XTV3

Department of Computer Science, Chungbuk National University

The 7th Asian Tier Center Forum in 2023

Research on The Container Runtime of The CERN EOS Distributed File System in a Kubernetes Environment

Jung-Bin Kim

Data Computing Laboratory, Chungbuk National University, South Korea, jungbin.kim@cern.ch

2023.11.01(Wed)

Container Runtime in K8S

- The importance of choosing a container runtime in Kubernetes.
 - In a Kubernetes configuration, the container runtime is one of the key elements responsible for executing and managing applications.
 - The choice of container runtime can impact the overall performance of both applications and the system.

Research Title

- A Study of CERN EOS Distributed File System on Container Runtime Performance Analysis in a Kubernetes Environment
 - The research goal is identifying a suitable container runtime for CERN EOS, which is used for large-scale scientific research.
 - So, we performed a performance evaluation of different container runtimes.

Container Runtime

- The Architecture of Kubernetes : Kubernetes containerd runc
 - **containerd** is a tool that manages container runtimes.
 - runc actually do performs tasks such as cgroups, networking, and namespace isolation.

 $\nabla \exists$

Container Runtime

- There are 2 type of the container runtime, High- and Low-level container runtime.
- Which type of container runtime do the mentioned belong to?
 - containerd High-level container runtime
 - runc Low-level caontainer runtime

V3

Container Runtime

• Diverse container runtimes

- As shown in the picture, there are various container runtimes.
- It is expected that each container runtime has distinct characteristics that impact the system differently.

 \mathbf{R}

- Problems with Docker as a container runtime
 - Compared to using **containerd** directly as the container runtime, **Docker-Engine** goes through an additional **Docker** intermediate layer.

• Experimental environment

- The experiments were conducted on a typical Kubernetes cluster prior to evaluating the container runtime for CERN EOS.
 - Because of measuring how performance varies as the choice of container runtime.

Server Specification		
Chassis	Power Edge R440	
OS	CentOS 7	
CPU	Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz	
RAM	128GB	
Disk	960 GB SSD (Boot), 2 TB HDD (Data)	

Container Runtime Version			
containerd	1.6.19		
cri-o	1.26.1		
Docker Engine	23.0.3		

* To use docker-shim, we used version 1.23.0 of Kubernetes.

Analytics - typical Kubernetes cluster

- Evaluation of Container Runtimes Container Runtime
 - containerd is generally stable and high performance.
 - Docker-Engine is similar to containerd.
 - CRI-0 performs poorly compared to the other two container runtimes.

* Higher is good performed

Analytics - typical Kubernetes cluster

- Evaluation of Container Runtimes Total Running Time
 - containerd's is 284 seconds and has the fastest running time
 - Docker-Engine's is 294 seconds and has the lowest running time
 - CRI-O's is 289 seconds and has the middle running time

Total Running Time

 \mathbf{R}

^{*} Lower is good performed

Analytics - typical Kubernetes cluster

• The summary about Evaluation of Container Runtimes

Bandwidth and IOPS containerd > Docker-Engine > CRI-0

Total Running Time

containerd < CRI-0 < Docker-Engine</pre>

- Total running time is not always proportional to bandwidth and IOPS.
 - Docker-Engine has higher bandwidth than CRI-0, but higher total execution time.
- Docker-Engine and containerd are similar in bandwidth and IOPS, but has relatively large differences in total running time.
 - This is likely due to the overhead of **Docker-Engine** actually using **containerd**.

Analytics

• Experimental environment for CERN EOS K8S Cluster

• To evaluate the container runtime for CERN EOS, experiments were designed with a different environment from the previous ones.

Server Specification		
OS	CentOS 7	
CPU	Intel(R) Xeon(R) CPU E5-2680 2.70GHz	
RAM	96GB	
Disk	600GB HDD(Boot), 2.7 TB RAID Volume * 2	
Network	10Gbit/s	

Analytics - CERN EOS K8S Cluster

- Evaluation of Container Runtimes Uploading files from the local system to EOS
 - The bandwidth Docker-Engine > containerd > CRI-0
 - The execution time Docker-Engine < containerd < CRI-0

Analytics - CERN EOS K8S Cluster

- Evaluation of Container Runtimes Downloading files from EOS to the local system
 - The bandwidth containerd > Docker-Engine > CRI-0
 - The execution time containerd < CRI-0 < Docker-Engine

EOS-local duration seconds

* Higher is better

 \mathbf{R}

Analytics - CERN EOS K8S Cluster

• The summary about Evaluation of Container Runtimes

• It is concluded that integrating CERN EOS into Kubernetes using **containerd** is the most stable option.

- In the scenario of uploading files from the local system to EOS,
 - Docker-Engine unexpectedly shows the best performance with marginal differences.
- In the scenario of downloading files from EOS to the local system,
 - Docker-Engine shows a notably unstable behavior and persists even in subsequent evaluations

Conclusion

- What shows the result of this research?
 - The performance of various metrics changes depending on the container runtime in a Kubernetes environment.
 - It demonstrates the need to choose the appropriate container runtime for the situation.
 - It provides performance evaluations to help users choose the appropriate container runtime.
- What is future plans?
 - we will do performance analysis with more rigorous evaluation using precise criteria.
 - We will analyze more container runtimes with various benchmark tools to provide users with practical performance evaluations.

[Runtime – Container Runtime, CNCF Cloud Native Interactive Landscape]

Department of Computer Science, Chungbuk National University

Thank you!

Jung-Bin Kim

jungbin.kim@cern.ch

2023.11.01(Wed)