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The Plan

• Lecture 1
– Introduction to Machine Learning fundamentals
– Linear Models

• Lecture 2
– Neural Networks
– Deep Neural Networks
– Inductive Bias and Model Architectures

• Lecture 3
– Unsupervised Learning
– Autoencoders
– Towards Generative Models: Variation Autoencoders
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Deep Learning Resourses

• Deep Learning is a HUGE field
– O(10,000) papers submitted to conferences

• I only condensed some parts of what you would 
find in some lectures of a Deep Learning course
– More details from other lecturers!

• Highly recommend Online-available lectures:
– Francois Fleuret course at University of Geneva
– Gilles Louppe course at University of Liege
– Yann LeCun & Alfredo Canziani course at NYU
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https://fleuret.org/dlc/
https://github.com/glouppe/info8010-deep-learning
https://atcold.github.io/pytorch-Deep-Learning/
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Basis Functions

• What if non-linear relationship between y and x?
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Basis Functions

• What if non-linear relationship between y and x?

• Choose basis functions 𝝓(𝒙) to form new features

– Example: Polynomial basis 𝜙(𝑥) ~ {1, 𝑥, 𝑥2, 𝑥3, … }

– Logistic regression on new features: ℎ(𝑥;𝑤) = 𝜎 𝑤!𝜙 𝑥

• What basis functions to choose? Overfit with too much flexibility?
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What is Overfitting

• Models allow us to generalize from data

• Different models generalize in different ways
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http://scikit-learn.org/ 

http://scikit-learn.org/


Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
(bias) (variance)
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Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
(bias) (variance)
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• Simple models under-fit: 
will deviate from data (high bias) 
but will not be influenced by 
peculiarities of data (low variance). 

• Complex models over-fit: 
will not deviate systematically from 
data (low bias) but will be very 
sensitive to data (high variance). 
– As dataset size grows, can reduce 

variance! Use more complex model
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Regularization – Control Complexity

• L2 keeps weights small,  L1 keeps weights sparse!

• But how to choose hyperparameter a? 
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L(w) =
1

2
(y�Xw)2 + ↵⌦(w)

L2 : ⌦(w) = ||w||2 L1 : ⌦(w) = ||w||

http://scikit-learn.org/ 

Less regularization Less regularization

http://scikit-learn.org/


How to Measure Generalization Error?

• Split dataset into multiple parts

• Training set
– Used to fit model parameters

• Validation set
– Used to check performance on 

independent data and tune hyper 
parameters

• Test set
– final evaluation of performance 

after all hyper-parameters fixed
– Needed since we tune, or “peek”, 

performance with validation set
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Training set Validation set Test set

[Murray] 



How to Measure Generalization Error? 15

Validation Sample



From Logistic Regression to Neural Networks 16



Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g:     𝜙(𝑥) ~ {𝑥2, sin(𝑥), log(𝑥), … }
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p(y = 1|x) = 1

1 + e�wT�(x)



Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g:     𝜙(𝑥) ~ {𝑥2, sin(𝑥), log(𝑥), … }

• What if we don’t know what basis functions we want?

• Learn the basis functions directly from data

𝜙(𝒙; 𝒖) ℝ𝑚 → ℝ𝑑

– Where u is a set of parameters for the transformation

– Combines basis selection & learning→Representation Learning
– Several different approaches, focus here on neural networks
– Complicates the optimization
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Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g:     𝜙(𝑥) ~ {𝑥2, sin(𝑥), log(𝑥), … }
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Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g:     𝜙(𝑥) ~ {𝑥2, sin(𝑥), log(𝑥), … }

• What if we don’t know what basis functions we want?

• Learn the basis functions directly from data

𝜙(𝒙; 𝒖) ℝ𝑚 → ℝ𝑑

– Where u is a set of parameters for the transformation

– Combines basis selection & learning→Representation Learning
– Several different approaches, focus here on neural networks
– Learning / optimization becomes more difficult
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p(y = 1|x) = 1

1 + e�wT�(x)



Neural Networks

• Define the basis functions 𝑗 = {1…𝑑}

𝜙𝑗(𝒙; 𝒖) = 𝜎(𝒖!"𝒙)

• Put all 𝒖𝑗 Îℝ#×% vectors into matrix 𝑼

𝜙 𝒙; 𝑼 = 𝜎(𝑼𝒙) =

𝜎 𝑢#"𝑥
𝜎 𝑢&"𝑥

⋮
𝜎 𝑢'"𝑥

Îℝ'

– s is a point-wise non-linearity acting on each vector element 

• Full model becomes
ℎ(𝒙; 𝒘,𝑼) = 𝒘𝑇𝜙(𝒙; 𝑼)
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Feed Forward Neural Network 24

�(x) = �(Ux)

h(x) = wT�(x)

U

Hidden layer
Composed of neurons

f(…) often called the 
activation function



Multi-layer Neural Network

• Multilayer NN
– Each layer adapts basis functions based on previous layer

25

U V



Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function
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h(x) = wT�(Ux)

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)



Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

• Regression: Square error loss function
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h(x) = wT�(Ux)

L(w,U) =
1

2

X

i

(yi � h(xi))
2

pi = p(yi = 1|xi) = �(h(xi))
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X
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Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

• Regression: Square error loss function

• Minimize loss with respect to weights w, U
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h(x) = wT�(Ux)

L(w,U) =
1

2

X

i

(yi � h(xi))
2
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Minimizing loss with gradient descent:

• Parameter update:

𝑤 ← 𝑤 − 𝜂
𝜕𝐿 𝑤, 𝑈
𝜕𝑤

𝑈 ← 𝑈 − 𝜂
𝜕𝐿(𝑤, 𝑈)
𝜕𝑈

• How to compute gradients?
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Chain Rule – Symbolic Differentiation

• Derivative of sigmoid:

• Chain rule to compute gradient w.r.t. w

• Chain rule to compute gradient w.r.t. uj
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Chain Rule – Symbolic Differentiation
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Differentiation in Code 32

Baydin, Pearlmutter, Radul, Siskind. 
2018. “Automatic Differentiation in 
Machine Learning: a Survey.” 
Journal of Machine Learning 
Research (JMLR) 



Automatic Differentiation

Exact derivatives for gradient-based optimization come from 
running differentiable code via automatic differentiation
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Image credit: Wikipedia



Backpropagation – Reverse Mode AD
• Loss function composed of layers of nonlinearity

• Forward step (f-prop)
– Compute and save intermediate computations

• Backward step (b-prop)

• Compute parameter gradients
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Training

• Repeat gradient update of weights to reduce loss 
– Each iteration through dataset is called an epoch

• Use validation set to examine for overtraining, and 
determine when to stop training 
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[graphic from H. Larochelle]



Vanishing Gradients

• Major challenge in DL: Vanishing Gradients

• Small gradients slow down / block, stochastic 
gradient descent à Limits ability to learn!
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Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Gradients for layers far from the output vanish to zero.Slide credit: G. Louppe

Sigmoid Gradient

https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md


Activation Functions

• Vanishing gradient problem

– Derivative of sigmoid
Nearly 0 when x is far from 0!

– Can make gradient descent hard!
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• Rectified Linear Unit (ReLU)
– ReLU(x) = max{0, x}
– Derivative is constant!

– ReLU gradient doesn’t vanish

∂ReLU(x)
∂x

= 1
0

when x > 0
otherwise

"
#
$

%$



Neural Network Decision Boundaries 38

x1

x2

4-class classification
2-hidden layer NN
ReLU activations
L2 norm regularization

2-class classification
1-hidden layer NN
L2 norm regularization

One neuron Two neuron

Three neurons Four neurons

Five neurons Twenty neurons

Fifty neurons

Image source Image source

http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r


Universal approximation theorem

• Feed-forward neural network with a single 
hidden layer containing a finite number of non-
linear neurons (ReLU, Sigmoid, and others) can 
approximate continuous functions arbitrarily 
well on a compact space of ℝ!

39

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Universal approximation theorem

• Feed-forward neural network with a single 
hidden layer containing a finite number of non-
linear neurons (ReLU, Sigmoid, and others) can 
approximate continuous functions arbitrarily 
well on a compact space of ℝ!
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• Better approximation requires larger hidden layer,
this theorem says nothing about relation between the two.

• Can make training error as low as we want by using a 
larger hidden layer. Result states nothing about test error

• Doesn’t say how to find parameters for this approximation

Fleuret, Deep Learning Course

https://fleuret.org/dlc/


Deep Neural Networks

• As data complexity grows, need exponentially large number of 
neurons in a single-layer network to capture all structure in data

• Deep networks factorize the learning of structure across layers

• Difficult to train, recently possible with large datasets, fast 
computing (GPU/TPU) & new training algs. / network structures 
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More Complex Models – Bigger Search Space
More Data – Find Better Solutions 42

Dataset 
Size

Model Complexity

Target solution

Target solution

Target solution

Target solution



Hierarchical Composition of Features 43



Benefits of Depth 44

Computer Vision Models

Language Models

2001.08361

ImageNet top-5 Error (%)

https://arxiv.org/abs/2001.08361


Neural Network Zoo

• Structure of the networks, and 
the node connectivity can be 
adapted for problem at hand

• Moving inductive bias from 
feature engineering to model 
design 

– Inductive bias:
Knowledge about the problem 

– Feature engineering:
Hand crafted variables 

– Model design:
The data representation and the 
structure of the machine 
learning model / network 
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Image credit: neural-network-zoo

http://www.asimovinstitute.org/neural-network-zoo/


Neural Network Zoo – “Optimization” Perspective 46

• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test 
performance, contrary to bias-variance tradeoff prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/


Neural Network Zoo – “Optimization” Perspective 47

• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test 
performance, contrary to bias-variance tradeoff prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

\

Belkin et. al. 2018

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf


Neural Network Zoo – “Optimization” Perspective 48

• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test 
performance, contrary to bias-variance tradeoff prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/


Neural Network Zoo – “Optimization” Perspective 49

• A single layer network may need a width exponential in D 
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test 
performance, contrary to bias-variance tradeoff prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

• Major part of deep learning is choosing the right function

– Need to make gradient descent work, even if substantial 
engineering required 

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/


Deep Neural Networks Loss Landscape 50

https://arxiv.org/abs/1802.10026

https://arxiv.org/abs/1802.10026


Choosing the right function… 51

TargetUnstructured Models Models with
Inductive Bias

• We know a lot about our data
– What transformations shouldn’t affect predictions
– Symmetries, structures, geometry, …

• Inductive Bias: we can match models to this knowledge
– Throw out irrelevant functions we know aren’t the solution
– Bias the learning process towards good solutions



Choosing the right function… 52

Image credit: Michael Bronstein



Example: Images & Convolutional Neural Networks

• When structure of data includes translation invariance, 
a representation meaningful at one location should be 
used everywhere
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Fleuret, Deep Learning Course

• Convolutional layers build on this idea:
same “local” transformation applied 
everywhere and preserves signal structure

ResNet 
(He et al, 2015)

https://fleuret.org/dlc/


Example: Sequences & Recurrent Neural Networks

• Many data have temporal / sequence structure and 
are of variable length
– Text, Video, Speech, DNA, …
– Features can be local in time, but meaningful across 

time step: a feature can happen any time

• Recurrent layers allow sequential data processing,  
applying same transformations across time steps.
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Credit: F. Fleuret

Y. Wu et al, 2016

https://fleuret.org/dlc/
https://arxiv.org/abs/1609.08144


Example: Geometric Data & Graph Neural Networks

• Permutation invariant data 
with geometric relationships
– Features can be local on graph, 

but meaningful anywhere on graph

• Graph layers can encode these 
relationships on nodes & edges
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Sanchez-Gonzalez et al. 2020

https://arxiv.org/abs/2002.09405


Examples: Transformers and Deep Sets

• Deep Sets and Transformers can process 
permutation invariant sets of data

• Transformers are very adaptable: 
Built using layers of attention, they can also 
process sequences, images, and other data
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Physics Inspired Models 57

1702.00748
1711.02633

2101.08578
2203.00330
2212.01328 2201.08187

1906.01563

QCD Structured Neural Nets
Hamiltonian Neural Nets

Lorentz Equivariance

Neural Net Clustering for Particle Flow

https://arxiv.org/abs/1702.00748
https://arxiv.org/abs/1711.02633
https://arxiv.org/abs/2101.08578
https://arxiv.org/abs/2203.00330
https://arxiv.org/abs/2212.01328
https://arxiv.org/abs/2201.08187
https://arxiv.org/abs/1906.01563


Summary

• Neural Networks allow us to combine non-linear basis 
selection with feature learning

• Deep neural networks allow learning complex function 
by hierarchically structuring the feature learning

• We can use our inductive bias (knowledge) to define 
models that are well adapted to our problem

• Many neural networks structures are available for 
training models on a wide array of data types.

• More details in talks this week by:
K. Terao, C. Adams, M. Liu
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https://indico.cern.ch/event/1299889/timetable/?view=standard_inline_minutes
https://indico.cern.ch/event/1299889/timetable/?view=standard_inline_minutes
https://indico.cern.ch/event/1299889/timetable/?view=standard_inline_minutes

