
Introduction to Machine Learning and
Artificial Intelligence:

Lecture II

Michael Kagan

2nd COFI Advanced Instrumentation and Analysis Techniques School
December 9, 2023

The Plan

• Lecture 1
– Introduction to Machine Learning fundamentals
– Linear Models

• Lecture 2
– Neural Networks
– Deep Neural Networks
– Inductive Bias and Model Architectures

• Lecture 3
– Unsupervised Learning
– Autoencoders
– Towards Generative Models: Variation Autoencoders

2

Deep Learning Resourses

• Deep Learning is a HUGE field
– O(10,000) papers submitted to conferences

• I only condensed some parts of what you would
find in some lectures of a Deep Learning course
– More details from other lecturers!

• Highly recommend Online-available lectures:
– Francois Fleuret course at University of Geneva
– Gilles Louppe course at University of Liege
– Yann LeCun & Alfredo Canziani course at NYU

3

https://fleuret.org/dlc/
https://github.com/glouppe/info8010-deep-learning
https://atcold.github.io/pytorch-Deep-Learning/

Bias-Variance Tradeoff 4

Basis Functions

• What if non-linear relationship between y and x?

5

Basis Functions

• What if non-linear relationship between y and x?

• Choose basis functions 𝝓(𝒙) to form new features

– Example: Polynomial basis 𝜙(𝑥) ~ {1, 𝑥, 𝑥2, 𝑥3, … }

– Logistic regression on new features: ℎ(𝑥;𝑤) = 𝜎 𝑤!𝜙 𝑥

• What basis functions to choose? Overfit with too much flexibility?

6

What is Overfitting

• Models allow us to generalize from data

• Different models generalize in different ways

7

http://scikit-learn.org/

http://scikit-learn.org/

Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
(bias) (variance)

8

Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
(bias) (variance)

9

• Simple models under-fit:
will deviate from data (high bias)
but will not be influenced by
peculiarities of data (low variance).

• Complex models over-fit:
will not deviate systematically from
data (low bias) but will be very
sensitive to data (high variance).
– As dataset size grows, can reduce

variance! Use more complex model

Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
(bias) (variance)

10

• Simple models under-fit:
will deviate from data (high bias)
but will not be influenced by
peculiarities of data (low variance).

• Complex models over-fit:
will not deviate systematically from
data (low bias) but will be very
sensitive to data (high variance).
– As dataset size grows, can reduce

variance! Use more complex model

Bias Variance Tradeoff

• generalization error = systematic error + sensitivity of prediction
(bias) (variance)

11

• Simple models under-fit:
will deviate from data (high bias)
but will not be influenced by
peculiarities of data (low variance).

• Complex models over-fit:
will not deviate systematically from
data (low bias) but will be very
sensitive to data (high variance).
– As dataset size grows, can reduce

variance! Use more complex model

Bias Variance Tradeoff 12

Regularization – Control Complexity

• L2 keeps weights small, L1 keeps weights sparse!

• But how to choose hyperparameter a?

13

L(w) =
1

2
(y�Xw)2 + ↵⌦(w)

L2 : ⌦(w) = ||w||2 L1 : ⌦(w) = ||w||

http://scikit-learn.org/

Less regularization Less regularization

http://scikit-learn.org/

How to Measure Generalization Error?

• Split dataset into multiple parts

• Training set
– Used to fit model parameters

• Validation set
– Used to check performance on

independent data and tune hyper
parameters

• Test set
– final evaluation of performance

after all hyper-parameters fixed
– Needed since we tune, or “peek”,

performance with validation set

14

Training set Validation set Test set

[Murray]

How to Measure Generalization Error? 15

Validation Sample

From Logistic Regression to Neural Networks 16

Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g: 𝜙(𝑥) ~ {𝑥2, sin(𝑥), log(𝑥), … }

17

p(y = 1|x) = 1

1 + e�wT�(x)

Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g: 𝜙(𝑥) ~ {𝑥2, sin(𝑥), log(𝑥), … }

• What if we don’t know what basis functions we want?

• Learn the basis functions directly from data

𝜙(𝒙; 𝒖) ℝ𝑚 → ℝ𝑑

– Where u is a set of parameters for the transformation

– Combines basis selection & learning→Representation Learning
– Several different approaches, focus here on neural networks
– Complicates the optimization

18

p(y = 1|x) = 1

1 + e�wT�(x)

Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g: 𝜙(𝑥) ~ {𝑥2, sin(𝑥), log(𝑥), … }

• What if we don’t know what basis functions we want?

• Learn the basis functions directly from data

𝜙(𝒙; 𝒖) ℝ𝑚 → ℝ𝑑

– Where u is a set of parameters for the transformation

– Combines basis selection & learning→Representation Learning
– Several different approaches, focus here on neural networks
– Complicates the optimization

19

p(y = 1|x) = 1

1 + e�wT�(x)

Adding non-linearity

• What if we want a non-linear decision boundary?
– Choose basis functions, e.g: 𝜙(𝑥) ~ {𝑥2, sin(𝑥), log(𝑥), … }

• What if we don’t know what basis functions we want?

• Learn the basis functions directly from data

𝜙(𝒙; 𝒖) ℝ𝑚 → ℝ𝑑

– Where u is a set of parameters for the transformation

– Combines basis selection & learning→Representation Learning
– Several different approaches, focus here on neural networks
– Learning / optimization becomes more difficult

20

p(y = 1|x) = 1

1 + e�wT�(x)

Neural Networks

• Define the basis functions 𝑗 = {1…𝑑}

𝜙𝑗(𝒙; 𝒖) = 𝜎(𝒖!"𝒙)

• Put all 𝒖𝑗 Îℝ#×% vectors into matrix 𝑼

𝜙 𝒙; 𝑼 = 𝜎(𝑼𝒙) =

𝜎 𝑢#"𝑥
𝜎 𝑢&"𝑥

⋮
𝜎 𝑢'"𝑥

Îℝ'

– s is a point-wise non-linearity acting on each vector element

• Full model becomes
ℎ(𝒙; 𝒘,𝑼) = 𝒘𝑇𝜙(𝒙; 𝑼)

21

Neural Networks

• Define the basis functions 𝑗 = {1…𝑑}

𝜙𝑗(𝒙; 𝒖) = 𝜎(𝒖!"𝒙)

• Put all 𝒖𝑗 Îℝ#×% vectors into matrix 𝑼

𝜙 𝒙; 𝑼 = 𝜎(𝑼𝒙) =

𝜎 𝑢#"𝑥
𝜎 𝑢&"𝑥

⋮
𝜎 𝑢'"𝑥

Îℝ'

– s is a point-wise non-linearity acting on each vector element

• Full model becomes
ℎ(𝒙; 𝒘,𝑼) = 𝒘𝑇𝜙(𝒙; 𝑼)

22

Neural Networks

• Define the basis functions 𝑗 = {1…𝑑}

𝜙𝑗(𝒙; 𝒖) = 𝜎(𝒖!"𝒙)

• Put all 𝒖𝑗 Îℝ#×% vectors into matrix 𝑼

𝜙 𝒙; 𝑼 = 𝜎(𝑼𝒙) =

𝜎 𝑢#"𝑥
𝜎 𝑢&"𝑥

⋮
𝜎 𝑢'"𝑥

Îℝ'

– s is a point-wise non-linearity acting on each vector element

• Full model becomes
ℎ(𝒙; 𝒘,𝑼) = 𝑤"𝜙(𝒙; 𝑼)

23

Feed Forward Neural Network 24

�(x) = �(Ux)

h(x) = wT�(x)

U

Hidden layer
Composed of neurons

f(…) often called the
activation function

Multi-layer Neural Network

• Multilayer NN
– Each layer adapts basis functions based on previous layer

25

U V

Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

26

h(x) = wT�(Ux)

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

• Regression: Square error loss function

27

h(x) = wT�(Ux)

L(w,U) =
1

2

X

i

(yi � h(xi))
2

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

Neural Network Optimization Problem

• Neural Network Model:

• Classification: Cross-entropy loss function

• Regression: Square error loss function

• Minimize loss with respect to weights w, U

28

h(x) = wT�(Ux)

L(w,U) =
1

2

X

i

(yi � h(xi))
2

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

Minimizing loss with gradient descent:

• Parameter update:

𝑤 ← 𝑤 − 𝜂
𝜕𝐿 𝑤, 𝑈
𝜕𝑤

𝑈 ← 𝑈 − 𝜂
𝜕𝐿(𝑤, 𝑈)
𝜕𝑈

• How to compute gradients?

29

Chain Rule – Symbolic Differentiation

• Derivative of sigmoid:

• Chain rule to compute gradient w.r.t. w

• Chain rule to compute gradient w.r.t. uj

30

L(w,U) = �
X

i

yi ln(�(h(xi))) + (1� yi) ln(1� �(h(xi)))

@�(x)

@x
= �(x)(1� �(x))

@L

@uj
=

@L

@h

@h

@�

@�

@uj
=

=
X

i

yi(1� �(h(xi)))wj�(ujxi)(1� �(ujxi))xi

+ (1� yi)�(h(xi))wj�(ujxi)(1� �(ujxi))xi

@L

@w
=

@L

@h

@h

@w
=

X

i

yi(1� �(h(xi)))�(Ux) + (1� yi)�(h(x))�(Uxi)

Chain Rule – Symbolic Differentiation

• Derivative of sigmoid:

• Chain rule to compute gradient w.r.t. w

• Chain rule to compute gradient w.r.t. uj

31

L(w,U) = �
X

i

yi ln(�(h(xi))) + (1� yi) ln(1� �(h(xi)))

@�(x)

@x
= �(x)(1� �(x))

@L

@uj
=

@L

@h

@h

@�

@�

@uj
=

=
X

i

yi(1� �(h(xi)))wj�(ujxi)(1� �(ujxi))xi

+ (1� yi)�(h(xi))wj�(ujxi)(1� �(ujxi))xi

@L

@w
=

@L

@h

@h

@w
=

X

i

yi(1� �(h(xi)))�(Ux) + (1� yi)�(h(x))�(Uxi)

Differentiation in Code 32

Baydin, Pearlmutter, Radul, Siskind.
2018. “Automatic Differentiation in
Machine Learning: a Survey.”
Journal of Machine Learning
Research (JMLR)

Automatic Differentiation

Exact derivatives for gradient-based optimization come from
running differentiable code via automatic differentiation

33

Image credit: Wikipedia

Backpropagation – Reverse Mode AD
• Loss function composed of layers of nonlinearity

• Forward step (f-prop)
– Compute and save intermediate computations

• Backward step (b-prop)

• Compute parameter gradients

34

@L

@�a
=

X

j

@�(a+1)
j

@�a
j

@L

@�(a+1)
j

@L

@wa
=

X

j

@�a
j

@wa

@L

@�a
j

𝐿 𝜙(…𝜙# 𝑥

𝜙(…𝜙# 𝑥

Training

• Repeat gradient update of weights to reduce loss
– Each iteration through dataset is called an epoch

• Use validation set to examine for overtraining, and
determine when to stop training

35

[graphic from H. Larochelle]

Vanishing Gradients

• Major challenge in DL: Vanishing Gradients

• Small gradients slow down / block, stochastic
gradient descent à Limits ability to learn!

36

Backpropagated gradients normalized histograms (Glorot and Bengio, 2010).
Gradients for layers far from the output vanish to zero.Slide credit: G. Louppe

Sigmoid Gradient

https://glouppe.github.io/info8010-deep-learning/?p=lecture2.md

Activation Functions

• Vanishing gradient problem

– Derivative of sigmoid
Nearly 0 when x is far from 0!

– Can make gradient descent hard!

37

• Rectified Linear Unit (ReLU)
– ReLU(x) = max{0, x}
– Derivative is constant!

– ReLU gradient doesn’t vanish

∂ReLU(x)
∂x

= 1
0

when x > 0
otherwise

"
#
$

%$

Neural Network Decision Boundaries 38

x1

x2

4-class classification
2-hidden layer NN
ReLU activations
L2 norm regularization

2-class classification
1-hidden layer NN
L2 norm regularization

One neuron Two neuron

Three neurons Four neurons

Five neurons Twenty neurons

Fifty neurons

Image source Image source

http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r

Universal approximation theorem

• Feed-forward neural network with a single
hidden layer containing a finite number of non-
linear neurons (ReLU, Sigmoid, and others) can
approximate continuous functions arbitrarily
well on a compact space of ℝ!

39

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Universal approximation theorem

• Feed-forward neural network with a single
hidden layer containing a finite number of non-
linear neurons (ReLU, Sigmoid, and others) can
approximate continuous functions arbitrarily
well on a compact space of ℝ!

40

• Better approximation requires larger hidden layer,
this theorem says nothing about relation between the two.

• Can make training error as low as we want by using a
larger hidden layer. Result states nothing about test error

• Doesn’t say how to find parameters for this approximation

Fleuret, Deep Learning Course

https://fleuret.org/dlc/

Deep Neural Networks

• As data complexity grows, need exponentially large number of
neurons in a single-layer network to capture all structure in data

• Deep networks factorize the learning of structure across layers

• Difficult to train, recently possible with large datasets, fast
computing (GPU/TPU) & new training algs. / network structures

41

More Complex Models – Bigger Search Space
More Data – Find Better Solutions 42

Dataset
Size

Model Complexity

Target solution

Target solution

Target solution

Target solution

Hierarchical Composition of Features 43

Benefits of Depth 44

Computer Vision Models

Language Models

2001.08361

ImageNet top-5 Error (%)

https://arxiv.org/abs/2001.08361

Neural Network Zoo

• Structure of the networks, and
the node connectivity can be
adapted for problem at hand

• Moving inductive bias from
feature engineering to model
design

– Inductive bias:
Knowledge about the problem

– Feature engineering:
Hand crafted variables

– Model design:
The data representation and the
structure of the machine
learning model / network

45

Image credit: neural-network-zoo

http://www.asimovinstitute.org/neural-network-zoo/

Neural Network Zoo – “Optimization” Perspective 46

• A single layer network may need a width exponential in D
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Neural Network Zoo – “Optimization” Perspective 47

• A single layer network may need a width exponential in D
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

\

Belkin et. al. 2018

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf

Neural Network Zoo – “Optimization” Perspective 48

• A single layer network may need a width exponential in D
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Neural Network Zoo – “Optimization” Perspective 49

• A single layer network may need a width exponential in D
to approximate a depth-D network’s output
– Simplified version of Telgarsky (2015, 2016)

• Over-parametrizing a deep model often improves test
performance, contrary to bias-variance tradeoff prediction

– But we must control that:
• Gradients don’t vanish
• Gradient amplitude is homogeneous across network
• Gradients are under control when weights change

Fleuret, Deep Learning Course

• Major part of deep learning is choosing the right function

– Need to make gradient descent work, even if substantial
engineering required

https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/materials/dlc-slides-6-1-benefits-of-depth.pdf
https://fleuret.org/dlc/

Deep Neural Networks Loss Landscape 50

https://arxiv.org/abs/1802.10026

https://arxiv.org/abs/1802.10026

Choosing the right function… 51

TargetUnstructured Models Models with
Inductive Bias

• We know a lot about our data
– What transformations shouldn’t affect predictions
– Symmetries, structures, geometry, …

• Inductive Bias: we can match models to this knowledge
– Throw out irrelevant functions we know aren’t the solution
– Bias the learning process towards good solutions

Choosing the right function… 52

Image credit: Michael Bronstein

Example: Images & Convolutional Neural Networks

• When structure of data includes translation invariance,
a representation meaningful at one location should be
used everywhere

53

Fleuret, Deep Learning Course

• Convolutional layers build on this idea:
same “local” transformation applied
everywhere and preserves signal structure

ResNet
(He et al, 2015)

https://fleuret.org/dlc/

Example: Sequences & Recurrent Neural Networks

• Many data have temporal / sequence structure and
are of variable length
– Text, Video, Speech, DNA, …
– Features can be local in time, but meaningful across

time step: a feature can happen any time

• Recurrent layers allow sequential data processing,
applying same transformations across time steps.

54

Credit: F. Fleuret

Y. Wu et al, 2016

https://fleuret.org/dlc/
https://arxiv.org/abs/1609.08144

Example: Geometric Data & Graph Neural Networks

• Permutation invariant data
with geometric relationships
– Features can be local on graph,

but meaningful anywhere on graph

• Graph layers can encode these
relationships on nodes & edges

55

Sanchez-Gonzalez et al. 2020

https://arxiv.org/abs/2002.09405

Examples: Transformers and Deep Sets

• Deep Sets and Transformers can process
permutation invariant sets of data

• Transformers are very adaptable:
Built using layers of attention, they can also
process sequences, images, and other data

56

Physics Inspired Models 57

1702.00748
1711.02633

2101.08578
2203.00330
2212.01328 2201.08187

1906.01563

QCD Structured Neural Nets
Hamiltonian Neural Nets

Lorentz Equivariance

Neural Net Clustering for Particle Flow

https://arxiv.org/abs/1702.00748
https://arxiv.org/abs/1711.02633
https://arxiv.org/abs/2101.08578
https://arxiv.org/abs/2203.00330
https://arxiv.org/abs/2212.01328
https://arxiv.org/abs/2201.08187
https://arxiv.org/abs/1906.01563

Summary

• Neural Networks allow us to combine non-linear basis
selection with feature learning

• Deep neural networks allow learning complex function
by hierarchically structuring the feature learning

• We can use our inductive bias (knowledge) to define
models that are well adapted to our problem

• Many neural networks structures are available for
training models on a wide array of data types.

• More details in talks this week by:
K. Terao, C. Adams, M. Liu

58

https://indico.cern.ch/event/1299889/timetable/?view=standard_inline_minutes
https://indico.cern.ch/event/1299889/timetable/?view=standard_inline_minutes
https://indico.cern.ch/event/1299889/timetable/?view=standard_inline_minutes

