Grand (Experimental) Challenges in Neutrino Physics

Kate Scholberg, Duke University COFI 23 San Juan, Puerto Rico

*craiyon.ai output for "grand challenges in neutrino physics"

NEUTRINOS

- Zero charge
- 3 flavors (families)
- Interact only via weak interaction (& gravity)
- Tiny mass (< 1 eV)

Science Drivers in Neutrino Physics

Where are the grand (experimental) challenges?

Three-flavor paradigm

Hunting down **anomalies**

Searching for **BSM** physics

Understanding **astrophysics** and **cosmology**

Science Drivers in Neutrino Physics

Where are the grand (experimental) challenges?

Three-flavor paradigm

Hunting down **anomalies**

Searching for **BSM** physics

Understanding **astrophysics** and **cosmology**

Science Drivers in Neutrino Physics

Where are the grand (experimental) challenges?

Three-flavor paradigm

Hunting down **anomalies**

Searching for **BSM** physics

Understanding astrophysics and cosmology

Overarching challenge in this sector: can we fully describe neutrino mixing?

The three-flavor paradigm

what's known, what's left to measure?

Neutrino Oscillations Latest 3-flavor results Remaining unknowns in the 3-flavor picture: mass ordering (MO) and CP δ

Absolute Mass Status and prospects

Majorana vs Dirac? Overview of NLDBD

The mass pattern

The mass scale

The mass nature

Neutrino Mass and Oscillations

How can we learn about neutrino mass?

Flavor states related to mass states by a unitary mixing matrix

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

$$|\nu_f\rangle = \sum_{i=1}^N U_{fi}^* |\nu_i\rangle$$

If mixing matrix is not diagonal, get flavor oscillations as neutrinos propagate (essentially, interference between mass states)

Neutrino Interactions with Matter

Neutrinos are aloof but not *completely* unsociable

Produces lepton with flavor corresponding to neutrino flavor

(must have enough energy to make lepton)

Flavor-blind

Two-flavor case

$$|\nu_f\rangle = \cos\theta |\nu_1\rangle + \sin\theta |\nu_2\rangle$$
$$|\nu_g\rangle = -\sin\theta |\nu_1\rangle + \cos\theta |\nu_2\rangle$$

Propagate a distance L:

$$|\nu_i(t)\rangle = e^{-iE_it}|\nu_i(0)\rangle \sim e^{-im_i^2L/2p}|\nu_i(0)\rangle$$

Probability of detecting flavor g at L:

$$P(\nu_f \rightarrow \nu_g) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right) \stackrel{\rm E in \ GeV}{\rm Lin \ km}_{\Delta m^2 \ in \ eV^2}$$

Parameters of nature to measure: θ , $\Delta m^2 = m_1^2 - m_2^2$

$$P(\nu_f \to \nu_g) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right)$$

$$\Delta m^2 = m_1^2 - m_2^2$$

<u>If flavor oscillations are observed,</u> <u>then</u> there must be at least one non-zero mass state

^{*}Note: oscillation depends on mass *differences*, not absolute masses

Distance traveled

The Experimental Game

- Start with some neutrinos (wild or tame)
- Measure (or calculate) flavor composition and energy spectrum
- Let them propagate
- Measure flavor and energies again

Have the flavors and energies changed? If so, does the change follow $P(\nu_f \rightarrow \nu_g) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right)$?

Disappearance: v's oscillate into 'invisible' flavor

e.g. $v_e \rightarrow v_\mu$ at ~MeV energies

<u>Appearance</u>: directly see new flavor e.g. $v_{\mu} \rightarrow v_{\tau}$ at ~GeV energies

With three flavors, get more complicated wiggles, of superposed short and long wavelengths:

Prob of observing flavor

Governed by three "mixing angle" parameters, θ_{12} , θ_{13} , θ_{23} and mass differences

Need to tease out the hums of three neutrinos

Oscillation probability can be computed straightforwardly:

For appropriate L/E (and U_{ij}), oscillations "decouple", and probability can be described the two-flavor expression

$$P(\nu_f \to \nu_g) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right)$$

 $s_{ij} \equiv \sin \theta_{ij}, c_{ij} \equiv \cos \theta_{ij}$

 $s_{ij} \equiv \sin \theta_{ij}, c_{ij} \equiv \cos \theta_{ij}$

Parameters in the 3-flavor neutrino	paradigm	$ u_f angle = \sum_{i=1}^N$	$U_{fi}^* \nu_i\rangle$	
$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix}$	$\begin{bmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c \end{bmatrix}$	$\begin{bmatrix} i = 1 \\ c_1 \\ c_1 \\ -s \\ 0 \end{bmatrix}$	$\begin{array}{cccc} s_{12} & s_{12} & \ 12 & c_{12} & \ 0 & & 0 \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
3 masses	m_1, m_2, m_3 (2 mass differences + absolute scale)	$\times \begin{bmatrix} e^{i\alpha_1/2} \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 0\\ e^{i\alpha_2/2}\\ 0\end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
3 mixing angles 1 CP phase (2 Majorana phases)	$egin{aligned} & heta_{23}, heta_{12}, heta_{13} \ & \delta \ & lpha_1, lpha_2 \end{aligned}$	$s_{ij} \equiv \sin \theta$	$\overline{\overline{\partial_{ij}}, c_{ij}} \equiv \mathrm{c}$	$\overline{\operatorname{os} \theta_{ij}}$

And further information from beams and burns!

The three-flavor picture fits the data well

Global three-flavor fits to all data: atmospheric, solar, reactor, beams*

		Normal Ore	lering (best fit)	Inverted Ordering ($\Delta \chi^2 = 7.0$)		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
	$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	
with SK atmospheric data	$\theta_{12}/^{\circ}$	$33.45_{-0.75}^{+0.77}$	$31.27 \rightarrow 35.87$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$	
	$\sin^2 \theta_{23}$	$0.450\substack{+0.019\\-0.016}$	$0.408 \rightarrow 0.603$	$0.570^{+0.016}_{-0.022}$	$0.410 \rightarrow 0.613$	
	$\theta_{23}/^{\circ}$	$42.1^{+1.1}_{-0.9}$	$39.7 \rightarrow 50.9$	$49.0^{+0.9}_{-1.3}$	$39.8 \rightarrow 51.6$	
	$\sin^2 \theta_{13}$	$0.02246^{+0.00062}_{-0.00062}$	$0.02060 \to 0.02435$	$0.02241^{+0.00074}_{-0.00062}$	$0.02055 \to 0.02457$	
	$\theta_{13}/^{\circ}$	$8.62^{+0.12}_{-0.12}$	$8.25 \rightarrow 8.98$	$8.61\substack{+0.14 \\ -0.12}$	$8.24 \rightarrow 9.02$	
	$\delta_{\mathrm{CP}}/^{\circ}$	230^{+36}_{-25}	$144 \rightarrow 350$	278^{+22}_{-30}	$194 \to 345$	
	$\frac{\Delta m^2_{21}}{10^{-5} \ {\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.510^{+0.027}_{-0.027}$	$+2.430 \rightarrow +2.593$	$-2.490^{+0.026}_{-0.028}$	$-2.574 \rightarrow -2.410$	

Esteban et al., arXiv:2007.14792, 10.1007/JHEP09(2020)178

*Does not include the very latest data

What do we *not* know about the three-flavor paradigm?

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792]

		Normal Ore	Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^2 = 7.0$)		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range		
eric data	$\sin^2 \theta_{12}$	$0.304\substack{+0.012\\-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$		
	$\theta_{12}/^{\circ}$	$33.45_{-0.75}^{+0.77}$	$31.27 \rightarrow 35.87$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$		
	$\sin^2 \theta_{23}$	$0.450\substack{+0.019\\-0.016}$	$0.408 \rightarrow 0.603$	$0.570\substack{+0.016\\-0.022}$	$0.410 \rightarrow 0.613$		
osphe	$\theta_{23}/^{\circ}$	$42.1_{-0.9}^{+1.1}$	$39.7 \rightarrow 50.9$	$49.0^{+0.9}_{-1.3}$	$39.8 \rightarrow 51.6$		
atmo	$\sin^2 \theta_{13}$	$0.02246\substack{+0.00062\\-0.00062}$	$0.02060 \to 0.02435$	$0.02241\substack{+0.00074\\-0.00062}$	$0.02055 \to 0.02457$		
with SK 8	$\theta_{13}/^{\circ}$	$8.62^{+0.12}_{-0.12}$	$8.25 \rightarrow 8.98$	$8.61^{+0.14}_{-0.12}$	$8.24 \rightarrow 9.02$		
	$\delta_{\mathrm{CP}}/^{\circ}$	230^{+36}_{-25}	$144 \rightarrow 350$	278^{+22}_{-30}	$194 \to 345$		
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.42\substack{+0.21 \\ -0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$		sian of ∧m
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.510\substack{+0.027\\-0.027}$	$+2.430 \rightarrow +2.593$	$-2.490\substack{+0.026\\-0.028}$	$-2.574 \rightarrow -2.410$		
	$\Delta m^2_{3\ell} \equiv$	$\Delta m_{31}^2 > 0$ for	NO and $\Delta m^2_{3\ell} \equiv$	$\Delta m_{32}^2 < 0$ for	or IO.		of masses)

2

What do we *not* know about the three-flavor paradigm?

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792]

with SK atmospheric data

What do we *not* know about the three-flavor paradigm?

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792]

What do we *not* know about the three-flavor paradigm?

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792]

More and better info from: beams [LBL], burns [solar, JUNO], bangs [SNe]...

Measuring CP violation in neutrinos

B. Kayser, PDG

$$\mathbf{U} = \begin{pmatrix} 1 & 0 & 0\\ 0 & c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta}\\ 0 & 1 & 0\\ -s_{12}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0\\ -s_{12} & c_{12} & 0\\ 0 & 0 & 1 \end{pmatrix}$$
$$|\nu_f\rangle = \sum_{i=1}^N U_{fi}^* |\nu_i\rangle$$

Flavor transition probability is:

$$P(\nu_f \to \nu_g) = \delta_{fg} - 4 \sum_{i>j} \Re(U_{fi}^* U_{gi} U_{fj} U_{gj}^*) \sin^2(1.27\Delta m_{ij}^2 L/E)$$
$$\pm 2 \sum_{i>j} \Im(U_{fi}^* U_{gi} U_{fj} U_{gj}^*) \sin(2.54\Delta m_{ij}^2 L/E)$$

$$P(\nu_f \to \nu_g) = \delta_{fg} - 4 \sum_{i>j} \Re(U_{fi}^* U_{gi} U_{fj} U_{gj}^*) \sin^2(1.27\Delta m_{ij}^2 L/E)$$

$$\pm 2\sum_{i>j} \Im(U_{fi}^* U_{gi} U_{fj} U_{gj}^*) \sin(2.54\Delta m_{ij}^2 L/E)$$

$$P(\nu_g \to \nu_f; U) = P(\nu_f \to \nu_g; U^*)$$

$$P(\nu_f \to \nu_g) = \delta_{fg} - 4 \sum_{i>j} \Re(U_{fi}^* U_{gi} U_{fj} U_{gj}^*) \sin^2(1.27\Delta m_{ij}^2 L/E)$$

$$\pm 2\sum_{i>j} \Im(U_{fi}^* U_{gi} U_{fj} U_{gj}^*) \sin(2.54\Delta m_{ij}^2 L/E)$$

$$P(\nu_g \to \nu_f; U) = P(\nu_f \to \nu_g; U^*)$$

Now if CPT holds,

$$P(\bar{\nu}_f \to \bar{\nu}_g) = P(\nu_g \to \nu_f)$$

$$P(\nu_f \to \nu_g) = \delta_{fg} - 4 \sum_{i>j} \Re(U_{fi}^* U_{gi} U_{fj} U_{gj}^*) \sin^2(1.27\Delta m_{ij}^2 L/E)$$

$$\pm 2\sum_{i>j} \Im(U_{fi}^* U_{gi} U_{fj} U_{gj}^*) \sin(2.54\Delta m_{ij}^2 L/E)$$

$$P(\nu_g \to \nu_f; U) = P(\nu_f \to \nu_g; U^*)$$

Now if CPT holds,

$$P(\bar{\nu}_f \to \bar{\nu}_g) = P(\nu_g \to \nu_f)$$

Putting this together with the above expression:

$$P(\bar{\nu}_f \to \bar{\nu}_g; U) = P(\nu_f \to \nu_g; U^*)$$

Probability for antinus same as for nus, but with U^{*}

$$P(\nu_f \to \nu_g) = \delta_{fg} - 4 \sum_{i>j} \Re(U_{fi}^* U_{gi} U_{fj} U_{gj}^*) \sin^2(1.27\Delta m_{ij}^2 L/E)$$

$$\pm 2\sum_{i>j} \Im(U_{fi}^* U_{gi} U_{fj} U_{gj}^*) \sin(2.54\Delta m_{ij}^2 L/E)$$

$$P(\nu_g \to \nu_f; U) = P(\nu_f \to \nu_g; U^*)$$

Now if CPT holds,

$$P(\bar{\nu}_f \to \bar{\nu}_g) = P(\nu_g \to \nu_f)$$

Putting this together with the above expression:

$$P(\bar{\nu}_f \to \bar{\nu}_g; U) = P(\nu_f \to \nu_g; U^*)$$

Probability for antinus same as for nus, but with U^{*}

If U is complex, the 2nd term has opposite sign for antinus, and probabilities differ for nus and antinus
$$P(\nu_f \to \nu_g) = \delta_{fg} - 4 \sum_{i>j} \Re(U_{fi}^* U_{gi} U_{fj} U_{gj}^*) \sin^2(1.27\Delta m_{ij}^2 L/E)$$

$$\pm 2\sum_{i>j} \Im(U_{fi}^* U_{gi} U_{fj} U_{gj}^*) \sin(2.54\Delta m_{ij}^2 L/E)$$

From this expression:

$$P(\nu_g \to \nu_f; U) = P(\nu_f \to \nu_g; U^*)$$

Now if CPT holds,

$$P(\bar{\nu}_f \to \bar{\nu}_g) = P(\nu_g \to \nu_f)$$

Putting this together with the above expression:

$$P(\bar{\nu}_f \to \bar{\nu}_g; U) = P(\nu_f \to \nu_g; U^*)$$

Probability for antinus same as for nus, but with U^{*}

If U is complex, the 2nd term has opposite sign for antinus, and probabilities differ for nus and antinus

Observation of

$$P(\bar{\nu}_f \to \bar{\nu}_g) \neq P(\nu_f \to \nu_g)$$

is a signature of *intrinsic* CP violation (complex U)

But measurement of CP violation is tangled up with matter effects (depending on MO)...

Matter potential
$$\nu_{\mu} \rightarrow \nu_{e}$$
 $V_{\text{mat}} = \pm 2\sqrt{2}G_{F}N_{e}E$

+ for neutrinos, - for antineutrinos

Earth has electrons, not positrons!

Matter-induced CP asymmetry competes with intrinsic CP asymmetry

P. Huber, NuFact 2013

Long-baseline approach for going after MO and CP

Measure transition probabilities for $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

through matter

$$P_{\nu_e\nu_\mu(\bar{\nu}_e\bar{\nu}_\mu)} = s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{13}}{\tilde{B}_{\mp}}\right)^2 \sin^2 \left(\frac{\tilde{B}_{\mp}L}{2}\right) + c_{23}^2 \sin^2 2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2 \left(\frac{AL}{2}\right) + \tilde{J} \frac{\Delta_{12}}{A} \frac{\Delta_{13}}{\tilde{B}_{\mp}} \sin \left(\frac{AL}{2}\right) \sin \left(\frac{\tilde{B}_{\mp}L}{2}\right) \cos \left(\pm\delta - \frac{\Delta_{13}L}{2}\right)$$

A. Cervera et al., Nucl. Phys. B 579 (2000) $\tilde{J} \equiv c_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13}$ Δ_{ij} $\theta_{13}, \Delta_{12}L, \Delta_{12}/\Delta_{13}$ are small

 $\Delta_{ij} \equiv \frac{\Delta m_{ij}^2}{2E_{\nu}}, \ \tilde{B}_{\mp} \equiv |A \mp \Delta_{13}|, \ A = \sqrt{2}G_F N_e$

Different probabilities as a function of L& E for neutrinos and antineutrinos, depending on:

- CP δ
- matter density (Earth has electrons, not positrons)

Where we are now with long-baseline experiments

And the future...

K2K

T2K appearance and disappearance samples

⁽Example: 2020 analysis)

T2K and NOvA 3-flavor parameter results

but not "evidence" yet...

and $\delta = -\pi/2...$

Joint T2K-NOvA analysis in the works

Projections for where we'll be this decade

Deep Underground Neutrino Experiment/ Long Baseline Neutrino Facility

- <u>Phase I</u>: near + far site infrastructure, upgradeable 1.2 MW beam, 2x18 kt LArTPC, movable ND + μ catcher, on-axis ND
- <u>Phase II</u>: two more FD modules, >2 MW beam, ND upgrades [new ideas!]
- Broad physics program

The DUNE far detector: 4 x 17 kton of LAr, horizontal &vertical drift designs

by end of this decade

Phase I •Ramp to 1.2 MW beam intensity •Two 17kt (10kt fid.) LAr TPC FD modules. One HD on VD. •Near detector: ND-LAr + TMS (steel/scint. range stack) + SAND •Moveable to enable PRISM Phase II Upgrades •Proton beam increase to 2.4 MW •Four 17kt LAr TPC FD modules •TMS Upgraded to ND-Gar to provide enhanced ND interaction physics capabilities.

Strategy of appearance & disappearance for MO & CPV

Deep Underground Neutrino Experiment/ Long Baseline Neutrino Facility

- <u>Phase I</u>: near + far site infrastructure, upgradeable 1.2 MW beam, 2x18 kt LArTPC, movable ND + m catcher, on-axis ND
- <u>Phase II</u>: two more FD modules, >2 MW beam, ND upgrades [new ideas!]
- Broad physics program

\rightarrow new P5-recommended configuration

DUNE FD1-HD simulation 2.5 GeV, $v_{e} + Ar \rightarrow e p \pi^{0}$

P5 Recommendations for DUNE

Recommendation 1: As the highest priority independent of the budget scenarios, complete construction projects and support operations of ongoing experiments and research to enable maximum science.

We reaffirm the previous P5 recommendations on major initiatives:

b. The first phase of DUNE and PIP-II to determine the mass ordering among neutrinos, a fundamental property and a crucial input to cosmology and nuclear science (*elucidate the mysteries of neutrinos*, section 3.1).

Recommendation 2: Construct a portfolio of major projects that collectively study nearly all fundamental constituents of our universe and their interactions, as well as how those interactions determine both the cosmic past and future.

b. Re-envisioned second phase of DUNE with an early implementation of an enhanced 2.1 MW beam—ACE-MIRT—a third far detector, and an upgraded near-detector complex as the definitive long-baseline neutrino oscillation experiment of its kind (section 3.1).

- Similar reach w/ 3 modules + enhanced beam
- In favorable scenario, new ideas for 4th module

Hyper-Kamiokande

- Beam from J-PARC 295 km away, upgrade to 1.3 MW
- Many non-accelerator physics topics

We can also think of oscillation physics experiments as *pushing on* the three-flavor paradigm...

There are already some slightly uncomfortable data that **don't fit that paradigm**...

Science Drivers in Neutrino Physics

Three-flavor paradigm: filling in the remaining pieces

Hunting down anomalies

Searching for **BSM** physics

Understanding **astrophysics** and **cosmology**

There are some anomalies in the oscillation sector... can we resolve them?

Outstanding 'anomalies'

LSND @ LANL (~30 MeV, 30 m)

Excess of \overline{v}_e interpreted as $\overline{\nu}_\mu \rightarrow \overline{\nu}_e$

$\begin{array}{c} 889 \\ 17.5 \\ 15 \\ 16 \\ 12.5 \\ 10 \\ 7.5 \\ 5 \\ 2.5 \\ 0 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.4 \\ 1.4 \\ 1.2 \\ 1.4 \\$

MiniBooNE @ FNAL (v,v ~1 GeV, 0.5 km)

- unexplained >3 σ excess for E < 475 MeV in neutrinos "low-energy excess" inconsistent w/ LSND oscillation

 no excess for E > 475 MeV in neutrinos (inconsistent w/ LSND oscillation)

- small excess for E < 475 MeV in antinus

"Reactor flux anomaly"

deficit of reactor antinue absolute flux wrt calculation

"Reactor spectral anomaly" a wiggle, but in only one expt...

"Gallium anomaly" $\sim 3\sigma$ deficit of nue flux from 51-Cr source in Ga

We can also think of oscillation physics experiments as *pushing on* the three-flavor paradigm...

There are already some slightly uncomfortable data that **don't fit that paradigm**...

Anomalies are frequently blamed on additional neutrino states (which must be "**sterile**", i.e., no SM weak interactions, given that we know only three active light neutrinos from the Z⁰ width)...

Many experiments going after (light) sterile neutrinos...

and many more, including experiments with other "day jobs"

LSND @ LANL (~30 MeV, 30 m)

Unresolved... JSNS² will test

LSND @ LANL (~30 MeV, 30 m)

Unresolved... JSNS² will test

MiniBooNE @ FNAL (v,v ~1 GeV, 0.5 km)

Unresolved.... Results from MicroBooNE rule out specific electron/gamma final state explanations for LEE so farmore data from FNAL SBN program soon

LSND @ LANL (~30 MeV, 30 m)

Unresolved... JSNS² will test

MiniBooNE @ FNAL (v,v ~1 GeV, 0.5 km)

Unresolved.... Results from MicroBooNE rule out specific electron/gamma final state explanations for LEE so farmore data from FNAL SBN program soon

Reactor flux anomaly Resolved (probably?) with new input β-decay spectra from 235-U fission

L [m]

LSND @ LANL (~30 MeV, 30 m)

Unresolved... JSNS² will test

Beam Excess 15 12.5 10 7.5 25 0.4 0.6

17.5

MiniBooNE @ FNAL ($v, \overline{v} \sim 1$ GeV, 0.5 km)

Unresolved.... Results from MicroBooNE rule out specific electron/gamma final state explanations for LEE so farmore data from FNAL SBN program soon

'Reactor flux anomaly"

Resolved (probably?) with new input β-decay spectra from 235-U fission

"Reactor spectral anomaly" Unresolved... new data disfavor.. more data coming... PROSPECT, SoLid, STEREO, NEOS, DANSS, CHANDLER, Neutrino-4,....

Room Excess

LSND @ LANL (~30 MeV, 30 m)

Unresolved... JSNS² will test

MiniBooNE @ FNAL (v,v ~1 GeV, 0.5 km)

Unresolved.... Results from MicroBooNE rule out specific electron/gamma final state explanations for LEE so farmore data from FNAL SBN program soon

"Reactor flux anomaly"

Resolved (probably?) with new input β-decay spectra from 235-U fission

"Reactor spectral anomaly"

Contraction of the second state of the seco

"Gallium anomaly" Unresolved... new BEST results (5σ) confirm it ...no baseline dependence

Beam Excess

17.5

15 12.5 10 7.5

L [m]

an Excert

Sterile oscillation fits to "all" the data are uncomfortable...

are in fairly serious tension

M. Dentler et al. https://doi.org/10.1007/JHEP08(2018)010

[does not include PROSPECT, STEREO + other new data]

Science Drivers in Neutrino Physics

And we can search broadly for new physics

Three-flavor paradigm: filling in the remaining pieces

Hunting down **anomalies**

Searching for **BSM** physics

Understanding astrophysics and cosmology

Beyond the Standard Model in the Neutrino Frontier

This includes *both* BSM in the neutrino sector, *and* BSM search opportunities in neutrino detectors

See Snowmass colloquia by J. Kopp, Z. Tabrizi, M. Toups (+NF03 report)

🗹 easy comparison between experiments

- sterile neutrinos over wide range of masses
- neutrino decay
- PMNS non-unitarity
- anomalous v magnetic moments
- non-standard
 v interactions
- new physics in double beta decay

Very wide array of experimental approaches

Note that in addition to BSM in the neutrino sector, there are non-neutrino-sector BSM search opportunities in neutrino detectors

- Baryon number violation in large detectors
- Dark sector particle searches

beams, natural sources, cosmogenic

- Axion-like particles
- Light DM
- Light Z'

- DUNE near detectors
- spallation neutron sources
- beam dumps
- LHC Forward Physics Facility
- neutrino factories
-

Pause... Day 2

Science Drivers in Neutrino Physics

Where are the grand (experimental) challenges?

Three-flavor paradigm

Hunting down **anomalies**

Searching for **BSM** physics

Understanding **astrophysics** and **cosmology**

Neutrino oscillations are not the only Grand Challenge in the 3-flavor paradigm...

Kinematic experiments for absolute neutrino mass

Kinematic neutrino mass approaches

KATRIN results

Magnus Schlösser – MORIOND2021

KATRIN Collab. Nat. Phys. **18,** 160–166 (2022)

Are neutrinos Majorana or Dirac?

Essential for v mass understanding....

 $\mathcal{L}_m \sim m_D \left[\overline{\psi}_L \psi_R + \dots \right] + \left[m_L \overline{\psi}_L^c \psi_L + m_R \overline{\psi}_R^c \psi_R + h.c. \right]$

e.g., "see-saw" mechanism \Rightarrow Majorana ν ... may be helpful for leptogenesis...
Neutrinoless Double Beta Decay

- observation would indicate:
 - neutrinos are Majorana
 - antimatterless matter is created
- light neutrino mediator is the nominal 3-flavor explanation
 - but can have other mediators in BSM scenarios

Experimental searches are based on nuclides for which NLDBD is energetically possible, and which cannot α , 1 β decay

For example:

Experimental strategy: look for peak in the two-electron spectrum corresponding to neutrinoless final state

The list of **special NLDBD isotopes** currently being pursued

Isotope	Daughter	$Q_{etaeta}{}^{\mathbf{a}}$	$f_{ m nat}{}^{ m b}$	$f_{ m enr}{}^{ m c}$
		$[\mathrm{keV}]$	[%]	[%]
48 Ca	$^{48}\mathrm{Ti}$	4267.98(32)	0.187(21)	16
$^{76}\mathrm{Ge}$	$^{76}\mathrm{Se}$	2039.061(7)	7.75(12)	92
82 Se	82 Kr	2997.9(3)	8.82(15)	96.3
$^{96}\mathrm{Zr}$	^{96}Mo	3356.097(86)	2.80(2)	86
100 Mo	100 Ru	3034.40(17)	9.744(65)	99.5
116 Cd	$^{116}\mathrm{Sn}$	2813.50(13)	7.512(54)	82
130 Te	130 Xe	2527.518(13)	34.08(62)	92
136 Xe	136 Ba	2457.83(37)	8.857(72)	90
¹⁵⁰ Nd	$^{150}\mathrm{Sm}$	3371.38(20)	5.638(28)	91
		want large Q value!	want high natural abundance!	or at leas ability to enrich

Agostini, Benato, Detwiler, Menéndez & Vissani, RMP 2022, arXiv:2202.01787

Observed half-life:

Observed half-life:

The Lobster Plot

If neutrinos are Majorana^{*}, experimental results must fall in the shaded regions Extent of the regions determined by uncertainties on mixing matrix elements and Majorana phases

and standard 3-flavor picture, light-neutrino exchange mechanism

Neutrino mixing parameters

$$|\nu_f\rangle = \sum_{i=1} U_{fi}^* |\nu_i\rangle$$
 $U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $s_{ij} \equiv \sin \theta_{ij}, c_{ij} \equiv \cos \theta_{ij}$
 M_1, m_2, m_3
 3 masses
 m_1, m_2, m_3
 $(2 \text{ mass differences} + absolute scale)$
 $\theta_{23}, \theta_{12}, \theta_{13}$
 1 CP phase
 δ
 $(2 \text{ Majorana phases})$
 α_1, α_2

Observables in oscillation experiments

N

1 \

Assuming 3 flavors, light-neutrino exchange mechanism for NLDBD:

for interpretation of NLDBD results

Remaining oscillation unknowns in the 3-flavor paradigm

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792]

More and better info to come from:

beams [LBL], burns [solar, JUNO],

bangs [SNe]... what will we know about mass ordering?

(... it's smelling like normal, but inverted is not ruled out...)

Projections from Snowmass

- Next ~5 years: maybe ~ 3σ from T2K + NOvA + JUNO
- DUNE/Hyper-K are next-generation long-baseline experiments
- DUNE will nail the mass ordering very rapidly

Where we are experimentally for NLDBD

Next experimental goal: cover the IO region

If ordering is inverted (or QD) we will be in a good place! Either: discover NLDBD! OR (neutrinos are Dirac OR BSM)

We could also have a high mass scale and discover NLDBD in the next generation ...

Otherwise, need to go lower...next goal for $m_{\beta\beta}$ is 1.5 meV, normal-ordering floor for $m_1=0$

But... Nature could have cooked up diabolical parameters and we could end up staring into the funnel of doom...

Although it's still possible BSM could surprise us!

Back-of-the-envelope experimental sensitivity

$$T_{1/2} > \frac{\ln 2 \varepsilon \cdot N_{source} \cdot T}{UL(B(T) \cdot \Delta E)}$$

 $\begin{array}{l} \epsilon: \mbox{ detection efficiency } \\ N_{source}: \mbox{ number of isotope nuclei} \\ T: \mbox{ observation time } \\ UL(B(T) \ \Delta E): \mbox{ upper limit for expectation } \\ & \mbox{ of B background events in ROI of width } \Delta E \end{array}$

Go after the numerator:

$$T_{1/2} > \frac{\ln 2 \varepsilon \cdot N_{source} \cdot T}{UL(B(T) \cdot \Delta E)}$$

ε: detection efficiency N_{source}: number of isotope nuclei T: observation time UL(B(T) ΔE): upper limit for expectation of B background events in ROI of width ΔE

Want lots of candidate isotope! At lifetime of 10^{26-27} yr (m_{$\beta\beta$}~ 50 meV in IO region) need ~ 10^4 moles (~ 1 tonne) for 1 count/yr

→ want high natural abundance, or effective isotope separation

Go after the denominator:

$$T_{1/2} > \frac{\ln 2 \varepsilon \cdot N_{source} \cdot T}{UL(B(T) \cdot \Delta E)}$$

 $\begin{array}{l} \epsilon: \mbox{ detection efficiency } \\ N_{source}: \mbox{ number of isotope nuclei} \\ T: \mbox{ observation time } \\ UL(B(T) \ \Delta E): \mbox{ upper limit for expectation } \\ & \mbox{ of B background events in ROI of width } \Delta E \end{array}$

- Want small ΔE to avoid the 2vββ "friendly fire" and exclude other background
- Generally want high Q value to keep away from background
- Beat down all other background ... ultra-cleanliness, underground location needed

Neutrinoless Double Beta Decay Experiments many, many isotopes and technologies

Recent and future experiments

				$m_{ m iso}$	$arepsilon_{ m act}$	$\varepsilon_{\mathrm{cont}}$	$\varepsilon_{\mathrm{mva}}$	σ	ROI	$\varepsilon_{ m ROI}$	ε	B	λ_b	$T_{1/2}$	m_{etaeta}
Experiment	Isotope	Status	Lab	[mol]	[%]	[%]	[%]	$[\mathrm{keV}]$	$[\sigma]$	[%]	$\left[rac{\mathrm{mol}\cdot\mathrm{yr}}{yr} ight]$	$\left[\frac{\text{events}}{\text{mol}\cdot\text{yr}}\right]$	$\left[\frac{\text{events}}{\text{yr}}\right]$	[yr]	$[\mathrm{meV}]$
High-purity Ge detectors (Sec. VI.B)															
GERDA-II	76 Ge	completed	LNGS	$4.5\cdot 10^2$	88	91	79	1.4	-2,2	95	273	$4.2\cdot 10^{-4}$	$1.1\cdot 10^{-1}$	$1.2\cdot 10^{26}$	93-222
MJD	76 Ge	completed	SURF	$3.1\cdot 10^2$	91	91	86	1.1	-2,2	95	212	$3.3\cdot10^{-3}$	$7.1\cdot10^{-1}$	$4.7\cdot10^{25}$	149 - 355
LEGEND-200	76 Ge	$\operatorname{construction}$	LNGS	$2.4\cdot 10^3$	91	91	90	1.1	-2,2	95	1684	$1.0\cdot 10^{-4}$	$1.7\cdot 10^{-1}$	$1.5\cdot 10^{27}$	27-63
LEGEND-1000	76 Ge	proposed		$1.2\cdot 10^4$	92	92	90	1.1	-2,2	95	8 7 3 6	$4.9\cdot10^{-6}$	$4.3\cdot10^{-2}$	$1.3\cdot 10^{28}$	9-21
Xenon time projection chambers (Sec. VI.C)															
EXO-200	136 Xe	completed	WIPP	$1.2\cdot 10^3$	46	100	84	31	-2,2	95	438	$4.7\cdot 10^{-2}$	$2.1\cdot 10^{+1}$	$2.4\cdot 10^{25}$	111 - 477
nEXO	136 Xe	proposed	SNOLAB	$3.4\cdot 10^4$	64	100	66	20	-2,2	95	13700	$4.0\cdot10^{-5}$	$5.5\cdot10^{-1}$	$7.4\cdot10^{27}$	6-27
NEXT-100	136 Xe	$\operatorname{construction}$	LSC	$6.4\cdot 10^2$	88	76	49	10	-1.0, 1.8	80	167	$5.9\cdot 10^{-3}$	$9.9\cdot 10^{-1}$	$7.0\cdot 10^{25}$	66 - 281
NEXT-HD	136 Xe	proposed		$7.4\cdot 10^3$	95	89	44	7.7	-0.5, 1.7	65	1809	$4.0\cdot 10^{-5}$	$7.2\cdot10^{-2}$	$2.2\cdot 10^{27}$	12 - 50
PandaX-III-200	136 Xe	$\operatorname{construction}$	CJPL	$1.3\cdot 10^3$	77	74	65	31	-1.2, 1.2	76	374	$3.0\cdot10^{-3}$	$1.1\cdot 10^{+0}$	$1.5\cdot 10^{26}$	45 - 194
LZ-nat	136 Xe	$\operatorname{construction}$	SURF	$4.7\cdot 10^3$	14	100	80	25	-1.4, 1.4	84	440	$1.7\cdot10^{-2}$	$7.5\cdot 10^{+0}$	$7.2 \cdot 10^{25}$	64 - 277
LZ-enr	136 Xe	proposed	SURF	$4.6\cdot 10^4$	14	100	80	25	-1.4, 1.4	84	4302	$1.7\cdot 10^{-3}$	$7.3\cdot 10^{+0}$	$7.1 \cdot 10^{26}$	20-87
Darwin	136 Xe	proposed		$2.7\cdot 10^4$	13	100	90	20	-1.2, 1.2	76	2312	$3.5\cdot 10^{-4}$	$8.0\cdot10^{-1}$	$1.1\cdot 10^{27}$	17-72
Large liquid scintil	lators (Sec.	. VI.D)													
KLZ-400	136 Xe	$\operatorname{completed}$	Kamioka	$2.5\cdot 10^3$	44	100	97	114	0, 1.4	42	450	$9.8\cdot 10^{-3}$	$4.4\cdot 10^{+0}$	$3.3\cdot 10^{25}$	95 - 408
KLZ-800	136 Xe	taking data	Kamioka	$5.0\cdot 10^3$	55	100	100	105	0, 1.4	42	1143	$5.5\cdot 10^{-3}$	$6.2\cdot 10^{+0}$	$2.0\cdot10^{26}$	38 - 164
KL2Z	136 Xe	proposed	Kamioka	$6.7\cdot 10^3$	80	100	97	60	0, 1.4	42	2176	$3.0\cdot 10^{-4}$	$6.5\cdot 10^{-1}$	$1.1\cdot 10^{27}$	17 - 71
SNO+I	¹³⁰ Te	construction	SNOLAB	$1.0\cdot 10^4$	20	100	97	80	-0.5, 1.5	62	1232	$7.8\cdot10^{-3}$	$9.7\cdot 10^{+0}$	$1.8\cdot 10^{26}$	31 - 144
SNO+II	130 Te	proposed	SNOLAB	$5.1\cdot 10^4$	27	100	97	57	-0.5, 1.5	62	8521	$5.7\cdot 10^{-3}$	$4.8\cdot10^{+1}$	$5.7\cdot 10^{26}$	17-81
Cryogenic calorime	eters (Sec.	VI.E)													
CUORE	¹³⁰ Te	taking data	LNGS	$1.6\cdot 10^3$	100	88	92	3.2	-1.4, 1.4	84	1088	$9.1\cdot10^{-2}$	$9.9\cdot10^{+1}$	$5.1\cdot 10^{25}$	58 - 270
CUPID-0	82 Se	completed	LNGS	$6.2\cdot 10^1$	100	81	86	8.5	-2,2	95	41	$2.8\cdot 10^{-2}$	$1.2\cdot 10^{+0}$	$4.4\cdot 10^{24}$	283 - 551
CUPID-Mo	100 Mo	completed	LSM	$2.3\cdot 10^1$	100	76	91	3.2	-2,2	95	15	$1.7\cdot 10^{-2}$	$2.5\cdot 10^{-1}$	$1.7\cdot 10^{24}$	293-858
CROSS	100 Mo	construction	LSC	$4.8\cdot 10^1$	100	75	90	2.1	-2,2	95	31	$2.5\cdot 10^{-4}$	$7.6\cdot 10^{-3}$	$4.9\cdot 10^{25}$	54-160
CUPID	100 Mo	proposed	LNGS	$2.5\cdot 10^3$	100	79	90	2.1	-2,2	95	1717	$2.3\cdot 10^{-4}$	$4.0\cdot10^{-1}$	$1.1\cdot 10^{27}$	12-34
AMoRE-II	100 Mo	proposed	Yemilab	$1.1\cdot 10^3$	100	82	91	2.1	-2,2	95	760	$2.2\cdot 10^{-4}$	$1.7\cdot 10^{-1}$	$6.7\cdot 10^{26}$	15 - 43
Tracking calorimeters (Sec. VI.F)															
NEMO-3	¹⁰⁰ Mo	completed	LSM	$6.9\cdot 10^1$	100	100	11	148	-1.6.1.1	42	3	$9.4\cdot 10^{-1}$	$3.0\cdot 10^{+0}$	$5.6\cdot 10^{23}$	505 - 1485
SuperNEMO-D	82 Se	construction	LSM	$8.5\cdot 10^1$	100	100	28	83	-4.2,2.4	64	15	$3.3 \cdot 10^{-2}$	$5.0\cdot 10^{-1}$	$8.6\cdot 10^{24}$	201-391
SuperNEMO	⁸² Se	proposed	LSM	$1.2\cdot 10^3$	100	100	28	72	-4.1,2.8	54	185	$5.3\cdot 10^{-3}$	$9.8\cdot 10^{-1}$	$7.8\cdot 10^{25}$	67-131

ABDMV, RMP 2022, arXiv:2202.01787

General NLDBD experiment strategies

 $T_{1/2} > \frac{\ln 2 \ \varepsilon \cdot N_{source} \cdot T}{UL(B(T) \cdot \Delta E)}$

focus on the numerator with a huge amount of material (possibly sacrificing resolution)

focus on the denominator by squeezing down ∆E (various technologies) The "Final-State Judgement" Approach

try to make the background zero by tracking or other technique

...and many (most) experiments try to do more than one of these...

Brute Force Strategy Example: KamLAND-Zen

- "KamLAND-Zen 800": mini-balloon
 w/ 745 kg of ^{enr}Xe-loaded scintillator inside pure scintillator
- Kamioka mine in Japan

KamLAND-Zen Results

Most sensitive search to date: $m_{\beta\beta} < 36-156$ meV

Next plans: improve energy resolution, 1 ton mass

A Peak-Squeezer: CUORE

Cryogenic bolometer w/ ^{nat}TeO₂ @ LNGS

- source = detector
- calorimetric approach w/ high intrinsic energy resolution

Next generation: **CUPID** Li₂^{enr}MoO₄ *scintillating* bolometer w/ particle id

More Peak-Squeezers: Germanium

Germanium diode detectors enriched in ⁷⁶Ge; very good energy resolution

MAJORANA DEMONSTRATOR

- Sanford Lab in South Dakota
- segmented detector strategy

GERDA

- Gran Sasso, Italy

- detectors submerged in LAr

LEGEND tonne-scale program

LEGEND-200 @ LNGS

- Physics data-taking March 2023 (140 kg)
- Complete 200 kg array in early 2024

LEGEND-1000

- Site TBD (LNGS or SNOLAB)
- Conceptual design in progress

LEGEND-1000 simulated spectrum:

S. Elliott, S. Schönert

Final-State Judges

Pick out NLDBD signal from the background by precision final-state tracking

Segmented trackers (e.g., SuperNEMO)

Gas Xe TPCs (e.g., NEXT)

Possibly, pick out DBD signal by final-state-nucleus ID

Barium tagging in xenon liquid or gas

 136 Xe \rightarrow 136 Ba + 2e

```
Single
detected
ion
Inoreserve (Inoreserve)
Inoreserve (Inoreserve)
Inoreserve (Inoreserve)
Inoreserve (Inoreserve)
Inoreserve)
Inoreserve (Inoreserve)
Inoreserve
```

B. Jones

Hybrid peak squeezer/brute-forcer/[final-state judging] LXe TPCs

EXO-200

- no tracking, but single (0v)
 -vs-multisite (bg) selection
- scintillation & ionization
- 80.6% enriched ¹³⁶Xe

 excellent background rejection by fiducialization

[+...long-term ideas for barium tagging]

And more creative ideas out there!

Draigat	Isosopa(s)	Detector technology, mein features, and references
Project	Isosope(s)	Detector technology, main leatures, and references
CANDI EST	48 Ca	Possible operation as envoyanic colorimeters
CANDLES	Ca	Aijmure et al. (2021) and Voshida et al. (2000)
	70 7	CIZ The second s
CODDAT	¹⁰ Zn,	CdZn1e semiconductor detector array.
COBRA	128,130 T	Room temperature; multi-isotope; high granularity.
	le	Arling et al. (2021) ; Ebert et al. $(2016a,b)$; and Zuber (2001)
	80 -	Amorphous ^{enr} Se high resolution, high-granularity CMOS detector array.
Selena	°2Se	3D track reconstruction ($O(10\mu \text{m})$ resolution); room temperature; minimal shielding.
		Chavarria et al. (2017)
		High-pressure gaseous 82 SeF ₆ ion-imaging TPC.
$N\nu DEx$	⁸² Se	$\lesssim 1\%$ energy resolution; precise signal topology; possible multi-isotope.
		Mei et al. (2020) and Nygren et al. (2018)
R2D2	¹³⁶ Xe	Spherical TPC.
		Single readout channel; inexpensive infrastructure.
		Bouet <i>et al.</i> (2021)
		High-pressure TPC operated in proportional scintillation mode.
AXEL	¹³⁶ Xe	High energy resolution; possible positive ion detection.
		Obara et al. (2020)
		Isotope loaded liquid scintillator.
JUNO	_	20 ktons of scintillator; multi-isotope; multi-purpose.
		Abusleme et al. (2021) and Zhao et al. (2017)
		Liquid scintillator with quantum dots or perovskites as wavelength shifter for Cherenkov light.
NuDot	_	Discriminate directional backgrounds; multi-isotope.
		Gooding et al. (2018); Graham et al. (2019); Winslow and Simpson (2012); Aberle et al. (2013)
		Zr-loaded Go to page 70 tor.
ZICOS	$^{96}\mathrm{Zr}$	Topology and particular ascrimination via Cherenkov light readout.
		Fukuda (2016) and Fukuda et al. (2020)
THEIA	_	Water-based loaded liquid scintillator with Cherenkov light readout.
		Topology and particle discrimination; multi-isotope; multi-purpose; 25 ktons of water.
		Askins et al. (2020)
		Opaque isotope-loaded liquid scintillator with wavelength shifting fibers for event topology.
LiquidO	_	Room temperature; multi-isotope; multi-purpose.
		Buck et al. (2019) and Cabrera et al. (2019)

<u>- 『日日</u>

Summary of recent and future experiments

ABDMV, RMP 2022, arXiv:2202.01787

Experiment	Isotope	Half-life limit (1026 years)	mββ limit (meV)
MAJORANA	Germanium-76	0.83	113-269
GERDA	Germanium-76	1.8	79–180
EXO-200	Xenon-136	0.35	93-286
KamLAND-Zen	Xenon-136	2.3	36-156
CUORE	Tellurium-130	0.22	90-305

Up-to-date limits from LRP

Sensitive background and exposure for recent and future experiments

ABDMV, RMP 2022, arXiv:2202.01787

Grey dashed lines: discovery sensitivity on the NLDBD T_{1/2} (isotope-independent)

Sensitive background and exposure for recent and future experiments

ABDMV, RMP 2022, arXiv:2202.01787

Sensitive exposure [mol yr]

Grey dashed lines: discovery sensitivity on the NLDBD $T_{1/2}$ (isotope-independent) Colored dashed lines: $m_{\beta\beta}$ sensitivities to get to the bottom of the IO region for *specific isotopes*, taking into account NME & phase space [specific ~optimistic NME assumption] \rightarrow want to be to the lower right of your colored line!

NLDBD in the US Nuclear Physics Long Range Plan

As the highest priority for new experiment construction, we recommend that the United States lead an international consortium that will undertake a neutrinoless double beta decay campaign, featuring the expeditious construction of ton-scale experiments, using different isotopes and complementary techniques.

CUPID, nEXO, LEGEND @ LNGS & SNOLAB

A really grand challenge...

Can we learn about a Majorana phase?

Science Drivers in Neutrino Physics

Where are the grand (experimental) challenges?

Three-flavor paradigm

Hunting down **anomalies**

Searching for **BSM** physics

Understanding astrophysics and cosmology

Summary of the 3-flavor challenges:

- fill in the oscillation parameters MO & δ
- measure the absolute mass scale
- determine if the neutrino is Majorana or Dirac
- [measure the Majorana phases...]

These challenges assume the 3 flavor paradigm holds....
Science Drivers in Neutrino Physics

Searching for **BSM** physics

Understanding astrophysics and cosmology

Many diverse challenges! (overlapping with others)

Three-flavor paradigm: filling in the remaining pieces

Hunting down anomalies

Natural neutrinos pervade the Universe....

Grand Unified Neutrino Spectrum at Earth Edoardo Vitagliano, Irene Tamborra, Georg Raffelt. Oct 25, 2019. 54 pp. MPP-2019-205 e-Print: arXiv:1910.11878 [astro-ph.HE] | PDF

Neutrinos bring unique information about the nature of natural sources

And astrophysical objects in turn give us sources for the study of **neutrino physics**...

... 3-flavor oscillations, anomalies, BSM searches...

Many opportunities to probe BSM physics

Neutrino observables*: energy, direction, time, flavor

*also, non-neutrino-sector BSM signatures in neutrino detectors

And astrophysical objects in turn give us sources for the study of **neutrino physics**...

...for free! Just need to look up (and down!)

And astrophysical objects in turn give us sources for the study of **neutrino physics**...

There is information over ~25 orders of magnitude in energy

There is a vast array of detector technologies, and detector instances, existing and proposed

From arXiv:2203.08096v2

Multi-Messenger Astrophysics Many, many detectors

Shunsaku Horiuchi, Snowmass Neutrino Colloquium

The standard disclaimer...

Multi-messenger astronomy

Neutrino astrophysics

A "flight" of examples

Detectors for ultra-high energy neutrinos (>TeV)

Long-string Water Cherenkov

Water and ice

Antenna-based detectors

Cosmic-ray shower detectors

Ground-based or space-based

IceCube

hugely successful program @South Pole

possible "jetted AGN"

TXS0506+056

IceCube-170922

"Multimessenger observations of a flaring blazar coincident with highenergy neutrino IceCube-170922A", The IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool telescope, Subaru, Swift/NuSTAR, VERITAS, and VLA/17B-403 teams. A. Olinto @ Snowmass"Blue Sky" session science 361, 2018

Cosmogenic Neutrinos

Batista et al, arXiv:1903.06714.pdf

Multiple programs going after these

A. Olinto @ Snowmass "Blue Sky" session

Large (multi-kton) detector technologies for ~GeV scale

Water Cherenkov Trackers Liquid Argon Time Projection Chamber (a diverse category) Cheap material, Good particle proven at very reconstruction large scale

Excellent particle reconstruction

Water & tracking detectors made the original atmospheric neutrino oscillation measurements, and are now combined w/beams...

...they make good neutrino telescopes too!

Next-generation long-baseline beam experiments

- 295-km baseline
- 260k (188k) ton mass water Cherenkov detector
- First data in 2027

- 1300-km baseline
- 4 10-kton LArTPC modules
- 4850-ft depth
- Phase 2 "Module of Opportunity" for 3&4

Multi-purpose detectors, broad physics programs in both cases, including astrophysical neutrinos (over a range of energies)

Now moving down in energy to the few-100 MeV scale

Large detector technologies for low energies

Generally limited by efficiency & background at ~MeV scale

Neutrinos from core-collapse supernovae

When a star's core collapses, ~99% of the gravitational binding energy of the proto-nstar goes into v's of all flavors with ~tens-of-MeV energies

(Energy can escape via v's) Mostly v-vbar pairs from proto-nstar cooling

Timescale: prompt after core collapse, overall ∆t~10's of seconds


```
On this flux plot, for ~10 seconds,
diffuse supernova neutrino background x 10<sup>9-1010</sup> !
```


Supernova neutrino detector types

Future Large Supernova-Burst-Sensitive Neutrino Detectors

Hyper-Kamiokande 260 kton water Japan JUNO 20 kton scintillator (hydrocarbon) China **DUNE** 40 kton argon USA

• Hyper-K /JUNO are primarily sensitive to nuebar

 $\bar{\nu}_e + p \to e^+ + n$

• DUNE is primarily sensitive to **nue**

$$\nu_e + {}^{40}\mathrm{Ar} \to e^- + {}^{40}\mathrm{K}^*$$

extreme complementarity

In general, the whole is more than the sum of the parts for multi-messenger astronomy

K. Nakamura et al., MNRAS 2016

Neutrinos arrive earlier than the first light from a supernova... combine signals for a high-confidence prompt alert, enabling more physics & astrophysics

Dark matter detectors as neutrino observatories

Plot from CF01 Image: J. Link *Science* Perspectives Once nuclear recoil detectors get sensitive enough, they are blinded by natural neutrinos

Interesting things may eventually emerge from the fog...

O'Hare [2109.03116]

And now, down at the lowest energy end....

Indirect information about CNB from cosmology

Yvonne Wong, Snowmass Neutrino colloquium

Indirect information about CNB from cosmology

Yvonne Wong, Snowmass Neutrino colloquium

Future cosmological probes						
			1σ sensitivity to $\sum m_{ m u}$	1σ sensitivity to $N_{ m eff}$		
	ESA Euclid	2024	0.011 - 0.02 eV	0.05		
	LSST	2024	0.015 eV	0.05		
CMB-S4 Next Generation CMB Experiment	CMB-S4	2027	0.015 eV	0.02 - 0.04		
Minimum $\sum m_{\nu} = 0.06 \text{ eV}$ From neutrino oscillations (assuming normal mass ordering)			Detection of t neutrino mass	Detection of the absolute neutrino mass may be possible!		

Neutrinos and Cosmology: indirect CNB

Yvonne Wong, Snowmass Neutrino colloquium

- Cosmological measurements tell us about v properties
- Lab experiments help to constrain cosmological fits

Direct detection of Cosmic Neutrino Background

Very, very hard... lots of ideas but few promising... Best possibility: "zero-threshold reactions"

C.Tully, Snowmass white paper workshop talk

Science Drivers in Neutrino Physics

Searching

Understanding astrophysics and cosmology

The Grand Challenge: catch 'em all!

Three-flavor paradigm: filling in the remaining pieces

Hunting down anomalies

for **BSM** physics

And a final note: understanding of neutrino interactions with matter is very important, and connects to ~everything ... especially critical for oscillation physics

BSM: sterile neutrinos, light dark matter, NSI, precision tests of SM

Astrophysics: supernova bursts, solar models

Tests of neutrino mixing model

Experiment	Source	Target
COHERENT	πDAR	Na, Ar, Ge, Csl,
Coherent CAPTAIN Mills	πDAR	Ar
JSNS ²	πDAR	
ESS	πDAR	
CHILLAX	Reactor	Ar
CONNIE	Reactor	Si
CONUS	Reactor	Ge
MINER	Reactor	Ge, Si
NEON	Reactor	Na
NUCLEUS	Reactor	
NUXE	Reactor	Xe
PALEOCCENE	Paleo	
Ricochet	Reactor	Ge, Zn
RED-100	Reactor	Xe
NuGen	Reactor	
SBC	Reactor	Ar
TEXONO	Reactor	Ge
NEWSG	Reactor	H, He, C, Ne
L	-	

Many experimental & theory efforts over many orders of magnitude of neutrino energy

Kendall Mahn, Snowmass

Overall Summary

Three-flavor paradigm: filling in the remaining pieces

Hunting down **anomalies**

Searching for **BSM** physics

Understanding astrophysics and cosmology

We've already met some grand challenges, but more to go! Still exciting years ahead for neutrinos
Extras/Backups