The 7th Asian Tier Center Forum, 2023

Driving massively scalable simulations of quantum circuits in supercomputers

Hoon Ryu, Ph.D. (E: elec1020@kisti.re.kr)

Principal Researcher Lead of Quantum Information R&D Group Korea Institute of Science and Technology Information

Existing Platforms of Physical Qubits

Current status of "circuit-based" quantum computers

Up-to-date Status of "Universal" Quantum Computers & Technical Roadmap

- Superconductor & trapped ions lead the industry
- Cloud-based service available for processors having physical qubits > 400
- Near-future processors will have over-1000 physical qubits

In Terms of Utilization

Quantum volume & Algorithmic qubits

of Physical Qubits ≠ the Real Capability

- Quantum volume & Algorithmic qubit $\log_2 V_Q = \underset{n \leq N}{\arg \max \{\min [n, d(n)]\}}$
 - → Indicators to represent the largest complexity of algorithm circuits that a QPU device can run

Date	VQ	Notes
2020 Aug	$64 = 2^6$ (6 qubits)	Falcon R4 "Montreal" (27 physical qubits) [1]
2020 Dec	$128 = 2^7$ (7 qubits)	Falcon R4 "Montreal" (27 physical qubits) [2]
2022 Apr	$256 = 2^8$ (8 qubits)	Falcon R10 "Prague" (32 physical qubits) [3]
2022 May	$512 = 2^9$ (9 qubits)	Falcon R10 "Prague" (32 physical qubits) [4]
[1] https://www.zdnet.com/article/ibm-hits-new-quantum-computing-milestone/		

- [2] https://twitter.com/jaygambetta/status/1334526177642491904
- [3] https://research.ibm.com/blog/quantum-volume-256
- [4] https://twitter.com/jaygambetta/status/1529489786242744320

Large-scale Logic, e.g., Ones in the NISQ Region?

 Needs for simulations of quantum circuits in a very huge computing environment → a.k.a. Supercomputer

Classical Treatment of Quantum Logic Operations

Classical representation of gate-based quantum circuits

- All complex-valued
- Huge memory consumption for representation of the unitary

 \rightarrow N = 20 \rightarrow 16 TB

→ Reduction can be done for specific cases; (e.g.) indices for nonzeros are known in advance)

Classical Treatment of Quantum Logic Operations

Classical representation of gate-based quantum circuits

Circuit-based Quantum Computing

- Unitary: only need to store those for universal gates
- State vectors (in principle) must be fully stored
- Cares must be put for conduction of matrix-vector multiplication
 - → The size of unitary is not equal to that of a state vector

• All complex-valued

Huge memory consumption for representation of the unitary

 \rightarrow N = 20 ~ 16 TBytes

Reduction can be done for specific cases; (e.g.) indices for nonzeros are known in

Classical Treatment of Quantum Logic Operations

Classical representation of gate-based quantum circuits

Matrix-vector Multiplier: Circuit-based Quantum Computing

• A simple example: Conduction of X (Pauli-X) gating

- Mapping of state indices where corresponding elements need to be updated according to the logic operation
 → Details depend on the type (category) of universal gates
- Size of circuits to be simulated
 - \rightarrow <u>Memory consumption</u> required by a quantum state

X gating against a N-qubit state

Large-scale Circuit Simulations

Objective of this talk

Memory Consumption of State Representation: **BIG DEAL!**

- A single 30-qubit state: 2³⁰ elements (amplitudes) x 16 Bytes = 16 GB
 - \rightarrow A 40-qubit one: 16 TB & A 50-qubit one: 16 PB
 - → Total memory (8,305 nodes) of the National Supercomputer of Korea: ~778.6 TB (~0.76 PB)

Large-scale Circuit Simulations in Classical Computers?

- A distributed computing system: physically separated nodes that are connected with network
 - → Can use the whole memory with communications (distributed computing)
- Can use storage & partially load the state vector as needed

What we cover in this talk...

- A SW package for classical simulations with a distributed computing
- A brief overview of the cloud-based service framework currently under development: the gateway for public service of the code package

Workload Parallelization

Distributed computing with Message Passing Interface (MPI)

Decomposition of State Vectors

- Decomposed blocks are stored in different memory locations \rightarrow Local to each MPI process
- (e.g.) Let's say that 2^N amplitudes of a **N**-qubit state are distributed over 2^M MPI processes
 - \rightarrow Each MPI has a local vector of 2^L =2^(N-M) amplitudes, where L indicates the qubit size of a local state

Index-dependent Parallel Operations of Universal Gates

- SU(4): U(**a**,**b**) where **a** & **b** are qubit-indices against which a gating operation is conducted
 - \rightarrow If both **a** & **b** <= **L**, then no communication is needed among inter-MPI processes: Embarrassingly Parallel (EP)
 - \rightarrow MPI communications must happen otherwise: operation against a local vector may update another local vectors allocated in other MPI processes. (e.g.) SWAP(2,4)

1

1

M = 1

L = 3

Workload Parallelization

Distributed computing with Message Passing Interface (MPI)

Index-dependent Parallel Operations of Gates (Cont.)

Ops. supporting a parallel computing (so far)

<u>State</u>	Prepares a single computational basis state.	
	The controlled-NOT operator	
	The controlled-Rot operator	
	The controlled-RX operator	
	The controlled-RY operator	
	The controlled-RZ operator	
<u>mard</u>	The Hadamard operator	
<u><</u>	The Pauli X operator	
<u>(</u>	The Pauli Y operator	
-	The Pauli Z operator	
<u>Shift</u>	Arbitrary single qubit local phase shift	
olledPhaseShift	The controlled phase shift.	
StateVector	Prepare subsystems using the given ket vector in the computational basis.	
	Arbitrary single qubit rotation	
	The single qubit X rotation	
	The single qubit Y rotation	
	The single qubit Z rotation	
	The single-qubit phase gate	
	The single-qubit T gate	

Hoon Ryu / Driving massively scalable simulations of quantum circuits in HPC

Workload Parallelization

Communication between MPI processes: State vectors

Scalability: Element-gate Operation

Index-dependent performance

Hoon Ryu / Driving massively scalable simulations of quantum circuits in HPC

Node Spec. 10

- Intel® Xeon Phi KNL 7250
- Single processor / 68 cores

Nat'l Supercomputer of ROK

(The NURION System)

Index-dependent performance

- 96GB DDR4

8,305 Computing Nodes

- Total DRAM ~ 0.76PB
- Up to 44-qubit circuits

Compiler & Setup

- MVAPICH2 2.3.6

- GNU 10.2
- MPI-only (64 procs/node)

Scalability: Element-gate Operation

Messages

- T (index of target qubit) is equal to or less than L (size of local qubit)
 - \rightarrow No data-transfer via MPI comm.

• T > L

- \rightarrow Data-transfer via MPI comm.
- \rightarrow Communication overhead increases as T >> L

Hoon Ryu / Driving massively scalable simulations of quantum circuits in HPC

 R_{1}^{1}

Scalability: A Realistic Case

Universal quantum circuit for N-qubit quantum gate

Nat'l Supercomputer of ROK (The NURION System)

Node Spec.

- Intel® Xeon Phi KNL 7250
- Single processor / 68 cores
- 96GB DDR4

8,305 Computing Nodes

- Total DRAM ~ 0.76PB
- Up to 44-qubit circuits

Compiler & Setup

- MVAPICH2 2.3.6

- GNU 10.2
- MPI-only (64 procs/node)

 R_1^n

R_{2}^{n+1} R_2^n R_2^1 R_{2}^{2} R_{2}^{3} R_3^2 R_{3}^{n+1} R_{3}^{1} R_{3}^{3} R_3^n R_{4}^{3} R_4^2 R_4^{n+1} R_4^1 R^n_{Δ} \oplus R_{5}^{2} R_{5}^{n+1} R_{5}^{3} R_{5}^{1} R_5^n R_n^3 R_n^2 R_n^1 R_n^n R_n^{n+1} Ф Ð . . .

 R_{1}^{3}

• 3*N*(N+1) + N*(N-1) parameters, where N = qubit size

 R_{1}^{2}

• Single case: All the R's = X & All the CNOT's are employed

 R_1^{n+1}

Hoon Ryu / Driving massively scalar

Scalability: A Realistic Case

Strategies for Service

National flagship project ongoing in ROK

Project Overview

- A full-stack & superconductor-based 50-qubit quantum computer (circuit-based)
 → Project launched in 2022-Jun under support from NRF & MSIT of ROK
- Research consortium and KISTI R&R:

Strategies for Service

Cloud-based service framework

Quantum Computing Service Framework Web Portal & User Interface **Quantum Computer** Service mesh API **User Storage Q-Resource API Server** QC Cloud Web Service Request 2 Service Platform Saga Database **Orchestrator** Registry Router **O-Device Controller** Account Resource Pulse Code 2 API API Resource Notification **Documents** Account Jobs Data esponse Request Service Service Service Service Pulse API ····· **Notification** Document Gateway 4 3 **Quantum Emulator** Storage Authentication JupyterLab Job API API Request Service Service Service Service Response 🙆 Q-programming web service **Q-Resource API Server** Micro Service Event Subscribe Event Publish **JupyterLab** API **Q-Emulator Controller** Message broker Response

Overview: Technical Components & Flow of KISTI-powered Cloud Service Framework RESOURCE SERVICE FRAMEWORK WEB INTERFACE

KRISS Powered
 The parallelized classical simulator (emulator?) will be served as one of resources
 → Beta-version service in early 2025

Summary & Remarks

A Massively-scalable Classical Quantum Circuit Simulator

- Message Passing Interface (MPI) to support distributed computing in HPCs
 → A brief discussion on state-mapping & parallelization scheme
- Demonstration: simulations of up to 41-qubit circuits
 - \rightarrow The Universal quantum circuit for N-qubit quantum gates
 - \rightarrow Possible to handle up to 44-qubit circuits in the 5th national HPC of ROK

Overview: KISTI-powered Cloud-based Service Framework

- Target resources: Classical simulator & KRISS-powered quantum computer
- Beta-version service of the simulator through our framework: Early 2025

Thank You for Attention