i

Sampled cell energies 
layer i

RQS

MADE block

...

...
permut. 

...
RQS

MADE block

...

...
permut. 

...

Training direction

...,        ,        , 
Ei, Einc

FC embedd.
network

Generative direction

Figure 2: Architecture of the ������ �����. As mentioned in the main text, NF 0 does not make
use of an embedding network for the conditioning. The postprocessing is explained in detail in
App. B.

NF 8 Context features Context shape
0 ⇢0, ⇢inc [# , 2]
1 I0, ⇢1, ⇢inc [# , 102]
2 I0, I1, ⇢2, ⇢inc [# , 202]
3 I0, I1, I2, ⇢3, ⇢inc [# , 302]
4 I0, I1, I2, I3, ⇢4, ⇢inc [# , 402]
� 5 I8�5, I8�4, I8�3, I8�2, I8�1, ⇢8 , ⇢inc [# , 502]

Table 1: For the conditioning on the previous 5 ECal layers, i.e. =cond = 5, this table shows the
context features each NF gets and their shape before being fed into an embedding network. Here,
# denotes the batch size used during training or sampling.

modified to operate on the photon showers with shape 30 ⇥ 10 ⇥ 10 by retraining it. The BIB-
AE consists of an encoder and a decoder pair, which is trained using a set of adversarial critics.
The BIB-AE generation process employs an additional post-processing step and a Kernel-Density-
Estimation–based latent sampling, as described in Ref. [18]. The BIB-AE model and PostProcessor
model have a combined total of 9.3M parameters, while the critics used to train them have an
additional 3.7M parameters.

4.1 Distributions

Figure 3 shows a single test shower of G����4 as well as a generated shower from the BIB-AE
and L2LF���� each. All single showers have an incident energy ⇢inc ⇡ 50 GeV. We see that the
individual shower from L2LF���� looks reasonable, with a broadly realistic morphology of voxels
and energy depositions.

Figure 4 shows the overlay of 95k showers, i.e. the mean of the voxel energies of 95k showers.
In order to create two-dimensional plots, the voxel energies are summed over the I-, G- or H-axis.
For G����4, the 95k test showers are used. To highlight potential differences for the BIB-AE and

– 7 –

How to flows for 
high-dimensional  
data?


Split!

23
02

.1
15

94



Simulation targets

How to represent?

Tabular data

Fixed grid (voxels) 
Limiting for high-dimensions (sparse data)

Point clouds / graphs



Simulation targets

How to represent?

Tabular data

Fixed grid (voxels) 
Limiting for high-dimensions (sparse data)

Point clouds / graphs

Before tackling showers in calorimeters: 
Look at jet constituents (JetNet data):  
 3 features per constituents 
 up to 30/150 constituents/jet

Why? 
Useful stepping stone 
In-situ background

21
06

.1
15

35



Point Clouds
• Example:  

Sensors in a space 

• Fixed grid vs arbitrary positions


• Potential sparsity of data


• Permutation symmetry


• Can view as trivial graph 



Deep Sets

17
03

.0
61

14



How to GAN with it

SciPost Physics Submission

z1

zg

�p
in

�g
in

gl
ob

al
 n

oi
se

po
in

t-w
is

e 
no

is
e

�p
in

�p
in

z2

zn

p1

p2

pn

je
t c

on
st

itu
te

s 

EP
iC

 la
ye

r 1

�p
out

�p
out

�p
out

EP
iC

 la
ye

r L

Generator

(a) Generator
Discriminator with EPiC layers

p1

p2

pn

je
t c

on
st

itu
te

s 

�g
in

�p
in

�p
in

�p
in

EP
iC

 la
ye

r 1

EP
iC

 la
ye

r L �g
out Real / Fake

(b) Discriminator

Figure 2: Architecture implementation of the EPiC GAN. Both the (a) generator and
(b) discriminator consist of multiple EPiC layers from Fig. 1 as well as (shared) neu-
ral networks for input/output dimensionality expansion/reduction. The � symbol
represents the aggregation function ⇢p!g with both element-wise summation and
average pooling. Though not shown, there are additional residual connections be-
tween EPiC layers described in the text.

5

Add permutation 
symmetry to GAN 
architecture

17
03

.0
61

14
, 

23
01

.0
81

28



Generative results IIISciPost Physics Submission

Figure 5: Same as Fig. 3 but for the JetNet30 top quark dataset.

Jet class Model
W M

1
( x10�3 )

W P
1

( x10�3 )
W EFP

1
( x10�5 )

Gluon
Truth 0.3 ± 0.1 0.3 ± 0.1 0.7 ± 0.3
EPiC-GAN 0.4 ± 0.1 3.2 ± 0.2 1.1 ± 0.7

Light
quark

Truth 0.3 ± 0.1 0.3 ± 0.2 0.6 ± 0.5
EPiC-GAN 0.4 ± 0.1 3.9 ± 0.3 0.7 ± 0.4

Top
Truth 0.3 ± 0.1 0.2 ± 0.1 1.3 ± 0.8
EPiC-GAN 0.6 ± 0.1 3.7 ± 0.3 2.8 ± 0.7

Table 3: Evaluation scores for the JetNet150 dataset. The truth values are a compar-
ison between the test and training set. Lower is better for all scores.

3.4 JetNet150 Results

Having observed competitive results with the EPiC-GAN on the JetNet30 datasets, we now
show results for the more challenging JetNet150 dataset with up to 150 particles. We do not
have a comparison with another generative model, since to our knowledge we are the first to
show a well performing and fast generating model on a jet dataset with such large particle
multiplicity.

The model architecture and training procedure is the same as for the JetNet30 datasets
from Sec. 3.3. In the following, we comparing the EPiC-GAN results for the JetNet150 gluon,
light quark and top datasets to the test dataset using the Wasserstein-1 distance metrics. We
then show the previously discussed nine particle- and jet-level distributions for the JetNet150
top dataset, which is the most challenging of the three datasets.

In Table 3, we compare EPiC-GAN generated events to the JetNet150 truth with the three
Wasserstein-1 distances introduced in Sec. 3.3. As of writing this publication, the FPND evalu-
ation score was not available for the JetNet150 dataset. For both the gluon and the light quark

12

Point clouds/graph GANs 
successfully generate jet 
constituents

23
01

.0
81

28



Closing I



83

Closing

Understand three basic 
generative architectures

First look at simulating 
fixed grid and point-cloud  

data


