Paarl Africa Underground Laboratory Introduction

General Meeting-June 26, 2023

The context: Previous publications

2015: Towards the South African Underground Laboratory :

Physics Procedia Volume 61, 2015, Pages 586-590

Towards the South African Underground Laboratory (SAUL) ★

S.M. Wyngaardt ^a, R.T. Newman ^a, R. Lindsay ^b, A. Buffler ^c, R. de Meijer ^b, P. Maleka ^d, J. Bezuidenhout ^e, R. Nchodu ^d, M. van Rooyen ^a, Z. Ndlovu ^a

^a Department of Physics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602

^b Department of Physics, University of the Western Cape, Modderdam Road, Private Bag X17, Bellville, 7530

LABORATOIRE DE PHYSIQUE SUBATOMI

- ^c Department of Physics, University of Cape Town, Rondebosch, 7700, South Africa
- ^d iThemba LABS, P.O. Box 722, Somerset West, 7129, South Africa
- ^e Military Academy, Private Bag X2, Saldanha, 73.95

Subject 🗸 Journals Books Major Reference Works Resources For Partners 🗸 Open Access About Us 🗸 Help 🔨

Exotic Nuclei. pp. 478-485 (2019) | 🔐

2019: Latest Updates on Developments of the

Underground Neutrino Facility in South Africa

B No Access

Latest Updates on Developments of the Underground Neutrino Facility in South Africa

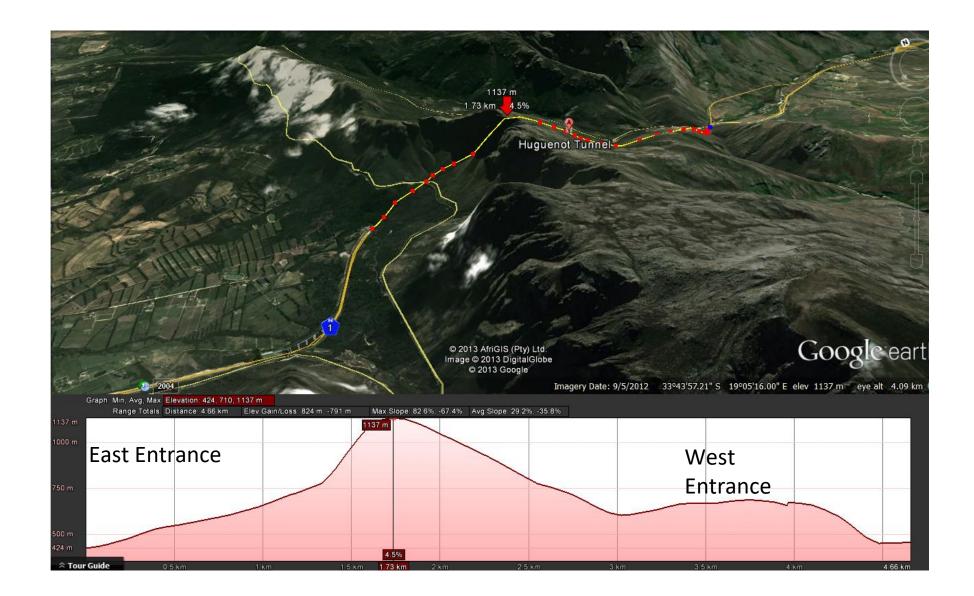
Z. Z. Vilakazi, S. M. Wyngaardt, R. T. Newman, R. Lindsay, A. Buffler, R. de Meijer, P. Maleka, J. Bezuidenhout, R. Nchodu, M. van Rooyen and Z. Ndlovu

World Class Universities

Stellenbosch University

University of Cape Town

University of the Western Cape


The Huguenot tunnel

1300m Du Toitskloof mountain with ~800 m of rock overburden for the Huguenot tunnel

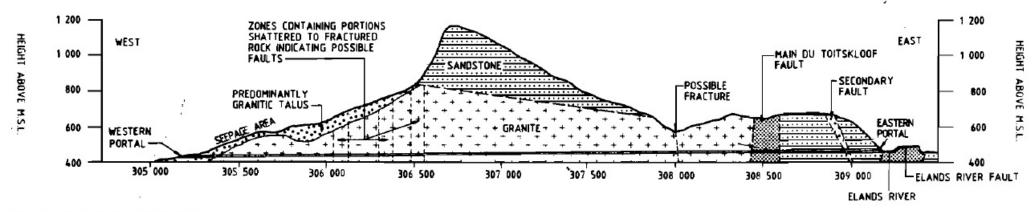
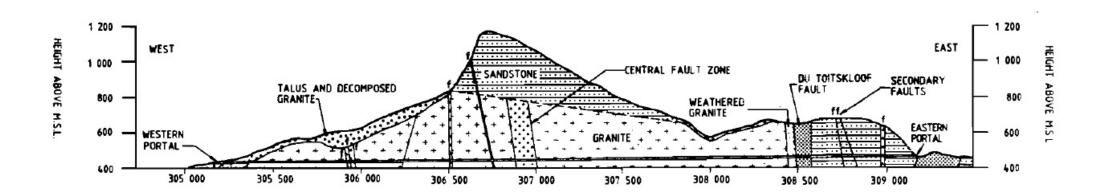
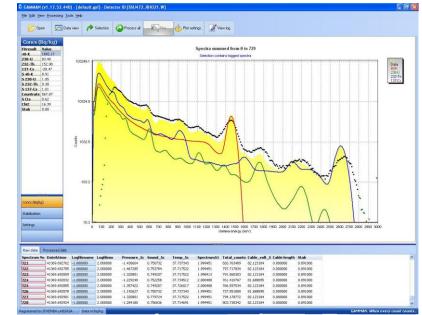



Fig 2: Pre-pilot bore geology

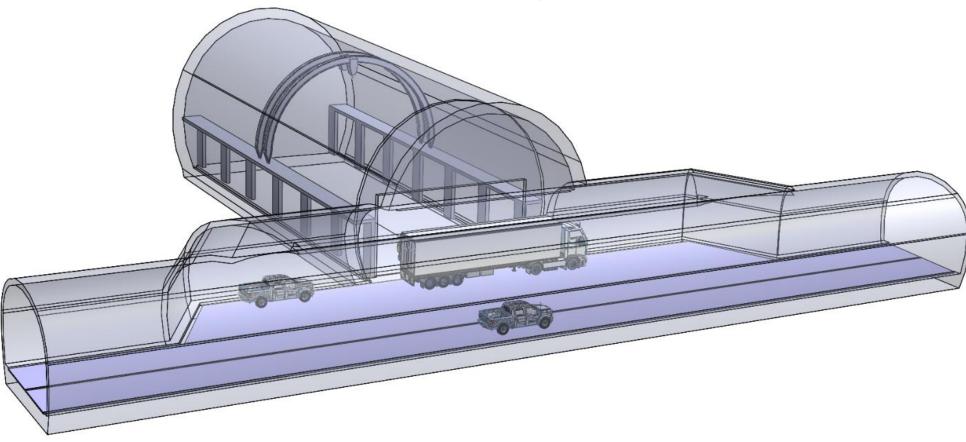


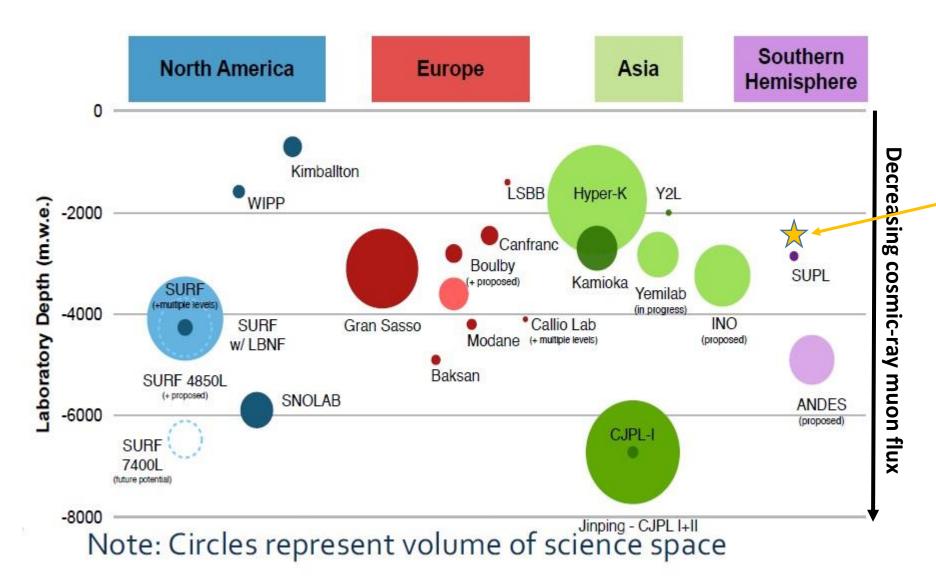
The range mostly consists of Table Mountain sandstone, an erosion-resistant quatzitic sandstone

PAUL in the Huguenot Tunnel


The design of LSM-Modane was used for the purpose of the illustration

The future underground laboratory is currently being designed; It directly involves the company operating the Huguenot tunnel (SANRAL) since earthworks and infrastructure construction are planned over the next five to ten years.

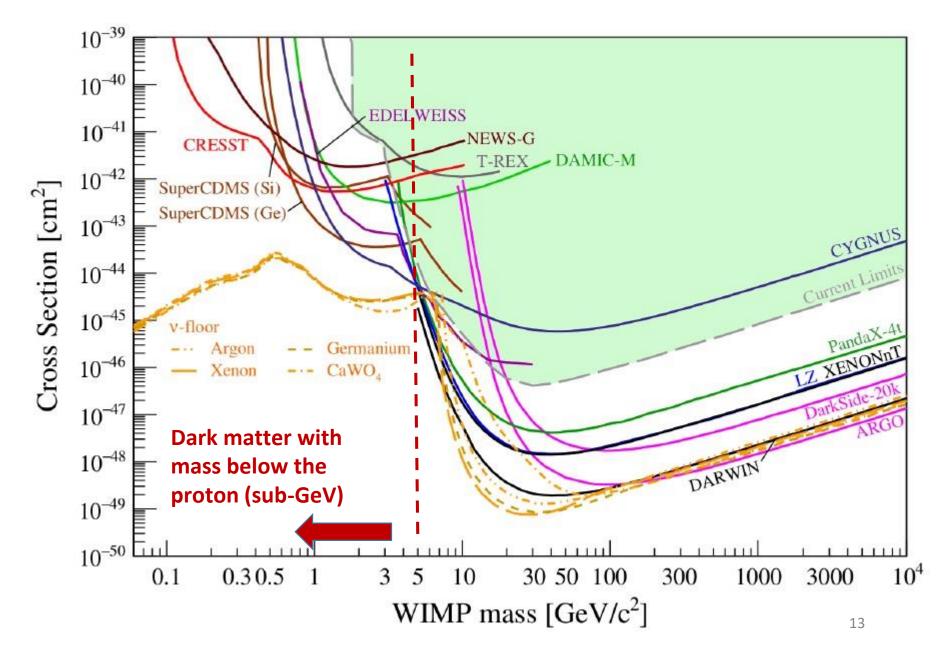

Gamma-ray mapping in the Huguenot tunnel, 2013 Phys. Proc. 61 (2015) 586-590


The concentrations measured at three sites confirm that the level of radon is well below any degree of consideration, with a mean level of radon no more than ~50 Bqm⁻³

Mock up of PAUL facility

A possible 600m² laboratory (40x16x16 m³) in the Huguenot tunnel. Courtesy: Joaquin Venturino (CNEA), April 2023.

Lab Depth (mwe) vs Decreasing cosmic-ray muon flux


For PAUL, it is only an estimate as the cosmic-ray muon flux is not yet well measured, nor the real rock overburden known exactly (~800 m, ~2000 mwe)

Potential of Astroparticle research

<u>The challenge is to</u> develop detectors with very low energy thresholds and excellent control over detector backgrounds.

<u>Technology</u>

- Charge Coupled Devices (CCDs), Skipper-CCD (SENSEI, DAMIC, OSCURA)
- ✓ Solid-state cryogenic detectors (Ge, Si, ..), operating at T<15 mK, (Edelweiss)
- ✓ Noble Liquid target (Xe, Ar)

Other Research Purposes of great interest in ZA

- Measurement of extremely low radiation levels. These very sensitive detectors, able to detect levels of radiation a millionth of the natural radiation of the human body. Researchers involved in this work can contribute to many needs in South Africa for accurate measurements, such as the detection of the radioactive gas radon that has been identified as a major radiation hazard in South African underground mines.
- The research of **endolithic bacteria** and technologies for bio-leaching
- Astrobiology, examining the impact of radiation (or the lack of it) to evolutionary processes or formation of bio-aerosols.
- In glaciology, the study of ice samples from the Arctic, Antarctic etc. allows mapping of the evolution of climatic parameters and contamination both in space and over time for the last centuries. The measurement of 137Cs and 241Am is the only way to get a precise dating of ice.
- The Cape Supergroup (in Natal and the Northern Transkei), where the lab would sit, has been identified as a region of interest for geothermal research.

\rightarrow see Lucas Terray talk

Conclusion on PAUL opportunity

PAUL is foreseen as an open **international laboratory**, a unique opportunity for Africa devoted to the development of a competitive science in the region. It has the advantage that the location, **the Huguenot tunnel**, exists already and the geology and the environment of the site is appropriate for an experimental facility.

Perform an experiment of direct dark matter detection in an underground laboratory located in the Southern Hemisphere is **to compare the eventual systematic errors or modulation with respect to the same detector in the Northern Hemisphere**. Any systematic error or annual modulation correlated to a seasonal variation will have an opposed phase, giving the opportunity to discriminate them with respect to a dark matter signal. It also opens different regions of parameter space when searching for daily modulations

The other advantage to build an UL facility in South Africa is to **combine the direct detection with indirect dark matter detection from radio astronomy** surveys that South Africa is leading (SKA, MeerKAT, etc.). Therefore, the strong synergy between the astrophysical (indirect) probes and Paarl Africa Underground Laboratory (direct probe) can jointly measure and constrain dark matter effect, which may shed lights on new physics.

Publications and communications in 2023

June 21st: arXiv:2306.12083 [hep-ex]

Paarl Africa Underground Laboratory

Robert Adam^{5,1}, Claire Antel¹⁴, Munirat Bashir²³, Driss Benchekroun¹⁸, Xavier Bertou²⁰, Markus Böttcher⁸, Andy Buffler⁷, Andrew Chen⁴, Rouven Essig²², Jules Gascon¹², Mohamed Gouighri¹⁹, Trevor Hass¹, Gregory Hillhouse⁶, Abdeslam Hoummada¹⁸, Anslyn John¹, Pete Jones³, Youssef Khoulaki¹⁸, Luca Lavina¹³, Lerothodi Leeuw², Mantile Lekala⁹, Robert Lindsay², Roy Maartens⁹, Yin-Zhe Ma¹, Fairouz Malek^{11,*}, Peane Maleka³, Jacques Marteau¹², Rachid Mazini²¹, Thebe Medupe⁸, Bruce Mellado Garcia⁴, Marcello Messina¹⁵, Lumkile Msebi², Chilufya Mwewa²⁶, Zina Ndabeni^{3,7}, Richard Newman¹, George O'Neill¹⁶, Fabrice Piquemal¹⁰, Lydia Roos¹³, Daniel Santos¹¹, Silvia Scorza¹¹, Fedor Simkovic²⁴, Ivan Stekl²⁵, Yahya Tayalati¹⁷, Smarajit Triambak², Zeblon Vilakazi⁴, Shaun Wyngaardt¹, JJ van Zyl¹

¹Stellenbosch University-South Africa; ²University of the Western Cape-South Africa; ³iThemba LABS-South Africa; ⁴School of Physics, University of the Witwatersrand Johannesburg-South Africa; ⁵Square Kilometre Array Observatory-South Africa; ⁶Botswana International University of Science and Technology-Botswana; ⁷University of Cape Town-South Africa; ⁸North West University Potchefstroom-South Africa; ⁹The University of South Africa; ¹⁰LP2I, CNRS-IN2P3, Université Bordeaux-France; ¹¹LPSC, CNRS-IN2P3, Université Grenoble Alpes-France; ¹²IP2I, CNRS-IN2P3, Université Claude Bernard Lyon-France; ¹³LPNHE, CNRS-IN2P3, Sorbonne Université Paris-France; ¹⁴ Université de Genève-Switzerland: ¹⁵ LNGS, Gran-Sasso-Italy; ¹⁶European Spallation Source ERIC, Lund,-Sweden; ¹⁷Mohammed V university of Rabat-Morocco; ¹⁸Hassan II university of Casablanca-Morocco; ¹⁹Ibn Tofail University of Kenitra-Morocco: ²⁰Centro Atómico Bariloche, CNEA/CONICET-Argentina; ²¹Institute of Physics, Academia Sinica, Taipei-Taiwan; ²²Stony Brook University, USA: ²³Ibrahim Badamasi Babangida University-Nigeria; ²⁴Comenius University Bratislava-Slovakia; ²⁵IEAP CTU Prague-Czechia;

²⁶Brookhaven National Laboratory, USA

*Contact editor:fmalek@in2p3.fr

Workshop, congress and conferences

1)- Underground Labs Workshop at Aussois: June 21-23

2)- French Physics Society General Congress, Paris, 3-7 July

3)- EAS Crakow, July 10-14

4) High Energy Astrophysics in Southern Africa (HEASA) July 31st

5) TAUP 2023, August 28 – September 1, 2023

6) African Nuclear Physics Conference, 29 Nov – 3 Dec in Kruger National Park.

Applications

- <u>May 2023</u>: 2 year bilateral project, seed budget to start networking: PHC Protea (FR-ZA) application (results in August 2023)
- June 19th: CNRS/IN2P3 support for building an IRN (International Research Network)
- Plan:

Open call: December 6th: <u>Strengthen the bilateral cooperation on research</u> <u>infrastructures with :HORIZON-INFRA-2024-DEV-01</u>