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The Large Hadron Collider

https://x.com/JannaLevin/status/1512067673311506432?s=20


The CMS detector



Today’s Lecture
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• Real-time system constraints and needs


• LHC as an example


• Specialized hardwares: FPGA/ASIC


• Challenges in AI/ML on specialized hardwares


• Design efficient networks for real-time systems


• Co-design tools and needs


• Real-time AI for other science domains: quantum system control etc



From Collisions to Discoveries
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AI/ML: new opportunities for real-time reconstruction
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What is an FPGA?
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What are FPGAs?
Field Programmable Gate Arrays are reprogrammable 
integrated circuits 

Contain many different building blocks (‘resources’) which 
are connected together as you desire 

Originally popular for prototyping ASICs, but now also for 
high performance computing 

‘Computing in space as well as time’ 

FPGA diagram

Machine learning algorithms are ubiquitous in HEP  

FPGA usage broad across HEP experiments 
Centered on DAQ and trigger development 

Some early adaptions of ML techniques in trigger [1] 

FPGA development becoming more accessible 

High Level Synthesis, OpenCL 

FPGA interest in industry is growing 
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA 
“programmable hardware” 

DSPs (multiply-accumulate, etc.) 
Flip Flops (registers/distributed memory) 

LUTs (logic) 
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

What is an FPGA?

Field Programmable Gate Arrays

Logic cell: 
Flip-flops (FF) and  
look up tables (LUTs)

Digital Signal 
Processors 
 (DSPs)  
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       Overview

● AWS F1 instances are machines 
connected directly to a Xilinx 
Virtex 
UltraScale+ FPGA (VU9P)
using PCI-express

● General application development 
on AWS done using SDAccel

Virtex Ultrascale+ VU9P
6800 DSPs

1M LUTs
2M FFs

75 Mb BRAM



Programming FPGAs

▸ Register transfer-level (RTL)  
code is “synthesized” into gates
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module adder(  
    input  wire [4:0] a,  
    input  wire [4:0] b,  
    output wire [4:0] y  
);  
    assign y = a + b;  
 
endmodule

Synthesis

▸ Say you want to program an “adder” function on an FPGA

For more: https://youtu.be/iHg0mmIg0UU

Logic gates



Mapping NN onto FPGAs
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• Real-time system constraints and needs


• LHC as an example


• Specialized hardwares: FPGA/ASIC


• Challenges in AI/ML on specialized hardwares 

• Design efficient networks for real-time systems


• Co-design tools and needs


• Real-time AI for other science domains: quantum system control etc
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Number of  
DSPs available

•DSPs (used for multiplication) are often limiting 
resource

◦maximum use when fully parallelized 
◦Number of DSPs per multiplication changes with 

precision 
• Iterative pruning with L1 norm penalty term: 

penalizes small weights

70% compression

Fast ML Workshop: real-time deep learning on FPGAs09.12.2019  3

Compression with parameter pruning
‣ Train with L1 regularization (down-weights unimportant 

synapses) 

Lλ(w) = L(w) + λ∥w∥1 ∥w∥1 = ∑i |wi |

Pruning

Removed



Network compression/Efficient Machine Learning Computing

• Many approaches have been studied:


• Parameter pruning: selective removal of weights based on a particular ranking  
[arxiv.1510.00149, arxiv.1712.01312]


• Neural Network Architecture Search (NAS) [https://arxiv.org/pdf/
2301.08727.pdf]


• Knowledge distillation: training a compact network with distilled knowledge of a 
large network [https://arxiv.org/abs/1503.02531]


• Low-rank factorization: using matrix/tensor decomposition to estimate informative 
parameters [arxiv.1405.3866]


• Transferred/compact convolutional filters: special structural convolutional filters to 
save parameters [arxiv.1602.07576]


• Tensorflow model sparsity toolkit: https://blog.tensorflow.org/2019/05/tf-model-
optimization-toolkit-pruning-API.html

15
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Image detection network evolution
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Figure 4. Evolution of milestone architectures for image recognition from 2012 to 2019, compared by
their accuracy (acc@5) metric on the ImageNet 2012 dataset and showing their numbers of parameters
in log scale as size of the circle. The different colours show relations between the architectures;
mixed colours mean that concepts of two architecture families are combined in those architectures.

Figure 5. Conceptual overview of the Vintage Architectures. The architecture designs of AlexNet [3] and
ZFNet [38] are similar despite smaller kernel in the first convolutional layers and deeper feature maps
in ZFNet, whereas VGG-19 [39] is considerably deeper overall and it uses a uniform kernel size.

3.1.2. Inception Family

In the same year that VGG-19 was presented, the GoogLeNet variation with Inception
modules [40] was introduced, a late successor to the initial work of LeCun et al. (1989) [30]. Since this
should be the starting point of the Inception Family, the network is called Inception V1 further on.
The main idea of the network was that, after the stem of first convolutions, the novel Inception modules
are repeated as building blocks with sporadic max pooling in between for dimension reduction
(see Figure 6, right). An Inception module itself is made up of parallel convolutional layers of different
kernel sizes and max pooling. As a result, an increased variety of feature representation is reached
which is processed from the same input (see Figure 6, left). To avoid an explosion of parameters,
so-called bottleneck layers were introduced in the beginning of the Inception module. These are 1 ⇥ 1
convolutional layers, which intermediately reduce the depth of an input tensor before it enters one of
the next parallelised convolutions. Due to this depth reduction of feature maps, bottleneck layers lead
to fewer parameters needed for each parallel operation but gain richer features when concatenating
the results later on.

https://www.mdpi.com/2072-4292/12/10/1667/htm
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Figure 6. Conceptual overview of the Inception module and Inception V1 architecture [40]: (Left) the
Inception module shows the 1 ⇥ 1 convolutional bottleneck layers, which reduce depth before the
3 ⇥ 3 and 5 ⇥ 5 convolutional operations; and (Right) the overall architecture of Inception V1 that
consists of stacked Inception modules with increasing output depth and sparse max pool operations in
between.

Therewith, Szegedy et al. [40] were able to build a 21-layer deep network, when counting the
convolutional layers. Because of this deep design, backpropagating the gradients while training
became increasingly difficult. To avoid or reduce any training effects on the early layers in the network
due to vanishing gradients [5,40,41], two additional classifiers in the middle of the network were
integrated. The task of the so-called auxiliary classifiers is to provide additive gradients to early layers,
so that they have an additional training effect. The so-derived gradients are able to adjust even early
layers in the network during backpropagation. During inference, the auxiliary classifier branches are
not used and cut off as they are only helpful during training the weights. The resulting Inception V1
reached a acc@5 of 89.9% with only 6.8M parameters. This is much more efficient than the VGG-19
design with a slightly higher acc@5 score of 92% but many more parameters, at 144M.

Five months later, Ioffe and Szegedy [41] proposed an adaptation of Inception-V1 with a stem
of stacked 3 ⇥ 3 conv layers such as VGG-19. However, what was more important for this novel
implementation and even the whole DL field was the introduction of batch normalisation after
convolution and before ReLU activation. Batch normalisation [41] together with appropriate parameter
initialisation [18,32,102–104] and suitable activation functions [31–33,101] are part of the solution of
solving the problems of vanishing and exploding gradients [32,105]. These concepts became highly
important due to increasing network depth and the ability of those deep networks to converge during
training. Enhancing the Inception V1 with batch normalisation, the updated variant was able to
exceed VGG-19 in acc@5 performance, with 92.18% at 11.5M parameters being more efficient.

The idea of the Inception modules was further improved in Inception V2 and V3,
where Szegedy et al. [42] applied factorisation on convolutions. Like VGG-19 they used stacked
3 ⇥ 3 convolutions to increase the receptive field. Factorisation can furthermore be used on a m ⇥ n
kernel to split it into a stack of 1 ⇥ n and m ⇥ 1 kernels. Therefore, instead of m ⇥ n ⇥ d parameters,
1 ⇥ n ⇥ d + m ⇥ 1 ⇥ d parameters are sufficient.

By applying factorisation on the original Inception module, three modified modules were
created to increase the representational capacity of the model by using parameters more efficiently.
The different modules are plugged into the network according to their ability to represent features in
specific depths of the network, see Section 6 in [42]. The resulting Inception V3 network leaped up to
an acc@5 of 94.4% using 23.6M parameters.

The idea of factorised convolutional filter banks can also be translated to a depth-wise factorisation,
where convolutions are applied to each input channel separately. Chollet [45] assumed in his work
“[. . . ] that cross-channel correlations and spatial correlations can be mapped completely separately”
(p. 1801). With this extreme idea of factorisation, Chollet [45] presented a network called Xception.
Beside the stem, it exclusively uses depth-wise separable convolutions as feature extractors. Those are

https://www.mdpi.com/2072-4292/12/10/1667/htm


Image detection network evolution

The modular concept of CNNs and their building blocks is crucial for the next 
group of architectures by Neural Architecture search.  

https://www.mdpi.com/2072-4292/12/10/1667/htm


Automation: Neural Network Architecture Search

• Choose building blocks: 


• Operation/primitive: denotes the atomic unit, a popular one is a triplet of a fixed activation, operation, 
and fixed normalization, such as ReLU-conv 1x1-batchnorm


• Layer, Block, Cell, Motif


•
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Figure 2: Overview of neural architecture search (Elsken et al., 2019b; Weng, 2020). A
search strategy iteratively selects architectures (typically by using an architecture
encoding method) from a predefined search space A. The architectures are passed
to a performance estimation strategy, which returns the performance estimate to
the search strategy. For one-shot methods, the search strategy and performance
estimation strategy are inherently coupled.

Figure 2). We define each term below, as this is a useful disambiguation for understanding
many NAS methods. However, it is worth noting that the trichotomy cannot be applied to
the large sub-area of one-shot methods, because for these methods, the search strategy is
coupled with the performance evaluation strategy (Xie et al., 2021).

A search space is the set of all architectures that the NAS algorithm is allowed to select.
Common NAS search spaces range in size from a few thousand to over 1020. While the
search space in principle can be extremely general, incorporating domain knowledge when
designing the search space can simplify the search. However, adding too much domain
knowledge introduces human bias, which reduces the chances of a NAS method finding
truly novel architectures. Search spaces are discussed in more detail in Section 2.

A search strategy is an optimization technique used to find a high-performing archi-
tecture in the search space. There are generally two main categories of search strategies:
black-box optimization based techniques (including multi-fidelity techniques) and one-shot
techniques. However, there are some NAS methods for which both or neither category ap-
plies. Black-box optimization based techniques, such as reinforcement learning, Bayesian
optimization, and evolutionary search, are surveyed in Section 3. One-shot methods, in-
cluding supernet- and hypernet-based methods, are surveyed in Section 4.

A performance estimation strategy is any method used to quickly predict the perfor-
mance of neural architectures in order to avoid fully training the architecture. For example,
while we can run a discrete search strategy by fully training and evaluating architectures
chosen throughout the search, using a performance estimation strategy such as learning
curve extrapolation can greatly increase the speed of the search. Performance estimation
strategies, and more generally speedup techniques, are surveyed in Section 5.

The most basic definition of NAS is as follows. Given a search space A , a dataset D, a
training pipeline P, and a time or computation budget t, the goal is to find an architecture
a 2 A within budget t which has the highest possible validation accuracy when trained
using dataset D and training pipeline P. A common method of approaching NAS is to

4



Neural Network Architecture Search

• Grid search, random search, re-enforcement learning, evolution, Bayesian
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Figure 2: Overview of neural architecture search (Elsken et al., 2019b; Weng, 2020). A
search strategy iteratively selects architectures (typically by using an architecture
encoding method) from a predefined search space A. The architectures are passed
to a performance estimation strategy, which returns the performance estimate to
the search strategy. For one-shot methods, the search strategy and performance
estimation strategy are inherently coupled.

Figure 2). We define each term below, as this is a useful disambiguation for understanding
many NAS methods. However, it is worth noting that the trichotomy cannot be applied to
the large sub-area of one-shot methods, because for these methods, the search strategy is
coupled with the performance evaluation strategy (Xie et al., 2021).

A search space is the set of all architectures that the NAS algorithm is allowed to select.
Common NAS search spaces range in size from a few thousand to over 1020. While the
search space in principle can be extremely general, incorporating domain knowledge when
designing the search space can simplify the search. However, adding too much domain
knowledge introduces human bias, which reduces the chances of a NAS method finding
truly novel architectures. Search spaces are discussed in more detail in Section 2.

A search strategy is an optimization technique used to find a high-performing archi-
tecture in the search space. There are generally two main categories of search strategies:
black-box optimization based techniques (including multi-fidelity techniques) and one-shot
techniques. However, there are some NAS methods for which both or neither category ap-
plies. Black-box optimization based techniques, such as reinforcement learning, Bayesian
optimization, and evolutionary search, are surveyed in Section 3. One-shot methods, in-
cluding supernet- and hypernet-based methods, are surveyed in Section 4.

A performance estimation strategy is any method used to quickly predict the perfor-
mance of neural architectures in order to avoid fully training the architecture. For example,
while we can run a discrete search strategy by fully training and evaluating architectures
chosen throughout the search, using a performance estimation strategy such as learning
curve extrapolation can greatly increase the speed of the search. Performance estimation
strategies, and more generally speedup techniques, are surveyed in Section 5.

The most basic definition of NAS is as follows. Given a search space A , a dataset D, a
training pipeline P, and a time or computation budget t, the goal is to find an architecture
a 2 A within budget t which has the highest possible validation accuracy when trained
using dataset D and training pipeline P. A common method of approaching NAS is to

4



Neural Network Architecture Search

• Latency, accuracy, power consumption, hardware types etc
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encoding method) from a predefined search space A. The architectures are passed
to a performance estimation strategy, which returns the performance estimate to
the search strategy. For one-shot methods, the search strategy and performance
estimation strategy are inherently coupled.

Figure 2). We define each term below, as this is a useful disambiguation for understanding
many NAS methods. However, it is worth noting that the trichotomy cannot be applied to
the large sub-area of one-shot methods, because for these methods, the search strategy is
coupled with the performance evaluation strategy (Xie et al., 2021).

A search space is the set of all architectures that the NAS algorithm is allowed to select.
Common NAS search spaces range in size from a few thousand to over 1020. While the
search space in principle can be extremely general, incorporating domain knowledge when
designing the search space can simplify the search. However, adding too much domain
knowledge introduces human bias, which reduces the chances of a NAS method finding
truly novel architectures. Search spaces are discussed in more detail in Section 2.

A search strategy is an optimization technique used to find a high-performing archi-
tecture in the search space. There are generally two main categories of search strategies:
black-box optimization based techniques (including multi-fidelity techniques) and one-shot
techniques. However, there are some NAS methods for which both or neither category ap-
plies. Black-box optimization based techniques, such as reinforcement learning, Bayesian
optimization, and evolutionary search, are surveyed in Section 3. One-shot methods, in-
cluding supernet- and hypernet-based methods, are surveyed in Section 4.

A performance estimation strategy is any method used to quickly predict the perfor-
mance of neural architectures in order to avoid fully training the architecture. For example,
while we can run a discrete search strategy by fully training and evaluating architectures
chosen throughout the search, using a performance estimation strategy such as learning
curve extrapolation can greatly increase the speed of the search. Performance estimation
strategies, and more generally speedup techniques, are surveyed in Section 5.

The most basic definition of NAS is as follows. Given a search space A , a dataset D, a
training pipeline P, and a time or computation budget t, the goal is to find an architecture
a 2 A within budget t which has the highest possible validation accuracy when trained
using dataset D and training pipeline P. A common method of approaching NAS is to
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NAS for MobileNet-v2
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To use DL to solve every day problems, the architectures had to run on mobile devices.
The designs making this possible are grouped as Efficient designs in this review. Motivated by
the restriction of computations for mobile devices, the lightweight MobileNet family was founded.
The first MobileNet-224 [50] had only 4.2M parameters; nevertheless, it performed with an acc@5
of 89.9%. The network mainly consists of depth-wise separable convolutions, which use a highly
parameter efficient stack of 3 ⇥ 3 convolution on each input feature map separately, with an
adjacent 1 ⇥ 1 pointwise convolution across the entire depth. The next version, MobileNet-V2 [108],
further improves this idea by using mobile inverted depth-wise convolution with residual connections,
pictured in Figure 8 (left). This describes a building block, which first performs an 1 ⇥ 1 pointwise
convolution that expands the depth of feature maps for the adjacent 3 ⇥ 3 depth-wise convolution.
Afterwards, another 1 ⇥ 1 pointwise convolution defines the output depth, which is normally smaller
than the intermediate expansion depth. A surrounding residual connection adds the input to the
output maps by connecting the bottleneck layer. MobileNet-V2 performed with an acc@5 of 92.5 at 6M
parameters [108,109].

In parallel, a few months after the first MobileNet was introduced, NASNet [49] and therewith
a new way to define architectures was added to the development of CNNs. Neural architecture search
(NAS) follows the idea “[. . . ] learning beats programming” of Krizhevsky et al. [110] (p. 84) not only for
features but also whole architectures. In NAS, a defined search space of CNN building blocks was used
by a controller, such as a recurrent neural network (RNN) [34], to find the best so-called child network
architecture. The controller does this by using reinforcement learning which maximises the accuracy
of prediction on an underlying dataset reached by the child during every iteration. Thereby, the RNN
architecture in combination with reinforcement learning allows subsequently adapting the design of
the child network. The reward signal, the accuracy performed by the resulting child network, is used
to update the controller in order for it to produce a new child, which performs better in its defined
task [48,49].

One drawback is that the briefly described search algorithm needs to train each child it produces.
Since ImageNet is a relatively large dataset, it is common praxis to use a smaller dataset such as the
CIFAR-10 dataset [111] during NAS. After the new architecture is defined, it is scaled up to match
the larger variance of ImageNet without being trained on it each time [49,51,52,112–114]. Scaling can
be done by simply repeating the NAS defined building blocks to build a deep CNN [49,112], or by
defining a more complex scaling rule [52], which is mentioned below. The NASNet variant NASNet-A
(6@4032), introduced by Zoph et al. [49], performed with an acc@5 of 96.2% at 88.9M parameters.

Figure 8. Conceptual overview of the Efficient designs: (Left) The MobileNetV2 building block [108],
here with an additional Squeeze-and-Excitation (SE) module [47]. In comparison with a ResNet building
block, the bottleneck design is inverted, so that first the expansion factor (t) is larger than 1, which leads to
intermediate deeper feature maps (td) as the final output depth of the building block (d’). (Middle) The
Mnas search space with a fixed overall architecture of the network, the skeleton, but fully optional layer
designs, based on the MobileNetV2 building block [51]. (Right) A recurrent neural network (RNN) [34]
controller searches the search space for the best performing combination of layer designs by maximising
an optimisation rule [48]. The resulting architecture is scaled in depth, width and resolution to become the
EfficientNet-B7 architecture, the sota design in late 2019 [52].
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Abstract

A very simple way to improve the performance of almost any machine learning
algorithm is to train many different models on the same data and then to average
their predictions [3]. Unfortunately, making predictions using a whole ensemble
of models is cumbersome and may be too computationally expensive to allow de-
ployment to a large number of users, especially if the individual models are large
neural nets. Caruana and his collaborators [1] have shown that it is possible to
compress the knowledge in an ensemble into a single model which is much eas-
ier to deploy and we develop this approach further using a different compression
technique. We achieve some surprising results on MNIST and we show that we
can significantly improve the acoustic model of a heavily used commercial system
by distilling the knowledge in an ensemble of models into a single model. We also
introduce a new type of ensemble composed of one or more full models and many
specialist models which learn to distinguish fine-grained classes that the full mod-
els confuse. Unlike a mixture of experts, these specialist models can be trained
rapidly and in parallel.

1 Introduction

Many insects have a larval form that is optimized for extracting energy and nutrients from the envi-
ronment and a completely different adult form that is optimized for the very different requirements
of traveling and reproduction. In large-scale machine learning, we typically use very similar models
for the training stage and the deployment stage despite their very different requirements: For tasks
like speech and object recognition, training must extract structure from very large, highly redundant
datasets but it does not need to operate in real time and it can use a huge amount of computation.
Deployment to a large number of users, however, has much more stringent requirements on latency
and computational resources. The analogy with insects suggests that we should be willing to train
very cumbersome models if that makes it easier to extract structure from the data. The cumbersome
model could be an ensemble of separately trained models or a single very large model trained with
a very strong regularizer such as dropout [9]. Once the cumbersome model has been trained, we
can then use a different kind of training, which we call “distillation” to transfer the knowledge from
the cumbersome model to a small model that is more suitable for deployment. A version of this
strategy has already been pioneered by Rich Caruana and his collaborators [1]. In their important
paper they demonstrate convincingly that the knowledge acquired by a large ensemble of models
can be transferred to a single small model.

A conceptual block that may have prevented more investigation of this very promising approach is
that we tend to identify the knowledge in a trained model with the learned parameter values and this
makes it hard to see how we can change the form of the model but keep the same knowledge. A more
abstract view of the knowledge, that frees it from any particular instantiation, is that it is a learned
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Knowledge distillation

• We have trained a fully supervised model with MLP (fully 
connected neural networks)


• Overfit with an overparametrized model


• Add regularization to improve generalizability


• Ensemble of models


• Accurate, but big and cumbersome—> not suitable for 
computing resource constrained use cases


• Small model is not as performant


• Can we transfer the knowledge learned by the large 
teacher model to a student model?


• Efficient and performant
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Knowledge distillation

• Where is this knowledge stored? 


• Multi-class classification: “Soft labels” 
that generalizes to unseen datasets
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Illustration of knowledge distillation
•
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Illustration of knowledge distillation

6
Distilling the Knowledge in a Neural Network [Hinton et al., NeurIPS Workshops 2014]
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Matching prediction probabilities between teacher and student

•
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Intuition of knowledge distillation
Matching prediction probabilities between teacher and student
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Student model gives less confident predictions
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Intuition of knowledge distillation
Matching prediction probabilities between teacher and student
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Concept of temperature
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Intuition of knowledge distillation
Concept of temperature
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Soft labels with increased ‘temperature’

Align the class probability distributions from teacher and student networks 
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Illustration of knowledge distillation

6
Distilling the Knowledge in a Neural Network [Hinton et al., NeurIPS Workshops 2014]
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Matching output logits
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Do Deep Nets Really Need to be Deep? [Ba and Caruana, NeurIPS 2014]

Cross entropy loss:  

; 

L2 loss: 

!(−pt log ps)

E(∥pt − ps∥2
2)

…

mapping from input vectors to output vectors. For cumbersome models that learn to discriminate
between a large number of classes, the normal training objective is to maximize the average log
probability of the correct answer, but a side-effect of the learning is that the trained model assigns
probabilities to all of the incorrect answers and even when these probabilities are very small, some
of them are much larger than others. The relative probabilities of incorrect answers tell us a lot about
how the cumbersome model tends to generalize. An image of a BMW, for example, may only have
a very small chance of being mistaken for a garbage truck, but that mistake is still many times more
probable than mistaking it for a carrot.

It is generally accepted that the objective function used for training should reflect the true objective
of the user as closely as possible. Despite this, models are usually trained to optimize performance
on the training data when the real objective is to generalize well to new data. It would clearly
be better to train models to generalize well, but this requires information about the correct way to
generalize and this information is not normally available. When we are distilling the knowledge
from a large model into a small one, however, we can train the small model to generalize in the same
way as the large model. If the cumbersome model generalizes well because, for example, it is the
average of a large ensemble of different models, a small model trained to generalize in the same way
will typically do much better on test data than a small model that is trained in the normal way on the
same training set as was used to train the ensemble.

An obvious way to transfer the generalization ability of the cumbersome model to a small model is
to use the class probabilities produced by the cumbersome model as “soft targets” for training the
small model. For this transfer stage, we could use the same training set or a separate “transfer” set.
When the cumbersome model is a large ensemble of simpler models, we can use an arithmetic or
geometric mean of their individual predictive distributions as the soft targets. When the soft targets
have high entropy, they providemuch more information per training case than hard targets and much
less variance in the gradient between training cases, so the small model can often be trained on much
less data than the original cumbersome model and using a much higher learning rate.

For tasks like MNIST in which the cumbersome model almost always produces the correct answer
with very high confidence, much of the information about the learned function resides in the ratios
of very small probabilities in the soft targets. For example, one version of a 2 may be given a
probability of 10−6 of being a 3 and 10−9 of being a 7 whereas for another version it may be the
other way around. This is valuable information that defines a rich similarity structure over the data
(i. e. it says which 2’s look like 3’s and which look like 7’s) but it has very little influence on the
cross-entropy cost function during the transfer stage because the probabilities are so close to zero.
Caruana and his collaborators circumvent this problem by using the logits (the inputs to the final
softmax) rather than the probabilities produced by the softmax as the targets for learning the small
model and they minimize the squared difference between the logits produced by the cumbersome
model and the logits produced by the small model. Our more general solution, called “distillation”,
is to raise the temperature of the final softmax until the cumbersome model produces a suitably soft
set of targets. We then use the same high temperature when training the small model to match these
soft targets. We show later that matching the logits of the cumbersome model is actually a special
case of distillation.

The transfer set that is used to train the small model could consist entirely of unlabeled data [1]
or we could use the original training set. We have found that using the original training set works
well, especially if we add a small term to the objective function that encourages the small model
to predict the true targets as well as matching the soft targets provided by the cumbersome model.
Typically, the small model cannot exactly match the soft targets and erring in the direction of the
correct answer turns out to be helpful.

2 Distillation

Neural networks typically produce class probabilities by using a “softmax” output layer that converts
the logit, zi, computed for each class into a probability, qi, by comparing zi with the other logits.

qi =
exp(zi/T )

∑

j exp(zj/T )
(1)

2



Match intermediate feature maps
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Matching intermediate features
Minimizing maximum mean discrepancy between feature maps
• Intuition: teacher and student networks should have similar feature distributions, not just output 

probability distributions.

18
Like What You Like: Knowledge Distill via Neuron Selectivity Transfer [Huang and Wang, arXiv 2017]
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Match intermediate attention maps
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Intermediate attention maps
Gradients of feature maps are used to characterize “attention” of DNNs

• The attention of a CNN feature map  is defined as , where  is the learning objective.


• Intuition: If  is large, a small perturbation at  will significantly impact the final output. As a 

result, the network is putting more attention on position .

x
∂L
∂x

L
∂L
∂xi,j

i, j

i, j
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Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer [Zagoruyko and Komodakis, ICLR 2017]

Published as a conference paper at ICLR 2017

(a) (b)

Figure 1: (a) An input image and a corresponding spatial attention map of a convolutional network
that shows where the network focuses in order to classify the given image. Surely, this type of
map must contain valuable information about the network. The question that we pose in this paper
is the following: can we use knowledge of this type to improve the training of CNN models ?
(b) Schematic representation of attention transfer: a student CNN is trained so as, not only to make
good predictions, but to also have similar spatial attention maps to those of an already trained teacher
CNN.

that can be used for significantly improving the performance of convolutional neural network archi-
tectures (of various types and trained for various different tasks). To that end, we propose several
novel ways of transferring attention from a powerful teacher network to a smaller student network
with the goal of improving the performance of the latter (Fig. 1).

To summarize, the contributions of this work are as follows:

• We propose attention as a mechanism of transferring knowledge from one network to an-
other

• We propose the use of both activation-based and gradient-based spatial attention maps
• We show experimentally that our approach provides significant improvements across a va-

riety of datasets and deep network architectures, including both residual and non-residual
networks

• We show that activation-based attention transfer gives better improvements than full-
activation transfer, and can be combined with knowledge distillation

The rest of the paper is structured as follows: we first describe related work in section 2, we explain
our approach for activation-based and gradient-based attention transfer in section 3, and then present
experimental results for both methods in section 4. We conclude the paper in section 5.

2 RELATED WORK

Early work on attention based tracking Larochelle & Hinton (2010), Denil et al. (2012) was moti-
vated by human attention mechanism theories Rensink (2000) and was done via Restricted Bolz-
mann Machines. It was recently adapted for neural machine translation with recurrent neural net-
works, e.g. Bahdanau et al. (2014) as well as in several other NLP-related tasks. It was also exploited
in computer-vision-related tasks such as image captioning Xu et al. (2015), visual question answer-
ing Yang et al. (2015), as well as in weakly-supervised object localization Oquab et al. (2015) and
classification Mnih et al. (2014), to mention a few characteristic examples. In all these tasks attention
proved to be useful.

Visualizing attention maps in deep convolutional neural networks is an open problem. The simplest
gradient-based way of doing that is by computing a Jacobian of network output w.r.t. input (this leads
to attention visualization that are not necessarily class-discriminative), as for example in Simonyan
et al. (2014). Another approach was proposed by Zeiler & Fergus (2014) that consists of attaching
a network called “deconvnet” that shares weights with the original network and is used to project
certain features onto the image plane. A number of methods was proposed to improve gradient-
based attention as well, for example guided backpropagation Springenberg et al. (2015), adding a
change in ReLU layers during calculation of gradient w.r.t. previous layer output. Attention maps
obtained with guided backpropagation are non-class-discriminative too. Among existing methods

2
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Efficient Algorithms
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Compression/PruningQuantization

‘Ultimate optimization’ of ‘bits of information’:

Quantization Aware Pruning

https://arxiv.org/abs/2102.11289 
https://arxiv.org/abs/2304.06745

https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/2304.06745


Efficient Algorithms
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Compress it creatively: 

knowledge distillation. e.g



Efficient Algorithms
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Neural Architecture search

e.g. EfficientNet for image 

detection

https://keras.io/api/applications/efficientnet/


Efficient Algorithms
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Co-design tool for Specialized Hardware

Machine  
Learning

M.LIU

#Trending in Industry: Heterogeneous Computing 7

HARDWARE ALTERNATIVES �11
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big data explosion 
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Co-design tool: crucial for prototyping AI at edge solutions 

Algorithm hardware co-design for limited computing 

Prototype with manageable programming barrier for domain scientists



Hardware Pros and ConsSilicon Technologies for Computing

CPUs 1X Today’s standard, most programmable, 
good for services changing rapidly

Manycore
CPUs 3X

Many simple cores (10s to 100s per chip), useful if 
software can be fine-grain parallel, difficult to maintain.  

GPUs 5-30X Good for data parallelism by merged threads (SIMD), 
High memory bandwidth, power hungry

FPGAs 5-30X
Most radical fully programmable option.  Good for 
streaming/irregular parallelism.  Power efficient but 
currently need to program in H/W languages.

Custom
ASICs > 100X Highest efficiency. Highest NRE costs. Requires high 

volume. Good for functions in very widespread use that 
are stable for many years. 

Structured
ASICS 20-100X Lower-NRE ASICs with lower performance/efficiency.

Includes domain-specific (programmable) accelerators.

Perf/WMore
Flexible

More
Efficient

Conventional 
programming

Alternative
programming

Can’t change
functionality



HLS4ML: to aid prototype science application solutions.

(Q)

(Q)

Catapult 
Coming soon

ASIC

VivadoAccelerator
for Xilinx 
accelerators / SoCs

Co-design 
Connecting domain scientists with prototype solutions



Example Knobs to tune: Reuse factor to balance latency and resources

•Trade-off between latency and FPGA resource usage determined by the parallelization of the calculations in 
each layer

•Configure the “reuse factor” = number of times a multiplier is used to do a computation

Fewer resources,
Lower throughput,
Higher latency

Fully serial

Fully parallel
More resources,
Higher throughput,
Lower latency



Reuse factor to balance latency and resources

Fully parallel
Each mult. used 1x

Each mult. used 2x 

Each mult. used 3x 

More resources

Longer latency

175 ns

75 ns



Trade-off Between Efficiency and Accuracy
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Trade-off Between Efficiency and Accuracy

3

Storage

Latency Energy
Image source: 1

Accuracy
Image source: 2



HLS4ML tutorial

• https://github.com/fastmachinelearning/hls4ml-tutorial
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ML everywhere in CMS Phase 2 L1 Trigger
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B-tagging Missing transverse energy

Tau

Fast ML - Sioni Summers11 Sep. 2023

Introduction
• The trigger is a binary classifier 

• Efforts underway to use ML during Run 3 - gaining valuable experience! CICADA, AXOL1TL, TOPOL1TL 

• Machine Learning will be prevalent throughout the Phase 2 System 

- From known projects, object multiplicity, and event rate, conservatively estimate 25 billion ML inferences per second 
• We’ve developed some sophisticated stuff that has wider applications, here I’ll describe some of those 

• We also need to note developments from the wider academic community and industry, I’ll highlight some trends

2

These have NNs

 and/or BDTs inside

Detector hits

Clusters & Tracks

Particles

Event Categorisation
1 bit: keep / discardt = 12.5 μs

t = 0

Each small box is one

 Xilinx Ultrascale+ FPGA

2



HLS4ML: user driven development
• hls4ml 2023 roadmap plans new developments and a regular release schedule 
• Q1 release: v0.7.0 & v0.7.1 
◦ Backend redesign to support multiple compilation targets [395] 
◦ Documentation updates [710, 744, 774] 
◦ Efficient network implementations [503, 509, 509] 
◦ Recurrent neural networks [560, 575] 
◦ Alveo accelerator FPGA card support [552] 
◦ Support for Vitis HLS [629] 
◦ Extension API [528] 

• Q2 release: v0.8.0 
◦ Configuration editor [784]  
◦ PyTorch parsing improvements [799]  
◦ Symbolic expressions [660] 
◦ Optimization API [768, 809] 
◦ Large streaming CNN [PR Soon] 

◦ Upcoming: 

◦ QONNX ingestion [591] 
◦ Catapult HLS

https://github.com/fastmachinelearning/hls4ml/pull/395
https://github.com/fastmachinelearning/hls4ml/pull/710
https://github.com/fastmachinelearning/hls4ml/pull/744
https://github.com/fastmachinelearning/hls4ml/pull/774
https://github.com/fastmachinelearning/hls4ml/pull/503
https://github.com/fastmachinelearning/hls4ml/pull/503#:~:text=profiling%20%40nicologhielmetti-,FIFO%20depth%20optimization%C2%A0%23509,-ReLU%20merge%20optimizer
https://github.com/fastmachinelearning/hls4ml/pull/509
https://github.com/fastmachinelearning/hls4ml/pull/560
https://github.com/fastmachinelearning/hls4ml/pull/575
https://github.com/fastmachinelearning/hls4ml/pull/552
https://github.com/fastmachinelearning/hls4ml/pull/629
https://github.com/fastmachinelearning/hls4ml/pull/528
https://github.com/fastmachinelearning/hls4ml/pull/784
https://github.com/fastmachinelearning/hls4ml/pull/799
https://github.com/fastmachinelearning/hls4ml/pull/660
https://github.com/fastmachinelearning/hls4ml/pull/768
https://github.com/fastmachinelearning/hls4ml/pull/809
https://github.com/YanLunHuang/hls4ml/tree/Array_Single_AutoConvert_22_9_16
https://github.com/fastmachinelearning/hls4ml/pull/591
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• Q1 release: v0.7.0 & v0.7.1 
◦ Backend redesign to support multiple  

compilation targets [395] 
◦ Documentation updates [710, 744, 774] 
◦ Efficient network implementations [503, 509, 509] 
◦ Recurrent neural networks [560, 575] 
◦ Alveo accelerator FPGA card support [552] 
◦ Support for Vitis HLS [629] 
◦ Extension API [528] 

• Q2 release: v0.8.0 
◦ QONNX ingestion [591] 
◦ Configuration editor [784]  
◦ PyTorch parsing improvements [799]  
◦ Symbolic expressions [660] 
◦ Optimization API [768, 809] 
◦ Large streaming CNN [PR Soon]

sPHENIX tracking GNN hls4ml synthesis results

- Network inputs: nodes=80, edges=100
- Input network

- Can be parallelized to be “nodes” times faster (i.e., 15ns)

- Edge network

- Node network (results from HLS synthesis, vivado synthesis OOM’d) 
- Neet to optimize the scatter_add function (expecting ~2us for the net)

Input network

Edge network

Node network

Edge network
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esLatency BRAMs DSPs FFs LUTs

1.2 us 6.5% 0.3% 5% 7.5%

Latency BRAMs DSPs FFs LUTs

3 us 15% 2% 20% 65%

Latency BRAMs DSPs FFs LUTs

12 us 42% 7% - -

Extremely preliminary - DO NOT 
TRUST NUMBERS

Support GNN/transformers 




More work needed for CMS 
applications (100 ns latency)

https://github.com/fastmachinelearning/hls4ml/pull/395
https://github.com/fastmachinelearning/hls4ml/pull/710
https://github.com/fastmachinelearning/hls4ml/pull/744
https://github.com/fastmachinelearning/hls4ml/pull/774
https://github.com/fastmachinelearning/hls4ml/pull/503
https://github.com/fastmachinelearning/hls4ml/pull/503#:~:text=profiling%20%40nicologhielmetti-,FIFO%20depth%20optimization%C2%A0%23509,-ReLU%20merge%20optimizer
https://github.com/fastmachinelearning/hls4ml/pull/509
https://github.com/fastmachinelearning/hls4ml/pull/560
https://github.com/fastmachinelearning/hls4ml/pull/575
https://github.com/fastmachinelearning/hls4ml/pull/552
https://github.com/fastmachinelearning/hls4ml/pull/629
https://github.com/fastmachinelearning/hls4ml/pull/528
https://github.com/fastmachinelearning/hls4ml/pull/591
https://github.com/fastmachinelearning/hls4ml/pull/784
https://github.com/fastmachinelearning/hls4ml/pull/799
https://github.com/fastmachinelearning/hls4ml/pull/660
https://github.com/fastmachinelearning/hls4ml/pull/768
https://github.com/fastmachinelearning/hls4ml/pull/809
https://github.com/YanLunHuang/hls4ml/tree/Array_Single_AutoConvert_22_9_16
https://indico.cern.ch/event/1283970/contributions/5550634/attachments/2720770/4726806/20230925_GNNHLS4ML_JSchulte.pdf
https://indico.cern.ch/event/1283970/contributions/5550634/attachments/2720770/4726806/20230925_GNNHLS4ML_JSchulte.pdf
https://indico.cern.ch/event/1283970/contributions/5550634/attachments/2720770/4726806/20230925_GNNHLS4ML_JSchulte.pdf
https://indico.cern.ch/event/1283970/contributions/5550634/attachments/2720770/4726806/20230925_GNNHLS4ML_JSchulte.pdf
https://indico.cern.ch/event/1283970/contributions/5550634/attachments/2720770/4726806/20230925_GNNHLS4ML_JSchulte.pdf


HLS4ML: user driven development
• hls4ml 2023 roadmap plans new developments and a regular release schedule 
• Q1 release: v0.7.0 & v0.7.1 
◦ Backend redesign to support multiple  

compilation targets [395] 
◦ Documentation updates [710, 744, 774] 
◦ Efficient network implementations [503, 509, 509] 
◦ Recurrent neural networks [560, 575] 
◦ Alveo accelerator FPGA card support [552] 
◦ Support for Vitis HLS [629] 
◦ Extension API [528] 

• Q2 release: v0.8.0 
◦ Configuration editor [784]  
◦ PyTorch parsing improvements [799]  
◦ Symbolic expressions [660] 
◦ Optimization API [768, 809] 
◦ Large streaming CNN [PR Soon]

10X resource reduction
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https://github.com/YanLunHuang/hls4ml/tree/Array_Single_AutoConvert_22_9_16
https://arxiv.org/pdf/2305.04099.pdf


HLS4ML: collaboration with XILINX FINN
• hls4ml 2023 roadmap plans new developments and a regular release schedule 
• Q1 release: v0.7.0 & v0.7.1 
◦ Backend redesign to support multiple  

compilation targets [395] 
◦ Documentation updates [710, 744, 774] 
◦ Efficient network implementations [503, 509, 509] 
◦ Recurrent neural networks [560, 575] 
◦ Alveo accelerator FPGA card support [552] 
◦ Support for Vitis HLS [629] 
◦ Extension API [528] 

• Q2 release: v0.8.0 
◦ Configuration editor [784]  
◦ PyTorch parsing improvements [799]  
◦ Symbolic expressions [660] 
◦ Optimization API [768, 809] 
◦ Large streaming CNN [PR Soon] 

◦ Upcoming: 

◦ QONNX ingestion [591] 
◦ Catapult HLS

QONNX: Extension to the ONNX intermediate 
representation  
format to represent arbitrary-precision quantized 
neural networks

https://github.com/fastmachinelearning/hls4ml/pull/395
https://github.com/fastmachinelearning/hls4ml/pull/710
https://github.com/fastmachinelearning/hls4ml/pull/744
https://github.com/fastmachinelearning/hls4ml/pull/774
https://github.com/fastmachinelearning/hls4ml/pull/503
https://github.com/fastmachinelearning/hls4ml/pull/503#:~:text=profiling%20%40nicologhielmetti-,FIFO%20depth%20optimization%C2%A0%23509,-ReLU%20merge%20optimizer
https://github.com/fastmachinelearning/hls4ml/pull/509
https://github.com/fastmachinelearning/hls4ml/pull/560
https://github.com/fastmachinelearning/hls4ml/pull/575
https://github.com/fastmachinelearning/hls4ml/pull/552
https://github.com/fastmachinelearning/hls4ml/pull/629
https://github.com/fastmachinelearning/hls4ml/pull/528
https://github.com/fastmachinelearning/hls4ml/pull/784
https://github.com/fastmachinelearning/hls4ml/pull/799
https://github.com/fastmachinelearning/hls4ml/pull/660
https://github.com/fastmachinelearning/hls4ml/pull/768
https://github.com/fastmachinelearning/hls4ml/pull/809
https://github.com/YanLunHuang/hls4ml/tree/Array_Single_AutoConvert_22_9_16
https://github.com/fastmachinelearning/hls4ml/pull/591
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Heterogeneous  computing

9

On-detector  
ASIC compression 

FPGA filter stack 
~μs latency

Worldwide 
computing grid 

On-prem CPU/GPU 
filter farm 

~100 ms latency

CMS Experiment 
40MHz collision rate 
~1B detector channels

~100ns latency

Pb/s 
40MHz

10s Tb/s 
100s kHz

10s Gb/s 
~5 kHz

Exabyte-scale 
datasets



Heterogeneous Computing for ML/AI
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HARDWARE ALTERNATIVES �11

FPGAs

EFFICIENCY

Control 
Unit 
(CU)

Registers

Arithmetic 
Logic Unit 

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Advances driven by
big data explosion 
& machine learning

Discontinued: October 18, 2022
A 5 year old slide, message 

remains…



‘AI chips’ in 2023
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Fast ML - Sioni Summers11 Sep. 2023

ML Hardware
• GPUs have been the baseline for accelerated ML 

• One of the big industry trends of recent years: 
custom silicon for AI 

• Mac M2: 15.8 TOPS Neural Engine 

• Meta MTIA v1: 102.4 TOPS INT8, 51.2 
TFLOPS FP16, 25 W 

• Graphcore IPU mk2: 250 TFLOPS 

• Groq: 750 TOPs INT8, 188 TFLOPs FP16 

• Even your FPGA has accelerators 

- Versal AI: 145 TOPS INT8, 12 TFLOPs FP32 

• Also many examples from TinyML for ultra low 
power AI 

- e.g. GreenWaves GAP in MLPerf benchmark
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Optimal Acceleration hardware usage
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SONIC 
Services for Optimized Network Inference on Coprocessors 

Flexible - task-based optimization; software abstraction 

Adaptable - right-size the system based on compute needs 

Scalable - coprocessor disassociated from existing CPU 
infrastructure; common software framework 

Non-disruptive - maintain HEP computing paradigm, 
coprocessors as an enhancement

NCPU != Ncoprocessor

COPROCESSOR 
(GPU,FPGA,A

SIC)

COPROCESSOR 
(GPU,FPGA,A

SIC)

COPROCESSOR 
(GPU,FPGA,A

SIC)

Network
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• The most straightforward way to deploy 
algorithms on coprocessors is to run 
workflows on machines with coprocessors
• This “Direct connection” can be inefficient:

P. McCormack (MIT) - FastML 2023 4

Heterogeneous computing

Traditional direct CPU->GPU connection:

Too few models or cores 
= underutilized GPU

Narrow “sweet spot” in 
terms of models or cores

Too many models or cores = 
oversaturated GPU

Also: workflows can only take advantage of 
acceleration if they run on a machine with a 
coprocessor – expensive at large scales!

Directly connected GPUs
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• The most straightforward way to deploy 
algorithms on coprocessors is to run 
workflows on machines with coprocessors
• This “Direct connection” can be inefficient:

P. McCormack (MIT) - FastML 2023 4

Heterogeneous computing

Traditional direct CPU->GPU connection:

Too few models or cores 
= underutilized GPU

Narrow “sweet spot” in 
terms of models or cores

Too many models or cores = 
oversaturated GPU

Also: workflows can only take advantage of 
acceleration if they run on a machine with a 
coprocessor – expensive at large scales!

Inflexible Expensive

Inflexible & Expensive Complex, Requires R&D



Since 2018

56

Hardware 
platforms

Open source tools

FPGA-as-a-service Toolkit 
('homegrown' gPRC server)

GPU-as-a-service for DUNE

GPU-as-a-service 

Deployment in experiments

hls  4  ml

hls4ml

HLS  4  ML

This talk: Portable 
Acceleration of CMS 
Production Workflow with 
Coprocessors as a 
Service

• SONIC uses NVIDIA Triton inference servers
• CMSSW only handles preprocessing and 

I/O, not inference framework
• Triton supports many ML backends: ONNX, 

TensorFlow, PyTorch, Scikit-Learn, etc.
• Improves model-building flexibility

• Makes asynchronous inference requests

P. McCormack (MIT) - FastML 2023 7

SONIC
NVIDIA 

Triton Inference Server

Fast ML - Sioni Summers11 Sep. 2023
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Groq

https://people.ece.uw.edu/hauck/publications/FaaST_ML.pdf
https://people.ece.uw.edu/hauck/publications/FaaST_ML.pdf
https://arxiv.org/pdf/2009.04509.pdf
https://arxiv.org/abs/2007.10359
https://cds.cern.ch/record/2872973
https://cds.cern.ch/record/2872973
https://cds.cern.ch/record/2872973
https://cds.cern.ch/record/2872973
https://cds.cern.ch/record/2872973


How to deploy SONIC in CMS
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CLOUD VS EDGE  30

Cloud vs. Edge

9Kevin PedroECoM2X

• Cloud service has latency

• Run CMSSW on Azure cloud machine
→ simulate local installation of FPGAs
(“on-prem” or “edge”)

• Provides test of “HLT-like” performance

Network input

CPU farm

FPGAPrediction

CMSSW

Heterogeneous Cloud Resource

CPU

FPGA

Heterogeneous Edge Resource

CPU

CMSSW

and there is a vast amount of research on specialized hardware for machine learning that the
particle physics community can take advantage of

• Often machine learning algorithms are quite parallelizable making them amenable to accelera-
tion on specialized hardware. This is not always true of physics-based algorithms, or perhaps
they would have to be re-written to accommodate new, and often changing, computing hardware

We therefore focus on ML acceleration in our study. Of course, to fully capitalize on the ML-focused
hardware developments, we rely on the continued research and development of ML applications for
particle physics tasks. However, given recent work across many neutrino and LHC experiments []
and initiatives such as the HepTrkX [] and Tracking ML Kaggle Challenge [], machine learning
applications across particle physics is growing rapidly.

The other important aspect is to understand is how to integrate FPGA co-processors into the parti-
cle physics computing model without disrupting the current multi-threaded parallel module processing
paradigm. A natural method for integrating heterogeneous resources is via a network service []. This
client-server model is flexible to be used locally by a single user or within a computing farm where a
single thread communicates with the server via Remote Procedure Calls (RPC) sending information as
protocol bu�ers. In our particular case, the gRPC package [] interfaces with Brainwave system. With
this setup, we now define a communication method between FPGA co-processor resources and our
primary experimental computing CPU-based data centers. This is illustrated in Fig. 4 where a module
running on our experimental compute farm requires fast inference of a particular ML algorithm via
an RPC. At the moment, we test the performance of a single task which makes a request to a single
cloud service. However, scaling up the number of requests is natural for the Brainwave system which
is capable of load balancing of service requests []. In the next section, we study the performance of
this computing stack and compare it to other results in the literature.

Network input

Datacenter (CPU farm)

CPU FPGA

Prediction

Experimental 

Software

gRPC protocol Heterogeneous  
Cloud Resource

Figure 4: An illustration of FPGA-accelerated machine learning cloud resources integrated into the
experimental physics computing model as a service

One may also consider a case where the FPGA co-processor resources are physically on the
same farm as the CPUs, as a so-called edge compute resource. This is illustrated in Fig. 5. In this
scenario, the same gRPC interface protocols are used to communicate with the FPGA hardware and

– 5 –

the software access for fast inference is unchanged. To benchmark this scenario, we run our particle
physics applications on a virtual machine (VM) on the cloud datacenter. Again, results are presented
in the following section.

CPU
FPGA

Heterogeneous  
“Edge” Resource

gRPC
 protocol

Experimental 
software

Figure 5: An illustration of FPGA-accelerated machine learning edge resources integrated into the
experimental physics computing model as a service

Describe the Resnet-50 deployment. The service is defined in two steps: a featurizer step which
is performed on the FPGA, and the classifer step, which is performed on the CPU.

– 6 –

• SONIC uses NVIDIA Triton inference servers
• CMSSW only handles preprocessing and 

I/O, not inference framework
• Triton supports many ML backends: ONNX, 

TensorFlow, PyTorch, Scikit-Learn, etc.
• Improves model-building flexibility

• Makes asynchronous inference requests

P. McCormack (MIT) - FastML 2023 7

SONIC

NVIDIA Triton Inference Server



Alternative solution : as-a-service
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SONIC 
Services for Optimized Network Inference on Coprocessors 

Flexible - task-based optimization; software abstraction 

Adaptable - right-size the system based on compute needs 

Scalable - coprocessor disassociated from existing CPU 
infrastructure; common software framework 

Non-disruptive - maintain HEP computing paradigm, 
coprocessors as an enhancement

NCPU != Ncoprocessor

COPROCESSOR 
(GPU,FPGA,A

SIC)

COPROCESSOR 
(GPU,FPGA,A

SIC)

COPROCESSOR 
(GPU,FPGA,A

SIC)

Network
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Flexible - task-based optimization; software 
abstraction; low software maintenance 
overhead

Adaptable - right-size the system based on 
compute needs, maximize e.g. GPU 
acceleration

Scalable - co-processor disassociated from 
existing CPU infrastructure; common software 
framework 

Non-disruptive - maintain HEP computing 
paradigm, coprocessors as an enhancement


First demonstration of integrating SONIC, with 
tests at Purdue CMS Tier-2 data center

More details see my talk at CPAD 2023. 

http://cds.cern.ch/record/2872973
http://cds.cern.ch/record/2872973
https://indico.slac.stanford.edu/event/8288/contributions/7942/attachments/3764/10166/sonic_cpad_2023.pdf
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On-Chip?

9

On-detector  
ASIC compression 

FPGA filter stack 
~μs latency

Worldwide 
computing grid 

On-prem CPU/GPU 
filter farm 

~100 ms latency

CMS Experiment 
40MHz collision rate 
~1B detector channels

~100ns latency

Pb/s 
40MHz

10s Tb/s 
100s kHz

10s Gb/s 
~5 kHz

Exabyte-scale 
datasets

Science with Big data: Multi-tier Data Processing

High Rate, Volume,Complexity



PT modules to provide 
hardware trigger capabilities

Designed to cope with high data 
rate, high radiation environment at 

the HL-LHC

Higher granularity, Low material 

budget, titled geometry

alexander.dierlamm@kit.edu4

The new Tracker Layout

New features:
fewer layers
tilted inner barrel
(extended pixel)
modules with sandwich 
of 2 sensors 
(2 hits/module)

total: 13296 modules
macro-pixel sensors

CMS Outer Tracker for HL-LHC

Phase-II

Phase-I

12.12.2017

2S modules: 2 Strip sensors
PS modules: Pixel and Strip sensor

42M strips on 192m²

170M macro-pixels on 25m²

The ATLAS approach is shown on poster 
P55, Z. Liang, “Construction of the new silicon 
microstrips tracker for the Phase-II ATLAS detector”

alexander.dierlamm@kit.edu7

pT Discrimination Concept

Reduce number of relevant hits for L1 by 
discrimination on pT

pT>2GeV/c removes 99% of tracks
Need on-module data reduction

modules contain two sensors with small 
gap
electronics use programmable search 
window to accept high-pT tracks and form 
stubs (hit position + bend info)
stubs are read out for each BX and sent to 
L1 Track Finder

CMS Outer Tracker for HL-LHC

CERN-THESIS-2010-083

12.12.2017

pT spectrum for hits at R=25cm from minimum bias 
particles at an average pileup of 400

PT modules
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pT Discrimination Concept

Reduce number of relevant hits for L1 by 
discrimination on pT

pT>2GeV/c removes 99% of tracks
Need on-module data reduction

modules contain two sensors with small 
gap
electronics use programmable search 
window to accept high-pT tracks and form 
stubs (hit position + bend info)
stubs are read out for each BX and sent to 
L1 Track Finder

CMS Outer Tracker for HL-LHC

CERN-THESIS-2010-083

12.12.2017

pT spectrum for hits at R=25cm from minimum bias 
particles at an average pileup of 400

‘Pt modules’ for Pixels?
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On-detector  
ASIC compression 

FPGA filter stack 
~μs latency

Worldwide 
computing grid 

On-prem CPU/GPU 
filter farm 

~100 ms latency

CMS Experiment 
40MHz collision rate 
~1B detector channels

~100ns latency

Pb/s 
40MHz

10s Tb/s 
100s kHz

10s Gb/s 
~5 kHz

Exabyte-scale 
datasets

Enabled by HLS4ML catapult 

Use cluster information to infer particle kinematics

http://www.apple.com


Accelerated AI Opportunities
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NSF A3D3 institute: Domain Scientists, Computer Scientists and System Experts

Impact broader science domains Fast ML for Science Workshop

Low-latency Calorimetry Clustering 
at the LHC with SPVCNN
ALEX SCHUY 1, ZHIJIAN LIU 2,  JEFF KRUPA 2, PATRICK MCCORMACK 2, 
PHIL HARRIS 2,  SHIH-CHIEH HSU1, SCOTT HAUCK 1, SONG HAN 2

10/4/2022 FASTML WORKSHOP 2022 1

UNIVERSITY OF WASHINGTON 1, MIT2

SpinQuest upgrade

9

Dark sector signature
SpinQuest: muon final states

DarkQuest: e,γ,π,...

System upgrades
Existing EMCal from PHENIX

Tracking MWPC available
Tensor polarized deuteron target

information for the neutrino flux. At much higher ener-
gies, the high- altitude balloon experiment Antarctic 
Impulsive Transient Antenna (ANITA)23, flying in a 
circumpolar orbit in Antarctica, used a radio technique 
to measure neutrinos at ~1017 eV, which is starting to 
provide constraints on cosmological neutrino sources 
and the GZK- related cosmogenic neutrino fluxes, com-
plementary with those provided by the Pierre Auger 
Observatory24.

Gravitational waves. The Laser Interferometric 
Gravitational- Wave Observatory (LIGO) consist of two 
detectors each with 4-km- long L- shaped arms (FIG. 1), 
which in 2015 began operation in the ~10–103 Hz fre-
quency range25. Another GW observatory, Virgo26 
located in Italy, and similarly L- shaped with 3-km- long 
arms, has been operating at similar times to LIGO, in 
particular in the second and third operating runs (2016–
2017 and 2019 to present). Both instruments will achieve 
design sensitivity in the coming years (TABLE 1). The  
long- awaited first discovery of GWs from a stellar mass 
binary black hole (BBH) merger (labelled GW150914) 
was announced by LIGO in 2016 (REF.4; FIG. 2). This was 
soon followed by a number of other BBH mergers 
detected both by LIGO and, with lower statistical sig-
nificance, by Virgo27. The observed black holes weigh 
up to several tens of solar masses, and have low spins. 

So far, despite intensive searches, no other messengers 
associated with BBH mergers have been detected, except 
for a possible GRB28 at the time of event GW150914.

Electromagnetic messengers. Except for BBHs, all the 
other sources detected with the above messengers had 
been previously extensively studied through their EM 
emissions at various wavelengths. Important examples 
of recent observations include those in the optical/
ultraviolet, X- ray and up to 150 keV γ- rays with the 
Swift satellite, and between 10 keV X- rays to ~TeV γ- rays 
with the Fermi satellite29 (FIG. 1), which detected a large 
number of GRB sources, AGN (including blazars), super-
novae and a diffuse cosmic γ- background. The ground- 
based air Cherenkov imaging telescopes, such as the Major 
Atmospheric Gamma Imaging Cherenkov Telescopes 
(MAGIC) (FIG. 1), the High Energy Stereoscopic System 
(HESS), the Very Energetic Radiation Imaging Telescope 
Array System (VERITAS)30 and the High Altitude Water 
Cherenkov Observatory (HAWC)31,32, which measure 
γ-rays in the 100 GeV to multi- TeV range are also very 
important for the study of these sources. The above have 
been amply supported by ground and space observations 
with multiple radio, infrared, optical and ultraviolet 
telescopes.

Joint multi- messenger results
Solar and supernova neutrinos and photons. The ear-
liest multi- messenger detections involved neutrinos in 
the MeV range. In the 1960s, a team led by Raymond 
Davies detected the electron neutrinos produced by 
the nuclear reactions taking place in the Sun, using a 
600 t tank filled with perchlorethylene (cleaning fluid) 
located deep underground in the Homestake mine in 
South Dakota, USA. This neutrino flux was confirmed 
by various other experiments, including the one led by 
Masatoshi Koshiba in the Kamioka mine in Japan. These 
discoveries earned Davies and Koshiba the Nobel Prize 
in Physics in 2002 (REFS33,34).

Another multi- messenger detection was that of neu-
trinos from a core- collapse supernova (SN 1987a). The 
neutrinos were produced in an inverse beta decay in 
which protons are converted into neutrons. The super-
nova neutrinos were detected by three different under-
ground experiments, Kamiokande in Japan, Baksan in 
the Soviet Union and Irvine–Michigan–Brookhaven  
in the United States35–37. This detection preceded by two 
hours the spectacular optical brightening characterizing 
the supernova.

Cosmic ray, γ- ray and neutrino background inter-
dependences. The measurements of the diffuse UHECR 
energy spectrum by the Pierre Auger Observatory estab-
lished a spectral cut- off above 1019.5 eV, compatible with 
what is expected from the GZK energy losses due to the 
cosmic microwave background photons3. Then, from 
2008, the Fermi satellite (following on previous work 
by the COS- B and other missions) measured a diffuse 
γ-ray background extending into the sub- TeV range38.  
In 2012–2013 IceCube discovered, with increasing 
amount of detail, a diffuse HEN background of astrophys-
ical origin at multi- TeV to PeV energies1,2. Currently, there  

Blazars
A type of active galactic 
nucleus where accretion to  
the central massive black hole 
leads to ejection of relativistic 
plasma jet pointing close to  
the line of sight to the external 
observer.

Air Cherenkov imaging 
telescopes
A steerable telescope 
measuring secondary optical 
photons produced by high- 
energy γ- rays impacting the 
upper Earth atmosphere.

Core- collapse supernova
The end result of the evolution 
of a star of mass 8 that has 
exhausted its nuclear fuel 
burning capacity, leading to  
the gravitational collapse of  
its inner core and the ejection 
of its outer envelope.

Gravitational waves

Cosmic rays Neutrinos

LIGO

Pierre Auger Observatory IceCube

MAGIC

Fermi

γ-raysγ-rays

Fig. 1 | Examples of current instruments observing cosmic messengers via the 
electromagnetic, gravitational, weak and strong forces. The Laser Interferometer 
Gravitational- Wave Observatory (LIGO) Hanford site in Washington, USA (Courtesy 
Caltech/MIT/LIGO Laboratory), the Fermi γ- ray space telescope (Credit: NASA), one  
of the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) telescopes 
situated at the Roque de los Muchachos Observatory on La Palma, Canary Islands  
(Credit: MAGIC collaboration and Robert Wagner), a schemaric of the Pierre Auger 
cosmic ray observatory in Argentina (Courtesy ASPERA/G.Toma/A.Saftoiu) and  
a schematic of the IceCube cubic kilometre neutrino detector in Antarctica  
(Credit: IceCube Collaboration).
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MMA Neuro Science

https://a3d3.ai
https://indico.cern.ch/event/1283970/
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Supernova detection and multi-messenger astronomy 

Credit: Michael Coughlin

https://fastmachinelearning.org/iccad2023/file/A3D3%20Real-Time%20AI%20ICCAD.pdf
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Real-time seizure detection 

https://indico.cern.ch/event/1156222/contributions/5062818/attachments/2521234/4335217/FastML2022.pdf


Fast ML for Science
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Particle accelerator controls 

https://indico.cern.ch/event/1283970/contributions/5550643/attachments/2721973/4729145/READS%20FastML%20v3.pdf


Fast ML for Science
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New materials for quantum and energy 

https://indico.cern.ch/event/1283970/contributions/5550641/attachments/2721072/4727363/Agar_FastML_talk.pdf
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Qubit readout and control 

https://indico.cern.ch/event/1283970/contributions/5554333/attachments/2722515/4730432/FastML.pdf
https://github.com/openquantumhardware/qick
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69

Qubit readout and control 

See many more at the fast machine learning for 
science workshop2023

https://indico.cern.ch/event/1283970/contributions/5554333/attachments/2722515/4730432/FastML.pdf
https://github.com/openquantumhardware/qick
https://indico.cern.ch/event/1283970/
https://indico.cern.ch/event/1283970/


Final Remark
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• Many existing and emerging opportunities 
in advancing our science results with Real-
time ML/AI


• New opportunities in searching for new 
physics


• Interesting research area touching 
overlaps of CS/AI, engineering and domain 
problems


• Lots of Fun

Why am I here at the L1 scouting workshop?
• Better acceptance of  !→3μ if higher trigger rate is possible 

• Can we bene!t from L1 scouting phase-2 system 
envisioned? 

• Method could be adopted for ‘muon shower’ or soft and/or 
long lived muon signatures. 
• Signatures that scouting can target for 

• Inclusive search using anomaly detection that learns any 
pattern that’s not pileup… maybe hard from ML perspective

GeV

GNN pre-
selection

Reconstruct muons 
Using muon hits and 

tracks
Analysis

GNN based tagger can collect 5 times more new 
physics with exotic footprint in CMS detector



Image detection network evolution
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Figure 7. Conceptual overview of the ResNet building block and the ResNet-152 architecture [43]:
(Left) The two ResNet building blocks show the convolutional operations in the main trunk, extracting
features and the residual connections surrounding these operations to enable a more efficient transport
of gradients during training. The difference between the two variants is that the first transports the
input value of the block without changing it (identity shortcut) where the second uses convolution
with stride 2, to match the output resolution and depth of the main trunk. (Right) Overall architecture
of ResNet-152 consists of 152 layers due to stacked ResNet building blocks.

Another ResNet variant is DenseNet [46] which uses residual connections intensively. As the
name suggests, in a DenseNet building block,. each convolutional layer takes as input the result of the
previous convolution as well as all previous inputs within the block via multiple residual connections,
forming a densely-connected building block. Instead of addition, DenseNet uses concatenation to
merge the layers resulting in a very deep feature map as the output of a block. For this reason, before
entering the next block, depth is reduced in a transition block using a bottle neck design. For a detailed
description, we refer to the work of Huang et al. [46]. DenseNet is trailing ResNet and ResNeXt designs
with an acc@5 of 93.9% for DenseNet-264, which uses significantly fewer parameters, just 34M.

Considering the network depth of the Vintage Architectures or the Inception Family, the ResNet
Family led to very deep architectures, which were trainable without auxiliary classifiers by using the
novel residual connection and the now established batch normalisation. Furthermore, the residual
connection introduced by the ResNet Family is still a widely used component in CNN architectures
and contributes to more sophisticated flow control in network architectures. Together, both families,
Inception and ResNet contributed to the evolution by demonstrating that CNNs are highly modular
models. Xception as well as the older Inception-ResNet-V2 [107] are exemplary for merging the
corner stones of each family into new architectures. The results are Inception-like modules with
bottleneck designs and batch normalisation, enhanced by residual connections. Those networks are
deeper than their ancestors without auxiliary classifiers and perform better or equal to those with
fewer parameters.

Besides complete new architectures, plug in modules such as the Squeeze and Excitation (SE)
module [47] demonstrated that the modification of existing model layouts can enhance even the Vintage
Architectures in an efficient way. SE modules used in SENet are small fully connected neural networks
which weight the feature map outputs of a convolutional operation. They support the hypothesis that
not all features in a feature map are equally responsible for the final prediction. The usage of such
weighted convolutional operations improves Vintage Architectures such as VGG as well as networks
from the ResNet and Inception Family by adding few parameters to the network [47].

3.1.4. Efficient Designs

The modular concept of CNNs and their building blocks is crucial for the next group of
architectures. In 2017, two major trends led to today’s state of the art architectures in image recognition:
highly parameter efficient networks and, instead of hand crafted designs, architectures drafted by
other neural networks in a so-called Neural Architecture Search (NAS) [48,49].

https://www.mdpi.com/2072-4292/12/10/1667/htm


Performant models have similar attention maps 
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MIT 6.5940: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Intermediate attention maps
Performant models have similar attention maps
• Attention maps of performant ImageNet models (ResNets) are indeed similar to each other, but 

the less performant model (NIN) has quite different attention maps.

21
Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer [Zagoruyko and Komodakis, ICLR 2017]

Published as a conference paper at ICLR 2017

Figure 4: Activation attention maps for various ImageNet networks: Network-In-Network (62%
top-1 val accuracy), ResNet-34 (73% top-1 val accuracy), ResNet-101 (77.3% top-1 val accuracy).
Left part: mid-level activations, right part: top-level pre-softmax acivations

Figure 5: Schematics of teacher-student attention transfer for the case when both networks are
residual, and the teacher is deeper.

• Different depth: have attention transfer on output activations of each group of residual
blocks

Similar cases apply also to other architectures (such as NIN, in which case a group refers to a block
of a 3 ⇥ 3, 1 ⇥ 1, 1 ⇥ 1 convolutions). In fig. 5 we provide a schematic illustration of the different
depth case for residual network architectures.

Without loss of generality, we assume that transfer losses are placed between student and teacher
attention maps of same spatial resolution, but, if needed, attention maps can be interpolated to match
their shapes. Let S, T and WS , WT denote student, teacher and their weights correspondingly, and
let L(W, x) denote a standard cross entropy loss. Let also I denote the indices of all teacher-student
activation layer pairs for which we want to transfer attention maps. Then we can define the following
total loss:

LAT = L(WS , x) +
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Figure 4: Activation attention maps for various ImageNet networks: Network-In-Network (62%
top-1 val accuracy), ResNet-34 (73% top-1 val accuracy), ResNet-101 (77.3% top-1 val accuracy).
Left part: mid-level activations, right part: top-level pre-softmax acivations

Figure 5: Schematics of teacher-student attention transfer for the case when both networks are
residual, and the teacher is deeper.

• Different depth: have attention transfer on output activations of each group of residual
blocks

Similar cases apply also to other architectures (such as NIN, in which case a group refers to a block
of a 3 ⇥ 3, 1 ⇥ 1, 1 ⇥ 1 convolutions). In fig. 5 we provide a schematic illustration of the different
depth case for residual network architectures.

Without loss of generality, we assume that transfer losses are placed between student and teacher
attention maps of same spatial resolution, but, if needed, attention maps can be interpolated to match
their shapes. Let S, T and WS , WT denote student, teacher and their weights correspondingly, and
let L(W, x) denote a standard cross entropy loss. Let also I denote the indices of all teacher-student
activation layer pairs for which we want to transfer attention maps. Then we can define the following
total loss:
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p = 2). As can be seen, during attention transfer we make use of l2-normalized attention maps, i.e.,
we replace each vectorized attention map Q with Q
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(l1 normalization could be used as well). It
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Different reduction methods across the channel dimensions

Attention maps of performant ImageNet models (ResNets) are similar to each 
other, but the less performant model (NIN) has quite different attention maps. 



Towards Scalable, Flexible, Adaptable GNN/
transformer with HLS4ML
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• hls4ml: great support for MLP and 
CNN Keras models. 

• Support of parsing PyTorch models: 
this has been improved! 


• Some (non-trivial) engineering work 
to support GNN/transformers: 

• Tau3mu Detection: MessagePassing 
layers, and meet 100 ns latency!


• Long term: need to improve hls4ml 
code generation 

• Current code generation in hls4ml is 
based on naive string generation - 
i.e., it becomes a mess very fast for 
anything complex. 

sPHENIX tracking GNN hls4ml synthesis results

- Network inputs: nodes=80, edges=100
- Input network

- Can be parallelized to be “nodes” times faster (i.e., 15ns)

- Edge network

- Node network (results from HLS synthesis, vivado synthesis OOM’d) 
- Neet to optimize the scatter_add function (expecting ~2us for the net)

Input network

Edge network

Node network

Edge network

R
ep

ea
t n
_g
ra
ph
_i
te
rs

 ti
m

esLatency BRAMs DSPs FFs LUTs

1.2 us 6.5% 0.3% 5% 7.5%

Latency BRAMs DSPs FFs LUTs

3 us 15% 2% 20% 65%

Latency BRAMs DSPs FFs LUTs

12 us 42% 7% - -

Extremely preliminary - DO NOT 
TRUST NUMBERS

Example: Extended operations 
supported in hls4ml to implement a 
GNN developed for track 
reconstruction in the sPhenix trigger  

•  Added missing operations for 
GNN: Scatter_* “getitem”, 
“gather”, “ones()” and “zeros()”
etc

https://indico.cern.ch/event/1283970/contributions/5550634/attachments/2720770/4726806/20230925_GNNHLS4ML_JSchulte.pdf
https://indico.cern.ch/event/1283970/contributions/5550634/attachments/2720770/4726806/20230925_GNNHLS4ML_JSchulte.pdf
https://indico.cern.ch/event/1283970/contributions/5550634/attachments/2720770/4726806/20230925_GNNHLS4ML_JSchulte.pdf
https://indico.cern.ch/event/1283970/contributions/5550634/attachments/2720770/4726806/20230925_GNNHLS4ML_JSchulte.pdf


A computing paradigm adaptive 
to changing hardware landscape 
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Services for Optimized Network Inference on Co-processors.


https://arxiv.org/pdf/1904.08986.pdf


• Increasing demand for accelerating ML inference


• Demonstrated offloading ML inference to Microsoft Brainwave FPGA services


• FPGA co-processor outperforms GPUs at batch-1 (relevant for streaming)


• CPU client software only handles preprocessing and I/O, not inference framework 

#TRENDING IN INDUSTRY: CO-PROCESSORS  19

Catapult/Brainwave
Specialized co-processor hardware 
for machine learning inference

FPGA

FPGA

FPGA

ASIC

ASIC?

CLOUD VS EDGE  30

Cloud vs. Edge

9Kevin PedroECoM2X

• Cloud service has latency

• Run CMSSW on Azure cloud machine
→ simulate local installation of FPGAs
(“on-prem” or “edge”)

• Provides test of “HLT-like” performance

Network input

CPU farm

FPGAPrediction

CMSSW

Heterogeneous Cloud Resource

CPU

FPGA

Heterogeneous Edge Resource

CPU

CMSSW

and there is a vast amount of research on specialized hardware for machine learning that the
particle physics community can take advantage of

• Often machine learning algorithms are quite parallelizable making them amenable to accelera-
tion on specialized hardware. This is not always true of physics-based algorithms, or perhaps
they would have to be re-written to accommodate new, and often changing, computing hardware

We therefore focus on ML acceleration in our study. Of course, to fully capitalize on the ML-focused
hardware developments, we rely on the continued research and development of ML applications for
particle physics tasks. However, given recent work across many neutrino and LHC experiments []
and initiatives such as the HepTrkX [] and Tracking ML Kaggle Challenge [], machine learning
applications across particle physics is growing rapidly.

The other important aspect is to understand is how to integrate FPGA co-processors into the parti-
cle physics computing model without disrupting the current multi-threaded parallel module processing
paradigm. A natural method for integrating heterogeneous resources is via a network service []. This
client-server model is flexible to be used locally by a single user or within a computing farm where a
single thread communicates with the server via Remote Procedure Calls (RPC) sending information as
protocol bu�ers. In our particular case, the gRPC package [] interfaces with Brainwave system. With
this setup, we now define a communication method between FPGA co-processor resources and our
primary experimental computing CPU-based data centers. This is illustrated in Fig. 4 where a module
running on our experimental compute farm requires fast inference of a particular ML algorithm via
an RPC. At the moment, we test the performance of a single task which makes a request to a single
cloud service. However, scaling up the number of requests is natural for the Brainwave system which
is capable of load balancing of service requests []. In the next section, we study the performance of
this computing stack and compare it to other results in the literature.

Network input

Datacenter (CPU farm)

CPU FPGA

Prediction

Experimental 

Software

gRPC protocol Heterogeneous  
Cloud Resource

Figure 4: An illustration of FPGA-accelerated machine learning cloud resources integrated into the
experimental physics computing model as a service

One may also consider a case where the FPGA co-processor resources are physically on the
same farm as the CPUs, as a so-called edge compute resource. This is illustrated in Fig. 5. In this
scenario, the same gRPC interface protocols are used to communicate with the FPGA hardware and

– 5 –

the software access for fast inference is unchanged. To benchmark this scenario, we run our particle
physics applications on a virtual machine (VM) on the cloud datacenter. Again, results are presented
in the following section.

CPU
FPGA

Heterogeneous  
“Edge” Resource

gRPC
 protocol

Experimental 
software

Figure 5: An illustration of FPGA-accelerated machine learning edge resources integrated into the
experimental physics computing model as a service

Describe the Resnet-50 deployment. The service is defined in two steps: a featurizer step which
is performed on the FPGA, and the classifer step, which is performed on the CPU.

– 6 –

https://arxiv.org/pdf/1904.08986.pdf

