

Master's Thesis

Anomaly Detection with Artificial Intelligence:

Post-mortem analysis of LHC ion beam losses during high-energy beam dumps

Presented by Thorsten Schumacher on 29 June 2023

CÉRN

Outline

1. Introduction

- a. The Large Hadron Collider
- b. Beam loss monitors
- c. Post-Mortem analysis

2. Goals

3. Model creation

- a. Data
- b. Model creation process
- c. Classification

4. Result

- a. Linear model
- b. Polynomial model
- c. Comparison: proton model vs. ion model classification on ion beam dumps
- 5. Conclusion

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

Introduction

Anomaly Detection with AI: Post-mortem analysis of LHC ion beam losses during high-energy beam dumps

Results

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

The LHC

- Brief layout explanation
- Tasks of different systems

Anomaly Detection with AI: Post-mortem analysis of LHC ion beam losses during high-energy beam dumps

The Large Hadron Collider

- Beam Injection in IP 2 and IP 8
 - Sum of particles in a beam => (beam) intensity
- Acceleration in IP 4
- Beam cleansing of ...
 - particles that deviate from reference energy in IP 3
 - Particles that deviate from reference orbit in IP 7 (smallest aperture)
- Experiments (particle collision) in IP 1, IP 2, IP 5 and IP 8
 - (Instantaneous) luminosity
- Extraction of the beams in IP 6 (beam dump)
 - Triggered ...
 - manually by operator (Programmed dump)
 e.g. end of experiments
 - automatically by protection system (Protection dump)
 e.g. high or unusual beam losses

Reference: [2] (adapted)

h da

HOCHSCHULE DARMSTADT

JNIVERSITY OF APPLIED SCIENCES

Conclusion

HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

The beam dump

- Kicker magnets bend the beam in direction of the dump line
- Beam dump block at the end of a dump line absorbs the particles
- Full deflection field after 3 µs
 - Particles affected before are only partially deflected (losses in IP 6, IP 7 and dump line)
 - 3 µs particle-free gap needed (abort gap)
- Particle intensity in abort gap => abort gap population (AGP)

Model

Results

Conclusion

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

Beam loss monitors

- Task of the BLMs
- Beam losses

Anomaly Detection with AI: Post-mortem analysis of LHC ion beam losses during high-energy beam dumps

Beam loss monitor (BLM)

- Approximately installed 4000 BLMs
- Supervise beam losses
- Beam loss data available in Post-Mortem system
 - Saved as times series
 - 1.024 s around the beam dump
 - Divided into 40 µs bins (**running sum 01** or **RS01**)
 - 25600 values per BLM
 - Analysis conducted with the maximum of the time series (RS01 max)
 - Saved in bit
 - Different types of BLMs have different conversion rates from bit to Gy/s

Reference: [4]

Results

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

Post-Mortem analysis

- Analysis performed after each beam dump
 - Identify issues
 - Improve machine protection
- Manual analysis by experts
 - Time consuming task
 - Soon to be supported by automated anomaly detection

Anomaly Detection with AI: Post-mortem analysis of LHC ion beam losses during high-energy beam dumps

Thorsten Schumacher

29 June 2023

10

h da

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

Model creation

Anomaly Detection with AI: Post-mortem analysis of LHC ion beam losses during high-energy beam dumps

Thorsten Schumacher

......

- Overview of the dataset
- Training and test data

Anomaly Detection with AI: Post-mortem analysis of LHC ion beam losses during high-energy beam dumps

Data

- In total 195 ion beam dumps
 - Mainly from 2015 and 2018 (carried out for about a month in each year)
 - 131 high-energy ion beam dumps
 - 9 asynchronous beam dump tests
 - Tests that are intentionally carried out with a high number of particles in the abort gap
 - 6 "10 Hz" beam dumps
 - Horizontal oscillation of the beam in a frequency of 8-12 Hz

Data

- Dataset was initially split into training and test dataset based on indicators (see table)
 - Labeled dataset not available in early stages
 - Labeling them manually by expert takes time
- After labeling the dataset by expert: confirmed that all dumps in the training set are labeled as "OK"
- Training and test split
 - 65 data samples used for training
 - Only OK samples
 - Used to create the classification models
 - 66 data samples used for testing
 - 48 could be clearly labeled as "OK" / "NOT OK" by expert
 - Used to verify the results

Feature Name	Feature Type	Feature values	
Event Category	Categorical	Programmed_Dump	
Accelerator Mode	Categorical	ION_PHYSICS	
Pm Machine Protection	Categorical	Ок	
Result	8		
Overall Result	Categorical	Ок	
Orbit Changes	Categorical	No considerable Orbit Changes	
AGP Beam 1 (Maximum)	Continuous	$\leq 5 \times 10^9$ charges	
AGP Beam 2 (Maximum)	Continuous	$\leq 5 \times 10^9$ charges	
Years	Categorical	2015, 2018	
Flag (Async. Dump)	Categorical	0	
Flag (10Hz Dump)	Categorical	0	
Flag (Xe-Ions)	Categorical	0	

Training dataset parameters

Anomaly Detection with AI: Post-mortem analysis of LHC ion beam losses during high-energy beam dumps

ntroduction

h_da

Model creation process

- Divide BLMs into classes and create model for each class
 - High-correlated BLMs
 - Correlations between beam losses and abort gap population, luminosity, beam intensity
 - Low-loss BLMs
 - Show no correlation
 - Usually record low beam losses
 - Remaining BLMs
 - Not considered in the analysis
- Derive beam loss thresholds to build classification model
 - Combination of high-correlated BLM and low-loss BLM

h da CERN HOCHSCHULE DARMSTADT JNIVERSITY OF APPLIED SCIENCES

Divide BLMs into classes

- High-correlated BLMs
 - Correlation analysis with **Pearson Correlation Coefficient** (PCC) per BLM
 - Between beam losses and features AGP, intensity and luminosity
 - At least 10 datapoints

 - Running sum > 120 bit (noise limit)
 Running sum < 255,557 bit (saturation limit)
 Selected one feature per BLM with highest correlation
 - among all features
 - $PCC \ge 0.7$
 - <u>_ow-loss BLM</u>s
 - At least 10 datapoints
 - 1-4 datapoints > 120 bit allowed Remaining datapoints < 120 bit

Divide BLMs into classes

- High-Correlated
 - 64 BLMs
 - 58 correlated with AGP in IP 6, IP 7 and at the beginning of the dump lines
 - 6 correlated with Intensity at the end of the dump lines

- Low-loss
 - 3828 BLMs distributed around the ring

h da CERN HOCHSCHULE DARMSTADT JNIVERSITY OF APPLIED SCIENCES

Classification models

Estimation function:

High-correlated: f = 1

Low-loss: f = 3

- High-correlated BLMs: $y_{est} = \sum_{i=1}^{5} (p_i \cdot x^i)$ Low-loss BLMs: $y_{est} = \overline{\frac{m}{m}}$
- Calculation for high-correlated BLMs:
 - Ordinary Least Squares (OLS) regression
 - Find best fitting line
 - **p**: coefficient of x,
 - $\sigma_{\rm est}$: standard error of the estimate
 - If model is polynomial:
 - Calculate metrics for each order
 - Bayesian Information Criterion (BIC)
 - root mean squared error (RMSÈ)
 - R²-adjusted
 - Select the order for each metric with "best" value
 - Results in 4 functions per high-correlated BLM (linear, BIC, RMSE, R²-adjusted)
- Calculation for low-loss BLMs:

Į

- Calculate mean $\overline{\mathbf{m}}$ and standard deviation error of the mean $\boldsymbol{\sigma}_{_{\mathrm{est}}}$
- Deriving thresholds for classification:

$$y_{thresh} = f \cdot \max(y_{est} + 4 \cdot \sigma_{est}, 120)$$

BLMTI.04L6.B1E10 TCDSB.4L6.B1 250000 ax) [bit] 200000 01 150000 puind 100000 actual prediction 50000 threshold $(4 \times \sigma_{est})$ standard error of the estimate (σ_{est}) 1 2 Abort gap population beam 1 [charges] 1e9 Low-loss BLMs 360 bit 01 (max) [bit]

High-correlated BLMs

No. of datapoints

120 bi $\mathbf{y}_{\mathrm{thresh}}$

+ σ_m

y_{est}

Anomaly Detection with AI: Post-mortem analysis of LHC ion beam losses during high-energy beam dumps

Thorsten Schumacher

Running sum

Classification

- Classification of beam dumps as OK / NOT OK

Anomaly Detection with AI: Post-mortem analysis of LHC ion beam losses during high-energy beam dumps

Conclusion

Classification

- 1. Classify individual BLMs as OK / NOT OK
 - beam loss > threshold => NOT OK
 - otherwise => OK
- 2. Classify beam dump
 - Beam dump NOT OK if: Number of NOT OK BLM classifications > 1

- One BLM above threshold
- Beam dump still OK

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

Results

Anomaly Detection with AI: Post-mortem analysis of LHC ion beam losses during high-energy beam dumps

Thorsten Schumacher

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

Results

- Classification results of
 - Linear model
 - Polynomial models
- Comparison of proton model and linear ion model
 - Classification of ion dumps
 - Derived thresholds

h.da

- Classification
 - 45 of 48 beam dumps correctly classified
 - Accuracy: 94 %
 - 8 / 9 asynchronous beam dump tests
 - 6 / 6 "10 Hz" beam dumps
 - 3 misclassifications

- Correct classification example
 - True negative ("10 Hz" beam dump)
 - High losses expected in IP 3 and IP 7
 - mostly left of IP 7 (produced by beam 1)

- Misclassification example
 - 1 false positive misclassified asynchronous beam dump test:
 - AGP = 9.3×10^8 charges
 - Lowest AGP of all tests
 - Correctly identified as beam dump with low beam losses
 - Compared to 2 true negatives asynchronous beam dump tests:
 - AGP = 1.5 * 10⁹ charges (1.6 times higher)
 - Next lowest AGP of all tests
 - AGP = 2.7×10^{11} charges (290 times higher)
 - Most tests in this range

Polynomial models

- Classification
 - Polynomial orders of 3 to 5 lead to negative thresholds
 - drop of classification accuracy
 - BIC / RMSE: 88 %
 - R²-adjusted: 90 %
 - Limiting orders to 1 and 2 better
 - But still slightly worse than the linear model
 - Accuracy: 92 %
 - (vs. 94 % of linear model)
 - No gain in adding higher orders
 - At least with an automated selection process

Results

Comparison: proton model vs. ion model

- Classification performance _
 - Proton model trained on proton beam dumps
 - Classification of ion beam dumps by both models -
 - Same classification results for asynchronous beam dump tests and "10 Hz" beam dumps
 - Accuracy increased clearly from 79% to 94%
 - Confirms the need of thresholds specifically for ion beam dumps

Metric	Models		
	Proton	Ion (linear)	
TP	15	18	
FP	6	2	
TN	23	27	
FN	4	1	
Recall	78.95 %	95.74 %	
Specificity	79.31 %	93.10 %	
Precision	71.43 %	90.00 %	
Accuracy	79.17 %	93.75 %	
F1-score	75.00 %	92.31 %	

Comparison: proton model vs. ion model

- Comparison of thresholds done with same number of charges (AGP and intensity) for both models
- Ion thresholds are generally higher in high beam loss regions (IP 6, IP 7)
 - Areas marked for better comparison

- Intensity: 1153 * 10¹⁰ charges
- AGP: 3 * 10⁸ charges

Results

Conclusion

CERN

h_da

Comparison: proton model vs. ion model

- Discovered high, fake values of some BLMs
 - Due to corrupted memory cards
- Can lead to high thresholds in low-loss BLMs
 - Due to high standard deviation error of the mean
- Emphasizes the need for consistency check of (low-loss) BLMs
- Does not affect the classification results!

Conclusion

Anomaly Detection with AI: Post-mortem analysis of LHC ion beam losses during high-energy beam dumps

CERN

Conclusion

- Confirmed differences in ion and proton model thresholds
- Ion specific thresholds are needed
 - Will be implemented in the automated beam loss analysis tool
- Polynomial models should be modeled only with expert knowledge
- Consistency check for (frequently) low-loss
 BLMs to identify fake values

References

[1] https://www.weltmaschine.de/sites/sites_custom/site_weltmaschine/content/e37820/e40691/e158693/e189177/e189185/20210-138LHC02.jpg [Online; accessed 26-June-2023]

[2] Cai, Y., Nosochkov, Y., Giovannozzi, M., Risselada, T., Todesco, E., Zhou, D. & Zimmermann, F. HE-LHC Optics Development. ICFA Beam Dyn. Newsl. 72, 141–151. https://cds.cern.ch/record/2315726 (2017)

[3] Koschik, A, Goddard, B, Höfle, W., Kotzian, G, Kramer, D. & Kramer, T. Abort Gap Cleaning using the Transverse Feedback System: Simulation and Measurements in the SPS for the LHC Beam Dump System. https://cds.cern.ch/record/1124316 (2008)

[4] Biłko, K. & Stein, O. Report on the Prompt Dose Distribution Along the LHC Based on BLM Data for proton-proton operation in Run 2. https://cds.cern.ch/record/2692574 (2019)

[5] Wiesner, C., Hernalsteens, C., Hülphers, F., Uythoven, J., Wollmann, D. & Ziegler, P. Automated evaluation of the LHC proton losses during highenergy beam dumps for the post-mortem system in 14th International Particle Accelerator Conference (IPAC 2023) (2023). https://cds.cern.ch/record/2858945

[6] Ziegler, P. Automated evaluation of beam losses during high energy proton beam dumps (to be presented). MA thesis (University of Regensburg, 2023).

[7] Hulphers, F. Deep learning for anomaly detection in high-energy beam dump data from the Large Hadron Collider Presented 16 Sep 2022. MA thesis (Technical University of Munich, 2022). https://cds.cern.ch/record/2834608.

[8] Alemany Fernandez, R., Apollonio, A., Bartmann, W., Buffat, X., Niemi, A., Schulte, D., Solfaroli Camillocci, M. & Stoel, L. FCC-hh turn-around cycle tech. rep. (CERN, Geneva, 2016). https://cds.cern.ch/record/2239138

- 8 octants
 - Center of octant is referred to as interaction point (IP)

- Beam injection
 - in **bunches** of particles

- Beam injection
 - Injection of bunches up to desired intensity (sum of all particles)

Anomaly Detection with AI: Post-mortem analysis of LHC ion beam losses during high-energy beam dumps

- Collision of the beams
 - Measured in luminosity
 - Increased luminosity = increased probability of particle collisions

- Beam extraction (**beam dump**)
 - 3 µs gap without particles needed (abort gap)

- **abort gap population =** intensity in abort gap

CERN

Abort gap population

- Measured in 100 ms intervals
- Maximum of all measurements if used for the analysis

Running Sum 01 (max)

Saturation Limit

- (Artificial) saturation limit approx. 97.5% of real saturation limit

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

- Correct classification example
 - True negative
 - Expert Comment:
 "Losses (...) in IR7 (...). Clean dump (losses in IR6 during the dump relatively high as usual with ions).

- Correct classification example
 - True negative (asynchronous beam dump test)
 - High losses expected in IP 6 and IP 7

- Misclassification example
 - False positive
 - Protection dump
 - Operator comment: **beam losses at IP7** during collimator alignment in collision
 - Very low intensity beam dump

- Misclassifications
 - False negative
 - Higher losses than usual in IP 7
 - Root cause not determined yet

h_da

Corrupted component / BLM

Timestamp: 19-NOV-2022 16.17.44.047000

CÉRN

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

CÉRN

.....

NOT OK beam dump (sub)set	No. of NOT OK beam dumps	No. of distinct high-correlated BLMs contributing to NOT OK classifications	
		total	exclusive
Total	27	45	-
Asynchronous dump tests	8 (29.63 %)	43 (95.55 %)	37 (82.22 %)
10 Hz dumps	6 (22.22 %)	o (o %)	o (o %)
Other	13 (48.15 %)	8 (17.77 %)	2 (4.44 %)

NOT OK beam dump (sub)set	No. of NOT OK beam dumps	No. of distinct low-loss BLMs contributing to NOT OK classifications	
		total	exclusive
Total	27	173	-
Asynchronous dump tests	8 (29.63 %)	155 (89.59 %)	73 (42.20 %)
10 Hz dumps	6 (22.22 %)	54 (31.21 %)	3 (1.73 %)
Other	13 (48.15 %)	96 (55.49 %)	11 (6.36 %)

BLM naming convention

h da

HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

CERN