ICEPP QC and HPC Research Activity

3rd Nov, 2023

The 7th Asian Tier Center Forum

Thank: Y. Iiyama : Computer cluster for QC simulation S. Chen : QC hardware researches

HPC

HPC in ATLAS experiments

May 2021

- EuroHPC Vega (#166 in Top500) is in production for ATLAS form May 2021.
- ATLAS uses a lot of HPC resources. The use of HPC is very promising.

HPC top500

Top500 (June 2023)

	System	Cores (k)	Rmax (PFlops)	Rpeak (PFlops)	Power (MW)
1	Frontier, DOE/SC/Oak Ridge National Laboratory, United States	8,700	1,194	1,680	22.7
2	Supercomputer Fugaku, RIKEN Center for Computational Science, Japan	7,631	442	537	29.9
3	LUMI, EuroHPC/CSC, Finland	2,220	309	429	6.02
4	Leonardo, EuroHPC/CINECA, Italy	1,825	239	304	7.40
5	Summit, DOE/SC/Oak Ridge National Laboratory, United States	2,415	149	201	10.1
6	Sierra, DOE/NNSA/LLNL, United States	1,572	95	126	7.44
7	Sunway TaihuLight, National Supercomputing Center in Wuxi, China	10,650	93	125	15.4
8	Perlmutter, DOE/SC/LBNL/NERSC, United States	762	71	94	2.59
9	Selene, NVIDIA Corporation, United States	556	63	79	2.65
10	Tianhe-2A, National Super Computer Center in Guangzhou, China	4,982	61	101	18.5

- "Fugaku" is in second place.
- The total number of CPU cores in the WLCG is ~1M cores. If HPC can be used, it will be a very promising computing resource.

HPC top500 (in Japan)

	System
2	Supercomputer Fugaku, RIKEN Center for Computational Science
24	ABCI 2.0, National Institute of Advanced Industrial Science and Technology (AIST)
25	Wisteria/BDEC-01 (Odyssey), Information Technology Center, The University of Tokyo
41	TOKI-SORA, Japan Aerospace eXploration Agency
50	???, Japan Meteorological Agency
63	Earth Simulator -SX-Aurora TSUBASA, Japan Agency for Marine-Earth Science and Technology
80	TSUBAME3.0, GSIC Center, Tokyo Institute of Technology
84	Plasma Simulator, National Institute for Fusion Science (NIFS)
97	Flow, Information Technology Center, Nagoya University
	•••
136	Wisteria/BDEC-01 (Aquarius), Information Technology Center, The University of Tokyo
140	Oakbridge-CX. Information Technology Center, The University of Tokyo

- There are several high-performance HPCs in Japan.
- Information Technology Center of the University of Tokyo manages some of them.
 - We have advanced R&D running grid jobs on the ITC HPCs.

History of HPC utilization in ICEPP

- We started R&D on ITC/UTokyo HPC from 2019 using **Reedbush** system (2016-2020)
- From 2020, we moved to the next generation system: Oakbridge-CX (2019-2023/09)

 \rightarrow We report a **summary** of the integration of HPCs into the Tier2 grid.

• The next generation system is Wisteria/BDEC-01 (2021-)

 \rightarrow We report an **overview** of the system and the **difficulties** in using it.

	System	Cores (k)	Rmax (PFlops)	Rpeak (PFlops)	Power (kW)	Year
25	Wisteria/BDEC-01 (Odyssey), Information Technology Center, The University of Tokyo	369	22.1	26.0	1,468	2021-
136	Wisteria/BDEC-01 (Aquarius), Information Technology Center, The University of Tokyo	42	4.4	5.8	184	2021-
140	Oakbridge-CX, Information Technology Center, The University of Tokyo	77	4.3	6.6	845	2019-2023
—	TOKYO Tier2	11	1.2	-	120	2022-

Oakbridge-CX

- Compute nodes (only CPU, no GPU)
 - 1368 compute node, 6.61 PFlops
 - 56 cores / node, 1148 HS06 / nodes
- File system
 - Lustre, 12.4 PB
- Batch system
 - FUJITSU Software Technical Computing Suite (TCS)
- Network connectivity
 - ssh to login nodes, where we can submit jobs and read/write to shared FS.
 - No connections to computing nodes.
 - \rightarrow Grid jobs cannot access storage element, external DB, etc.
- No root privilege → We cannot use CVMFS

HPC (Oakbridge-CX)

- Singularity container image is used.
 - contains all necessary files
 - processes simulation jobs only
- Input/output files are transferred by ARC.

- All necessary files on cvmfs are predownloaded to the shared FS on HPC, which can be accessed by compute nodes.
- No negligible overhead.

Before using Singularity container, we used parrot_run + cvmfs_preload.

Jobs accounting (History)

<u>Grafana</u>

Wall clock time (successful jobs) (HS23 sec)

- 120,000 jobs processed
- 330 G HS06 seconds \rightarrow ~15 days of current Tokyo Tier2 full power

Job status on Oakbridge-CX

finished WallClock Consumption of Successful and Failed Jobs - Time Stacked Bar Graph failed 80 Mil cancelled 70 Mil closed 60 Mil 50 Mil 40 Mil 30 Mi 20 Mil 10 Mil 0 Aug, 2022 ^{06/01}July,^{07/}2023 Jan^{°1/01}2023^{°01} 10/01 03/01 04/01 05/01 11/01 12/01 min finished 0 69.9 Mil 17.8 Mil 6.50 Bil 266 Mil failed 0 22.0 Mil 728 K 9.74 Mil cancelled 4.26 Mil 26.7 K 0 0 0 0 closed 0

CPU/Wall efficiency on Oakbridge-CX

Successful

Next HPC systems of ITC/UTokyo: Wisteria/BDEC-01

- Consists of two systems
 - Simulation node cluster (25.9 PFlops) → ARM CPU
 - FUJITSU Processor A64FX used at Fugaku (the top HPC in Japan)
 - Data/training node cluster (7.2 PFlops) → GPU
 - Nvidia A100 x8
 - → Suitable for large-scale parallel computing and machine learning
- This HPC cannot use HEP-standard processing unit, such as Intel x86_64 CPU.
 - A lot of R&D is needed to use them with high efficiency.
 - ARM is already supported in ATLAS \rightarrow Benchmarking (see next page)
 - GPU as a production job is not yet supported in ATLAS.

Performance of A64FX: basic benchmark

Need to code optimization for Geant4 jobs with A64FX 13

Performance of A64FX: HEPSCORE23

- The A64FX has a small amount of memory (32GiB) compared to the number of cores (48).
 - Multithreading code is required to use the memory efficiently.
- To maximise the performance of the A64FX, we may need to fully utilize SVE. 14

Quantum Computer

System One installed in Kawasaki Japan

Quantum computer test bed, in Quantum Hardware Test Center of UTokyo.

CERN

Slide from Alberto Di Meglio at al, CERN QTI 2020

HEP laboratories, e.g. Fermilab, TRIUMF, DESY and ICEPP, have started researches in QC around the beginning of 2020'th

Classical computer v.s. QC

- 1 qubit = two floating numbers.
- The number of quantum states increases exponentially as a function of the number of qubits.
 - For simulating a 27 qubit system using a classical computer, we need 1 GB of memory.
 - For a **37 qubit system**, **O(1 TB)** is needed.
 - And for around 49 qubit or more, simulation is getting impossible even by HPC.
 - The number of quantum states that are possible with only
 256 qubits exceeds the number of atoms in the solar system

Number of qubits

~1000 4000

⁴³³

QC researches in ICEPP, U-Tokyo

Machine Learning and Quantum Computing for High-Energy Physics

ICEPP computer cluster for QC and ML

Cluster shared by QC and machine learning researchers

Resource:

- Main investment in GPU
 1 DGX A100, 1 custom node with 10 A100s, 3 various GPU nodes
- Storage 320TB (mostly for ML workloads)
- 2TB & 1.5TB RAM on the two A100 machines

QC usage:

- Qiskit and qulacs heavily used
- Qiskit and related libraries packaged into singularity containers and delivered to users over NFS
 - Spares installation troubles & improves research reproducibility
- GPU utilized extensively in pulse-level simulation of qudits using qutip and JAX

Y. liyama

Example : Parton shower simulation

Parton shower simulation

Berkley group

1904.03196

Parton shower simulation : Result Berkley group

The effect of interference is observed in difference between blue and red histograms.

Quantum Dynamics Simulation

$$i\frac{d}{dt} |\psi(t)\rangle = H |\psi(t)\rangle$$

$$\Rightarrow |\psi(t)\rangle = \lim_{\substack{N \to \infty \\ N\Delta t = t}} \prod_{k=1}^{N} e^{-iH(k\Delta t)\Delta t} |\psi(0)\rangle$$

- Initial state of a many-body system: $\psi(0) \rangle \rightarrow$ Initial QC state
- Time evolution in unit time: $e^{-iH(k\Delta t)\Delta t} \rightarrow$ gate operation $\psi(t)$ can be obtained approximately

Note: The same calculation can be done classically.

- Initial state → State vector
- Time evolution \rightarrow Tensor calculation

But the size of the vector and tensor can be too large to practically calcuate: 2^{50} complex (128byte) numbers $\rightarrow 2^{54}$ bytes for 50 qubit system

Quantum neural network

SUSY Classification

Compared with BDT and DNN :

- BDT and DNN models
 optimized at each training set
 to avoid over-training
- Classical algorithms outperform at large training set

Performance of quantum algorithm comparable to BDT/DNN at small training set with small # of variables

Quantum circuit optimization : AQCEL

W. Jang et al. Quantum 6, 798 (2022). Github: UTokyo-ICEPP/aqcel

In physics simulation, many events are generated using a *Github: UTokyo-ICEPP/aqcel* single program with a fixed initial state.

Circuits can be shorter, namely the number of gate operations can be less, by optimising it depending on the initial state.

qc A for any initial states

General qc optimizer (qiskit, tket, etc...) <u>Preserve circuit equivalence</u> <u>AQCEL (Advancing Quantum Circuit by ICEPP and LBNL)</u> Optimize qc depending on initial states. Circuit equivalence is not always preserved. Strong reduction can be applied.

AQCEL result for parton shower simulation

Number of gates		Original	tket	AQCEL(CC)	AQCEL(QC,25%)
	CNOT	527	616 (117%)	178 (<mark>34%</mark>)	64 (<mark>12%</mark>)
	U1, U2, U3	362	331 (91%)	102 (<mark>28%</mark>)	24 (<mark>6.7%</mark>)
	Total	889	947 (107%)	280 (<mark>31%</mark>)	88 (<mark>9.9%</mark>)

F_{sim} (Fidelity in case of no QC noise) is not decreased by due to the approximation in AQCEL.

F_{meas} is much improved, ~0.4 \rightarrow 0.9, by the fewer operations, optimised by AQCEL.

Qutrit : Quantum trit

Energy level of transmon

By programming a customised pule, we can use $1\rangle \rightarrow 2\rangle \stackrel{*}{\Rightarrow} 2\rangle \rightarrow 1\rangle$ transition in IBM Quantum devices.

Multi controlled bit (Toffoli) gate using Qutrit

Qutrit : gate fidelity

Gate fidelity of Qutrit toffoli gate is measured on ibmq_kolkata

· Gate time

- · Qutrit Toffoli : 2.5 µs
- · Qubit Toffili : 3.1 µs
- · Fidelity after calibration
 - 0.928±0.007 (1 hour later)
 - · 0.896±0.036 (1day later)

Qutrit Toffili fidelity is 5-7% higher than Qubit Toffoli.

Ising Machines : Annealer

	Vender	Product	Number of bits
Quantum	D-Wave Systems	D-Wave Advantage	5760
	Hitachi	CMOS Annealing	147k (ASIC), 256k (GPU)
	Fujitsu	Digital Annealer	8192
Quantum- inspired (classical)	Toshiba	SQBM+	10M
X 7	Fixstars Amplify	Fixstars Amplify AE	131k (Full connect), < 4.3B (Partial connect)
	NTT	Coherent Ising machine	100k

Developed by Berkley group

Annealing tracking with ATLAS Data

Waseda university group

- minBias trigger
- Relative efficiency to offline tracking
- ~90% efficiency for pT > 1 GeV
- Annealing time is similar with read data and MC simulation

Average pre-processing time for data is ~0.6 sec. (single core, 11th Gen Intel(R) Core(TM) i9-11900K @ 3.50GHz)

Hardware development

S. Chen

Qubit as a sensor : Direct detection of light dark matter (Axion, darkphoton)

Full-stack development capability established in the first year

Packaging & Measurement

R&D of new exotic quantum devices

Conclusion

- Not only traditional computing services, ICEPP is carrying out researches on new technologies
 - HPC, Cloud (not in this talk), ML (not including this talk), QC.
- HPCs in Japan may potentially increase available resource for HEP, but more researches are needed to use them with full computing power.
- QC may outperform classical computer in future. We are try to use QC for different types of problems and seeing how well it works.

Quantum circuit optimization : AQCEL

W. Jang et al. Quantum 6, 798 (2022).

In physics simulation, many events are generated using a *Github: UTokyo-ICEPP/aqcel* single program with a fixed initial state.

Circuits can be shorter, namely the number of gate operations can be less, by optimising it depending on the initial state.

Example:

CX deleted

Bit-control deleted

Bit-control deleted

	1st CX	2nd CX	CCX
Quantum state	0 <mark>0</mark> 0 >	0 1 0 >	$\frac{1}{\sqrt{2}} 011>+\frac{1}{\sqrt{2}} 111>$
Control bit states	' 0'	'1'	'01', '11'
Deletion	CX	Bit-control	Bit-control