Introduction to Machine Learning and
Artificial Intelligence:

Lecture Il

Michael Kagan

— = ACCELERATOR
P b NN\ | 7BORATORY

2nd COFI Advanced Instrumentation and Analysis Techniques School
December 9, 2023

The Plan

* Lecture T
— Introduction to Machine Learning fundamentals
— Linear Models

 Lecture 2
— Neural Networks
— Deep Neural Networks
— Inductive Bias and Model Architectures

 Lecture 3
— Unsupervised Learning
— Autoencoders
— Towards Generative Models: Variation Autoencoders

Deep Learning Resourses

* Deep Learning is a HUGE field
— O(10,000) papers submitted to conferences

* | only condensed some parts of what you would
find in some lectures of a Deep Learning course

— More details from other lecturers!

* Highly recommend Online-available lectures:
— Francois Fleuret course at University of Geneva

— Gilles Louppe course at University of Liege
— Yann LeCun & Alfredo Canziani course at NYU

https://fleuret.org/dlc/
https://github.com/glouppe/info8010-deep-learning
https://atcold.github.io/pytorch-Deep-Learning/

Bias-Variance Tradeoff

Basis Functions

N =100 1

0 1

* What if non-linear relationship between y and x?

Basis Functions)

N =100 1

0 1

* What if non-linear relationship between y and x¢

* Choose basis functions ¢ (x) to form new features
— Example: Polynomial basis d(x) ~{1,x,x?% x3 ..}
— Logistic regression on new features: h(x;w) = o(wl¢(x))

* What basis functions to choose? Overfit with too much flexibility?

What is Overfitting :

Degree 1 Degree 4 Degree 15

— Model — Model — Model

. True function : True function True function

> e*e Samples *e Samples *e Samples
o

Underfitting Overfitting

http://scikit-learn.org/

* Models allow us to generalize from data

» Different models generalize in different ways

http://scikit-learn.org/

Bias Variance Tradeoff 8

* generalization error = systematic error + sensitivity of prediction
(bias) (variance)

Bias Variance Tradeoff 9

* generalization error = systematic error + sensitivity of prediction
(bias) (variance)

Degree 1

— Model

 Simple models under-fit: B Yue function
will deviate from data (high bias) Tn =
but will not be influenced by
peculiarities of data (low variance).

Bias Variance Tradeoff .

* generalization error = systematic error + sensitivity of prediction

(bias) (variance)
« Simple models under-fit: | = e functon
will deviate from data (high bias) T =

but will not be influenced by
peculiarities of data (low variance).

Degree 15

» Complex models over-fit: e functio
will not deviate systematically from Al
data (low bias) but will be very -
sensitive to data (high variance).

Bias Variance Tradeoff

11

* generalization error = systematic error + sensitivity of prediction

(bias)

 Simple models under-fit:
will deviate from data (high bias)
but will not be influenced by
peculiarities of data (low variance).

« Complex models over-fit:
will not deviate systematically from
data (low bias) but will be very
sensitive to data (high variance).

— As dataset size grows, can reduce
variance! Use more complex model

(variance)

Degree 1

— Model
. True function
’\‘ ee e Samples

o

Degree 15

— Model
True function
*e Samples

Bias Variance Tradeoff

Total Error

Variance

Optimum Model Complexity

Error

- -
Model Complexity

13

Regularization — Control Complexity

L(w) = 3y — Xw)’ + af(w)

L2: Q(w)=|lwl]| L1: Q(w)=||w||
Ridge coefficients as a function of the regularization Lasso and Elastic-Net Paths
25}
200 1 20 |
15+
100 + /
8 10f
£ / 5
2 s &
[—
S . g 5
—— oL
-5
-100 |+
—10H — Les -~
Elas
1072 1073 10+ 10° 106 107 108 107 1010 -1.5 -1.0 -0.5 0.0 0.5
o alpha o -Log(alpha)
Less regularization > Less regularization >

» L2 keeps weights small, L1 keeps weights sparse!

* But how to choose hyperparameter o.?

http://scikit-learn.org/

http://scikit-learn.org/

How to Measure Generalization Error? .

Training set Validation set Test set

 Split dataset into multiple parts

* Training set
— Used to fit model parameters

y, output

* Validation set
— Used to check performance on .

independent data and tune hyper X, input
parameters
5 10 . ;
* Test set = —e— validation
— final evaluation of performance S —>— train
after all hyper-parameters fixed S 5y -
— Needed since we tune, or “peek”, 2
performance with validation set é
O N
0 5 10 15

p, polynomial order

[Murray]

How to Measure Generalization Error?

15

Prediction Error

High Bias Low Bias
Low Variance High Variance
- ——————— e e e —— .

Validation Sample

/

/

Training Sample

Low High
Model Complexity

From Logistic Regression to Neural Networks

16

Adding non-linearity

17

» What if we want a non-linear decision boundary?

— Choose basis functions, e.g: ¢ (x) ~ {x?, sin(x),log(x), ...

1

py = 1|x) =

1+ e~ Wl o(x)

Adding non-linearity

18

» What if we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢ (x) ~ {x?, sin(x),log(x), ...}

1
1+ e_WT¢(X)

py = 1|x) =

« What if we don’t know what basis functions we want?

Adding non-linearity

19

» What if we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢ (x) ~ {x?, sin(x),log(x), ...}

1
1+ e_WT¢(X)

py = 1|x) =

* What if we don’t know what basis functions we want?
* Learn the basis functions directly from data

d(x; u) Rm™ — R

— Where u is a set of parameters for the transformation

Adding non-linearity .

» What if we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢ (x) ~ {x?, sin(x),log(x), ...}

1
1+ e_WT¢(X)

p(y = 1x) =

« What if we don’t know what basis functions we want?

* Learn the basis functions directly from data

d(x; u) Rm™ — R

— Where u is a set of parameters for the transformation

— Combines basis selection & learning—Representation Learning
— Several different approaches, focus here on neural networks
— Learning / optimization becomes more difficult

Neural Networks

21

* Define the basis functions j = {1...d}

¢;(x; u) =o(u;x)

Neural Networks

* Define the basis functions j = {1...d}
¢;(x; u) =o(u;x)
» Putall u; e R™™ vectors into matrix U

o(ul x)
o(ulx)

o (ul).

— o is a point-wise non-linearity acting on each vector element

d(x; U) = a(Ux) = cR?

Neural Networks

23

* Define the basis functions j = {1...d}
¢;(x; u) =o(u;x)
» Putall u; e R™™ vectors into matrix U

o(ul x)
d(x; U) = a(Ux) = a(uzgx) cR?
o(uhx).

— o is a point-wise non-linearity acting on each vector element

* Full model becomes
h(x; w,U) =wlop(x; U)

Feed Forward Neural Network

— Hidden layer

Composed of neurons

¢(...) often called the
activation function

Multi-layer Neural Network

» Multilayer NN

— Each layer adapts basis functions based on previous layer

Neural Network Optimization Problem

26

* Neural Network Model: h(x) = w!o(Ux)

» Classification: Cross-entropy loss function

pi = p(yi = 1x;) = o(h(x;))

L(w,U) = — Zy In(p;) + (1 — ;) In(1 — p;)

Neural Network Optimization Problem

27

* Neural Network Model: h(x) = w!o(Ux)

» Classification: Cross-entropy loss function
pi = p(yi = 1|x) = o(h(x;))

L(w,U) = — Zy In(p;) + (1 — ;) In(1 — p;)

* Regression: Square error loss function

L(w,U) = 5 3 (i — h(x,))?

1

Neural Network Optimization Problem

28

* Neural Network Model: h(x) = w!o(Ux)

» Classification: Cross-entropy loss function

pi = p(y; = 1|x;) = o(h(x;))
L(w,U) = — Zy In(p;) + (1 — ;) In(1 — p;)

* Regression: Square error loss function

1

L(w,U) = > 3" (5 — h(x))’

1

* Minimize loss with respect to weights w, U

Minimizing loss with gradient descent:

29

 Parameter update:

dL(w,U)
AL D)
e —
T3u

* How to compute gradients?

Chain Rule — Symbolic Differentiation

30

— Zyi In(o(h(x;))) + (1 —y;) In(1 — o(h(x;)))

* Derivative of sigmoid: 6((;5:) = o(z)(1 - o(x))

* Chain rule to compute gradient w.r.t. w

ngv - gi gv}:r Zy@ (1 =0 (h(x4)))o(Ux) + (1 = y;)o (h(x))o(Ux;)

* Chain rule to compute gradient w.r.t. u,
oL OLOh do
811]' N Oh Oo (911j N

= w1 — o (hx))wjo(myae) (1 — o (wja))x;

T (1 = oo (hix) wjo(wyx) (1 - o(wyx:))x

Chain Rule — Symbolic Differentiation

31

— Zyi In(o(h(x;))) + (1 —y;) In(1 — o(h(x;)))

* Derivative of sigmoid: 6((;5:) — o(2)(1 — o(z))

* Chain rule to compute gradient w.r.t. w

e = o = Sl = b)) a(Ux) + 1= o)V

* Chain rule to compute gradient w.r.t. u
OL OLOh 0o
(9113' N Oh Oo (911j N

= Zyz(l —o(h(x;)))w;jo(u;x;)(1 — o(u;x;))x;

+ (1 = yi)o(h(x))wjo (uxi) (1 — o(u;x;))x;

Differentiation in Code

32

Baydin, Pearlmutter, Radul, Siskind.

2018. “Automatic Differentiation in
Machine Learning: a Survey.”
Journal of Machine Learning
Research (JMLR)

11 =T
1n+1 = 411:(1 = lu)

f(z) = Iy = 64z2(1 —z)(1 —2z)%(1 — 8z + 822)

Coding

Manual
Differentiation

f(x):
v=x
fori=1to3
v =4*xvx(1 - v)
return v

or, in closed-form,
£(x)

return 64*x* (1-x)* ((1-2%x)~2)
*(1-8*x+8*x*x) "2

Symbolic
Differentiation
of the Closed-form

Automatic
Differentiation

Numerical
Differentiation

£2(x):
(v,dv) = (x,1)
fori=1to3
(v,dv) = (d*v*(1-v), 4*dv-8*v*dv)
return (v,dv)

(Xo) — .["l:.l'l.:l
Exact

f(z) = 128z(1 — z)(—8 + 16z)(1 — 2z)*(1 —

8z +822)+64(1 —z)(1 —2x)*(1 — 8z +82%)% —
64z(1 — 22)%(1 — 8z + 822)% — 256z(1 — z)(1 —

2z)(1 — 8z + 82?%)2

£2(x):

return 128*x* (1 - x)*(-8 + 16*x)
((1 - 2%x) "2)(1 - 8*x + 8*x*x)
+64*(1 - x)*((1 - 2%x)"2)*((1
- 8%x + 8%x#*x)"2) - (64*x*(1 -
2%x) "2)*(1 - 8*x + 8*x*x) "2 -
256%x* (1 — x)*(1 - 2*x)*(1 - 8*x
+ 8*x#*x) "2

£2 (x9) = f'(z0)
Exact

£2(x):
h=0.000001
return (f(x+h) -£f(x)) /h

s iy (X.}) ~ f"l:.l'.._:l
Approximate

Automatic Differentiation .

Exact derivatives for gradient-based optimization come from
running differentiable code via automatic differentiation

Backward propagation
_of derivative values

1F TensorFlow

O PyTorch ﬂ

Backpropagation — Reverse Mode AD

34

Loss function composed of layers of nonlinearity

L(p"V(..9p* (%)))
Forward step (f-prop)

— Compute and save intermediate computations

¢N(---¢1(x))

Backward step (b-prop) 8 ¢a

Compute parameter gradients

-2

a¢§a+1)

oL

095

OL
wo :zj:

a¢§a—|—1)

¢4 L

oW 09

Training .

* Repeat gradient update of weights to reduce loss
— Each iteration through dataset is called an epoch

 Use validation set to examine for overtraining, and
determine when to stop training

O Training O Validation
0.5
04 underfitting overfitting
0.3
0.2

0.1

: O

number of epochs

[graphic from H. Larochelle]

Vanishing Gradients

36

* Major challenge in DL: Vanishing Gradients

» Small gradients slow down / block, stochastic
gradient descent = Limits ability to learn!

100 | | I | |
Sigmoid Gradient — Layer 1
Layer 2
— Layer 3
50 —Layer 4|
o S i _ Layer 5
0 | . » —d‘m‘\ . i
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Backpropagated gradients

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Slide credit: G. Louppe Gradients for layers far from the output vanish to zero.

https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md

Activation Functions

37

1.0

ReLU(z)
1/(1+e")
tanh(z) |[]

* Vanishing gradient problem

— Derivative of sigmoid
Nearly O when x is far from 0!

— Can make gradient descent hard!

5] ; }
* Rectified Linear Unit (ReLU)
— ReLU(x) = max{o, x}
— Derivative 1s constant!

9Re LU(x) _{ | when x>0

0x 0 otherwise

— ReLU gradient doesn’t vanish

Neural Network Decision Boundaries N

One neuron

20

20

Two neuron

15

10

05

00

-05

15

10

05

00

-05

-2 -1 2

Three neurons

-1 [1 2

Four neurons

-2 1 0 1 2

Five neurons

1 0 1 2

Twenty neurons

15

10

05

00

-05

-2 0 1 2

Fifty neurons

0 1 2

-2 -1
Image source

sy
. .
B
w, oo
AR a2
. o% .
oo do02 e
. A
LaE 3 oo
e
e 1
o, 00
B LA
o .'{"‘-‘. oof
* o
o L 4
=5

"

4-class classification
2-hidden layer NN
RelLU activations

L2 norm regularization

° ."...) < °
e :“ ® o 0g0® 00
o'.. L)
AT LI
O ® o® o ° ®
R S 3% R@"{’O. Soq b
) G, ® ” t§ ...“0 P
A o .:.’ : .0..0 o ° ‘.o.
o0 °? *% - .1W‘= ..‘0 o
o o%% ®.2 S ol o @ s
PE e T
° % ® e ® o °
oo't’t‘ oo 'w"* 252
oo by ¥ ° “{ﬁ‘ ° o.to:
o3 D e 0.‘{: ¥® "..0' se " ®
* A :'.‘...0:.0£.. 3‘0.:.
®e8 o, 8 o o000 ©
w8 o,
[4 (7Y L
° oY o

2-class classification
1-hidden layer NN

L2 norm regularization

Image source

http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r

Universal approximation theorem y

~eed-forward neural network with a single
nidden layer containing a finite number of non-

inear neurons (ReLU, Sigmoid, and others) can

approximate continuous functions arbitrarily
well on a compact space of R"

f(x) = o(wix + b1) + o(wox + b)) + o(wsx + b3) + ...

/\/

AV N

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Universal approximation theorem ;

* Feed-forward neural network with a single
nidden layer containing a finite number of non-
inear neurons (ReLU, Sigmoid, and others) can
approximate continuous functions arbitrarily
well on a compact space of R"

* Better approximation requires larger hidden layer,
this theorem says nothing about relation between the two.

« (Can make training error as low as we want by using a
larger hidden layer. Result states nothing about test error

* Doesn’t say how to find parameters for this approximation

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Deep Neural Networks

41

) hidden layer 1 hidden layer 2 hidden layer 3
input layver

)
— n p
— = J—F g
N— "\'<(f/7; —
N P 7 o< 7 output layer
— ‘\
s
)V
—________ ~ =] __-—-:-:‘—-__ _— / '_,_-—""_‘“—\ "
‘ —

* As data complexity grows, need exponentially large number of
neurons in a single-layer network to capture all structure in data

* Deep networks factorize the learning of structure across layers

« Difficult to train, recently possible with large datasets, fast
computing (GPU/TPU) & new training algs. / network structures

More Complex Models — Bigger Search Space
‘More Data — Find Better Solutions 2

Model Complexity

>
*
i Target solution é Target solution
* *
Target solution Target solution
Dataset f
Size

Hierarchical Composition of Features

Low-Level| |Mid-Level| |High-Level Trainable

—r — — —_—
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Ferqus 201 3]

Benefits of Depth

Computer Vision Models

28.2

A
\
\
\
\
\
\
\
‘ 22 layers] [19 layers]
\
\ 6.7 7.3
ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10 La nguage Models
ResNet GoogleNet VGG AlexNet
ImageNet top-5 Error (%)

6
5

wn

3

— 4

. —e— 1 Layer

& 5 —e— 2 Layers ‘

—— 3 Layers N
—+— 6 Layers \\
> 6 Layers

2

10* 10* 105 105 107 108 109
Parameters (non-embedding)

2001.08361

https://arxiv.org/abs/2001.08361

Neural Network Zoo

A mostly complete chart of

° Stru Ctu re Of the networks, and © Backfed Input Cell Neural NEtWOI‘kS Deep Feed Forward (FF)

Input Cell ©2016 Fjodor van Veen - asimovinstitute.org

th e n O d e C O n n eCt i V i ty C a. n b e 4 Noisy Input Cell Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)
@ Hidden Cell
adapted for problem at hand I e

e Spiking Hidden Cell

' Output Cell
. Match Input Output Cell #h}"ﬁh"j #“}"ﬁh}" #&#h}':

* Moving inductive bias from o PR i G
featu re e n g i n ee r i n g tO m Od e | . Memory Cell Auto Encoder (AE) \/ariatloal(\/AE) Denm’singADAE) Sparse AE (SAE)
<

. Different Memory Cell

design

QO Convolution or Pool

YA

e
X7 X/ X/
WAV

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
o o A=) A

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM)

— Inductive bias:

(@]
Knowledge about the problem :
. . Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
— Feature engineering: 3 o o S
Hand crafted variables 5 oS 3 E%@o}"i
X el X ol pog
X S X o0 el

.
— MO del des Ign ® Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)
L]

The data representation and the 382855
structure of the machine SN

.
l ea r n l n 8 I I l O d e I / n etWO r k Deep Residual Network (DRN) Kohonen Network (KN) Support Vector Machine (SVM) Neural Turing Machine (NTM)

s A e e

Image credit: neural-network-zoo

http://www.asimovinstitute.org/neural-network-zoo/

Neural Network Zoo — “Optimization” Perspective

46

* Asingle layer network may need a width exponential in D
to approximate a depth-D network’s output

— Simplified version of Telgarsky (2015, 2016)

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Neural Network Zoo — “Optimization” Perspective Y

* Asingle layer network may need a width exponential in D
to approximate a depth-D network’s output
— Simplified version of Telgarsky (2015, 2016)

» Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

under-fitting . over-fitting under-parameterized /\ over-parameterized

. Test risk Test risk
i ﬁ ":fj “classical” “modern”
Belkin et. al. 2018 & D",_a: regime interpolating regime

N Z .

> o Training risk ~ Training risk:

sweet spot\: - _ S~ . _interpolation threshold
Complexity of H Complexity of H
(a) U-shaped “bias-variance” risk curve (b) “double descent” risk curve

Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical U-shaped risk curve
arising from the bias-variance trade-off. (b) The double descent risk curve, which incorporates the U-shaped
risk curve (i.e., the “classical” regime) together with the observed behavior from using high complexity
function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The
predictors to the right of the interpolation threshold have zero training risk.

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf

48

Neural Network Zoo — “Optimization” Perspective

* Asingle layer network may need a width exponential in D
to approximate a depth-D network’s output

— Simplified version of Telgarsky (2015, 2016)

» Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

— But we must control that:
 Gradients don’t vanish
 Gradient amplitude is homogeneous across network
 Gradients are under control when weights change

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Neural Network Zoo — “Optimization” Perspective

49

* Asingle layer network may need a width exponential in D
to approximate a depth-D network’s output

— Simplified version of Telgarsky (2015, 2016)

» Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

* Major part of deep learning is choosing the right function
— Need to make gradient descent work, even if substantial

engineering required

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Deep Neural Networks Loss Landscape

A

T MINIMA

, | ‘.I.;"

MODE CONNECTIVITY

OPTIMA OF COMPLEX LOSS FUNCTIONS CONNECTED BY SIMPLE CURVES OVER
WHICH TRAINING AND TEST ACCURACY ARE NEARLY CONSTANT

https://arxiv.org/abs/1802.10026

https://arxiv.org/abs/1802.10026

Choosing the right function...

51

* We know a lot about our data
— What transformations shouldn’t affect predictions
— Symmetries, structures, geometry, ...

* Inductive Bias: we can match models to this knowledge

— Throw out irrelevant functions we know aren’t the solution
— Bias the learning process towards good solutions

Unstructured Models

A/.\ Models with

Inductive Bias

Choosing the right function...

52

53

Example: Images & Convolutional Neural Networks

 When structure of data includes translation invariance,
a representation meaningful at one location should be
used everywhere

Global Average Pool

 Convolutional layers build on this idea:
same “local” transformation applied

everywhere and preserves signal structure
ResNet

Fleuret, Deep Learning Course (He et al, 2015)

https://fleuret.org/dlc/

Example: Sequences & Recurrent Neural Networks

54

* Many data have temporal / sequence structure and
are of variable length
— Text, Video, Speech, DNA, ...

— Features can be local in time, but meaningful across
time step: a feature can happen any time

* Recurrent layers allow sequential data processing,
applying same transformations across time steps.

Credit: F. Fleuret

4 1’ : s
T EEEEEEE € |m| e |m™| e2 |/ e3 |m™| €4 |/ es | /| e

v

1

o [—>|hT—1 %E
eeeeeee do — d; o d.

Y. Wu et al, 2016

https://fleuret.org/dlc/
https://arxiv.org/abs/1609.08144

Example: Geometric Data & Graph Neural Networks N

Permutation invariant data
with geometric relationships <y

— Features can be local on graph,
but meaningful anywhere on graph

Graph layers can encode these
relationships on nodes & edges

Sanchez-Gonzalez et al. 2020

g Learned simulator S e S
@ o
I—_»dg—f |
X

ENCODER PRoc ESSOR DECODER
[JeI= G *D

(c) Construct graph (d) Pass messages (e) Extract dynamics info
4

J

C < < ©
0 of » +1

© G s el il gei; C
© - 0 =] —> J% 50 mi1 o v —> (J
00 x o Vi \;';\ TV \f;\ =\ vi ©© Vi
© © © < | 4 O s (® ¢
© < < ¢

https://arxiv.org/abs/2002.09405

Examples: Transformers and Deep Sets .

* Deep Sets and Transformers can process
permutation invariant sets of data

* Transformers are very adaptable:
Built using layers of attention, they can also
process sequences, images, and other data

Output

Layer:| 5 #|Attention:| Input - Input % Probabilties
B
The_ The_
animal_ animal_ Attention Is All You Need
didn_ didn_ Feed
. . orward
_ - (Add & Norm
t t —
Feed
cross cross l
- - Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit* Forward Nx
the_ the_ Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com
street_ street_ N
because_ because_ Llion Jones* Aidan N. Gomez* * Lukasz Kaiser*
. p Google Research University of Toronto Google Brain
it P it 1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com
was_ was_ . Eositignal 5 A Positional
- Illia Polosukhin* ncoding Encoding
tOO_) tOO_ illia.polosukhin@gmail.com Input Output
tire tire Embedding Embedding
d d

I - Inputs Outputs
(shifted right)

Physics Inspired Models

57

QCD Structured Neural Nets

1702.00748
1711.02633 . ®
SEeseRss 2 o @ .

Neural Net Clustering for Particle Flow

Input set D Object Condensation OutputsetR | TruthsetT
cells & tracks '"m:—m score, position supervised clustering properties :
B, class
Q' “ 3 ——*};* — x‘ —_— 0.‘/ — Dr —+— n truth particles
S é’ i ' o/ e Oo n¢ o : i
O 6 condensation e0 :
l points / E A
TSPN-SA predicted particles
o) clustering cardinality initial set 2
i .§ * E E permutation-
1 g global [* * d g B ER. * _’ m..".'g
topoclusters i
: & tracks | o e, T l
o] el 2 = pe:fnm:ce
" o < - predicted particies
energy-v:i:‘hted incidence nypenedges
matrix Class '
2101.08578 LI — Cﬁ? 1. ¢
2203.00330 o=
2212.01328

Hamiltonian Neural Nets

Ideal mass-spring system

Baseline NN

Prediction

— ERER !
o
> —>
q P
—/—>
-0
-m p=ma (al>]
[Noisy observations Hamiltonian NN
10 S
Josves
P, ! \ Po.
- -o.
1

1906.01563

Lorentz Equivariance

hl+1 xl+1

ﬁ’éi ””””””””””” S
i
i —
Y R
I
} e
1

B YR

() sumPooling (]

Minkowski Norm &
Inner Product

Lorentz Group Equivariant Block (LGEB)

2201.08187

https://arxiv.org/abs/1702.00748
https://arxiv.org/abs/1711.02633
https://arxiv.org/abs/2101.08578
https://arxiv.org/abs/2203.00330
https://arxiv.org/abs/2212.01328
https://arxiv.org/abs/2201.08187
https://arxiv.org/abs/1906.01563

Summary

58

Neural Networks allow us to combine non-linear basis
selection with feature learning

Deep neural networks allow learning complex function
by hierarchically structuring the feature learning

We can use our inductive bias (knowledge) to define
models that are well adapted to our problem

Many neural networks structures are available for
training models on a wide array of data types.

More details in talks this week by:
K. Terao, C. Adams, M. Liu

https://indico.cern.ch/event/1299889/timetable/?view=standard_inline_minutes
https://indico.cern.ch/event/1299889/timetable/?view=standard_inline_minutes
https://indico.cern.ch/event/1299889/timetable/?view=standard_inline_minutes

