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Introduction - The Alpha Magnetic Spectrometer Experiment

• General-purpose high-energy particle physics 

detector onboard the ISS [1].

• Installed on 19 May 2011

• Collected over 215 billion cosmic ray events

• Main objectives:

• Searching for antimatter

• Investigating dark matter

• Analyzing cosmic rays

[1]    S. Ting, Nuclear Physics B - Proceedings Supplements, Oct. 2013, doi: 10.1016/j.nuclphysbps.2013.09.028 2



Motivation – Identifying Positrons at High Energies

These results can not be explained by traditional cosmic ray models.
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To continue testing theoretical models, a purer 
measurement at higher energies is needed.

Difficulty in Separating Positrons from Protons at 
TeV Energies:

• Class Imbalance:
• Around 1 TeV, ~4700 protons per positron.

• Label Inaccuracy / Detector Limitations:
• TRD in inaccurate at separating positrons/electrons from 

protons at TeV energies.
• ECAL depth not enough: only captures 75% of an 

electromagnetic shower’s energy at 1 TeV [4].
These results can not be explained by traditional cosmic ray models.

?
Dark Matter

or
new Astrophysics?

Model based on positrons from cosmic 
ray collisions [3]

AMS-02 [2]

Positrons from
cosmic ray collisions

[2]    AMS Collaboration et al., Phys. Rep., vol. 894, pp. 1–116, Feb. 2021, doi: 10.1016/J.PHYSREP.2020.09.003.
[3]    R. Trotta et al., Astrophys. J., vol. 729, no. 2, p. 106, Mar. 2011, doi: 10.1088/0004-637X/729/2/106.



Our Goal – Deep Learning to Remedy These Problems
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• Evaluate the potential of 4 deep learning architectures to separate 
electrons/positrons from protons:

• Multilayer Perceptron (MLP)
• Convolutional Neural Network (CNN)
• Residual Neural Network (ResNet)
• Convolutional Vision Transformer(CvT)

• Train a model to have a reduced dependency on energy.
• To train a model on low energy and have it perform well on high energy data.

• Offer a deep learning model as a viable alternative for proton rejection in 
future physics analyses at AMS.



Introduction – AMS Subdetectors
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Electrons and Positron practically
the same for our purposes



The AMS Electromagnetic Calorimeter

[5]    C. Adloff et al., Nucl Instrum Methods Phys Res A, vol. 714, pp. 147–154, Jun. 2013, doi: 10.1016/J.NIMA.2013.02.020 6

• Particles shower when they enter the 
ECAL.

• Lead-scintillating fibres, running along 
one direction [5], generate light.

• Photomultiplier tubes at the end collect 
the generated light.

• Measures Energy Deposition
• 3D imaging capability

• 648 x 648 x 166 mm3

• Depth of 17 radiation lengths
• 18 cells for depth, 72 cells for the x/y axis.

• 18 layers, 10 for X axis, 8 for y axis
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ECAL – How We Handle ECAL Data

Top-Down View 3D View 2D View

Reformat

Dimensions: 1 x 18 x 72
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ECAL – Example Shower Images
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ECAL – Average of Showers
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Evidence of a domain 
shift: between above 
& below 1 TeV 
particles.

ECAL – Average of Showers
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We extract 4 datasets from AMS ROOT files to be used in Python using a script with defined cuts:

1. MC with a generated energy between 200 – 600 GeV.

2. MC with a reconstructed energy between 200 – 2000 GeV.

3. MC with a reconstructed energy between 200 – 2000 GeV + Additional variables from Tracker.

4. ISS data with a reconstructed energy between 50 – 70 GeV.
• Used TRD as an independent method to get electrons and protons.
• Energy range selected to get a pure (reliable labeling) and large dataset (large amounts of electrons and protons at this energy

range in space).

ECAL – Datasets

Source Dataset Below 1 TeV (in Millions) Above 1 TeV (in Millions)
Electrons Protons Electrons Protons

MC 200-600 GeV, Generated 4.60 0.16 0 0
MC 200-2000 GeV, Reconstructed 7.03 3.90 2.69 1.19
MC 200-2000 GeV, Rec. + Tracker Variables 7.51 3.98 2.89 1.21
ISS 50-70 GeV, Reconstructed 0.03 1.19 0 0

Number of events (i.e. images) in each dataset.
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Data Influences Training Methodology

1. For dataset containing MC particles with gen. energy between 200 – 600 GeV:
• Dataset split 60/20/20 into train/validation/test sets.

2. For dataset containing ISS data particles with rec. energy between 50 – 70 GeV:
• Dataset split 60/20/20 into train/validation/test sets.

3. For dataset containing MC particles with rec. energy between 200 – 2000 GeV:
• Dataset split into < 1 TeV and > 1 TeV sets.
• < 1 TeV split 50/50 into train/test sets.
• > 1 TeV split into 50/50 validation/test sets.
• Thus, models that regularized, generalized, and focused on shower shape would perform 

better on the unseen higher energy events in the validation set. After training, models tested 
on both test sets.
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Simple Machine Learning Models with Scikit-learn [9]

• To provide an initial benchmark for our deep learning models.

• Logistic Regression (LogReg)

• Support Vector Machine (SVM)

• Histogram-based gradient boosting decision tree (HistBDT)

[9]    F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, vol. 12, no. 85, pp. 2825–2830, 2011.
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Deep Learning Models with PyTorch [10]
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SimpleMLP

SimpleCNN

ResNet18  (also ResNet10) [11]

[10]    A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” in Adv Neural Inf Process Syst 32, 2019, pp. 8024–8035. 
[11]    K. He, X. Zhang, S. Ren, and J. Sun, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016
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The pipeline of the CvT architecture [14]. (a) Overall architecture, showing the
hierarchical multi-stage structure facilitated by the Convolutional Token
Embedding layer. (b) Details of the Convolutional Transformer Block, which
contains the convolution projection as the first layer.

ML Models – Convolutional Vision Transformer

[14] H. Wu et al., “CvT: Introducing Convolutions to Vision Transformers,” Proc. IEEE Int. Conf. Comput. Vis., pp. 22–31, 2021, doi: 10.1109/ICCV48922.2021.00009
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Attention Mechanism (AM)
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Attention Mechanism (AM)

• V (Value): Represents the output values, i.e., the AM’s outputted

feature maps, that are to be weighted by the attention scores.

• Q (Query): Representation of the features that the AM is focusing on.

• K (Key): Representation of each element of the feature maps.

• Dot product of Q and K gives us the attention scores, which measure

similarity between the query and each element of the feature maps.

• Divided by 𝑑! to normalize the output values.

• AM can learn to focus on regions of the feature map that are most

discriminative for a class.
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The pipeline of the CvT architecture [14]. (a) Overall architecture, showing the
hierarchical multi-stage structure facilitated by the Convolutional Token
Embedding layer. (b) Details of the Convolutional Transformer Block, which
contains the convolution projection as the first layer.

ML Models – Convolutional Vision Transformer

[14] H. Wu et al., “CvT: Introducing Convolutions to Vision Transformers,” Proc. IEEE Int. Conf. Comput. Vis., pp. 22–31, 2021, doi: 10.1109/ICCV48922.2021.00009
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• Combines the benefits of CNNs (translation equivariance) with Transformers (better generalization,
better focus on key areas, global context).

• Important for ECAL showers è shower “images” show different deposition shapes depending on the
energy and type of particle, angle of incidence, and point of entry.

• Our implementation slightly modified è uses 4 Transformer blocks (Stage 3 having 2 blocks), and 1,
3, and 6 attention heads for each stage, respectively.

• We use 2 variants:
• CvT & Phys+CvT
• Phys+CvT (small kernels)

ML Models – Convolutional Vision Transformer

Stage 1 Stage 2 Stage 3

CvT & 
Phys+CvT

Kernels 2 x 6 3 x 4 3 x 3
Stride lengths 1 x 2 1 x 2 1 x 1

Phys+CvT
(small kernels)

Kernels 3 x 1 4 x 3 3 x 3
Stride lengths 1 x 1 2 x 1 1 x 1
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Hyperparameter Value

Batch Size 128

No. of Workers 4

Loss Function Binary Cross Entropy
with Logits, Weighted

Activation Function after 
Last Layer Sigmoid

Optimizer Adam

Learning Rate for 
Optimizer 1.0e-4

Early Stopping Patience 20

Early Stopping Tolerance 1.0e-5

Model
(1 Channel)

Trainable 
Parameters

SimpleMLP 192,001

SimpleCNN 106,317

ResNet10 4,900,033

ResNet18 11,170,753

CvT 4,895,873

Phys+CvT 4,896,641

Phys+CvT
(Small Kernels) 4,895,489

ML Models – Some Values
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ML Models – Performance Metrics

1. Loss and Accuracy Plots
2. Proton Rejection
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• Proton rejection is then:
• Proton Rejection = Total number of protons

Number of proton misiden7fied

• We plot proton rejection vs. various electron efficiencies.

• We plot proton rej. vs. energy for a given electron efficiency to get an
in-depth understanding of which energy bins our models perform
poorly at.

ML Models – Proton Rejection
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Experiments & Results
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Exp 1 – Simple ML vs. Deep Learning Models

• Performed on Dataset 1 (MC particles with generated energy between 200 – 600 GeV).
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Exp 1 – Simple ML vs. Deep Learning Models

Models AMS BDT AMS LHD LogReg SVM HistBDT SimpleMLP SimpleCNN ResNet18
Accuracy 0.973 0.967 0.843 0.911 0.998 0.988 0.999 0.998

• Performed on Dataset 1 (MC particles with generated energy between 200 – 600 GeV).

• Evaluated average accuracy ( !!"##$%&'( !')**+,+$-
."&)' .$*& /$&) è Not very helpful
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Exp 1 – Simple ML vs. Deep Learning Models

• Performed on Dataset 1 (MC particles with generated energy between 200 – 600 GeV).

• Evaluated average accuracy ( !!"##$%&'( !')**+,+$-
."&)' .$*& /$&) è Not very helpful

• Plotted Proton Rej. vs.Electron Efficiency è ResNet18 beats all models, Simple ML perform poorly

• Conclusion: Clear performance benefit of using DL models over simple ML models.



One Caveat: AMS Models were trained on data, not MC. A fairer 
comparison at the end.
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Exp 2 – Comparison on 1st Reconstructed Energy Dataset

• Plotted loss and accuracy curves.
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Exp 2 – Comparison on 1st Reconstructed Energy Dataset

• Plotted loss and accuracy curves (zoomed and scaled) è CvT performs the best on val set.
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Exp 2 – Proton Rej. vs. Electron Efficiency

At 90% electron efficiency, CvT outperforms the ResNet18,
SimpleCNN, AMS BDT, AMS Likelihood, and SimpleMLP models by
factors of 5, 14, 153, 386, and 789, respectively

At 90% electron efficiency, CvT outperforms the AMS BDT, AMS
Likelihood, ResNet18, SimpleCNN, and SimpleMLP models by
factors of 5, 7, 14, 45, and 1666, respectively.
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Exp 2 – Proton Rej. vs. Energy

The CvT completely completely rejects all
available protons.

The CvT rejects all protons above 350 GeV.

Conclusion: CvT performs the best, generalizes from below 1 TeV to above 1 TeV the best.
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Exp 3 – 2 Channels vs. 1 Channel Representation

At 90% electron efficiency, the 1 channel CvT
outperforms the 2 channel CvT by a factor of 2.

At 90% electron efficiency, both the 1 channel CvT
and 2 channel variants perform equally.

• 2 x 18 x 72 vs. 1 x 18 x 72
• Results could be due to stochastic factors (initial random weight initialization).
• 1 channel has fewer input values and slightly reduced number of training parameters.
• Conclusion: We switch to 1 channel representation for the remainder of the experiments.



How much data do we need to train the CvT?
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Exp 4 – CvT Performance on Smaller Training Sets

Steady increase in performance as more training data is used. Additionally, at least 
0.82 million training events needed to completely outperform AMS models.

• Amount of ISS Data < Amount of MC Data.

• Question: How much data is needed to effectively train a CvT for our case?

• Experiment: Train on smaller amounts of train data, validate and test on the same val and test sets.
• Conclusion: The more, the merrier.
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Developing the Physics-based Feature Engineering

• Results of previous experiment motivated the need to improve learning efficiency.
• Since showers develop in a similar way è Map their trajectory and only extrapolate important pixels.
• Use 5 variables from the Silicon Tracker: X-, Y-, Z-coordinates, zenith, azimuth.
• Use spherical coordinates to map trajectory in 3 dimensions.



36

Developing the Physics-based Feature Engineering
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Exp 5 – Comparison on 2nd Reconstructed Energy Dataset

• Performed on Dataset 3 (MC particles with reconstructed energy between 200 – 2000 GeV + Tracker Variables).
• Added Phys+CvT and Phys+CvT (small kernels)
• Dropped SimpleMLP as performance was consistently bad.
• Added ResNet10 è Maybe ResNet18 was overfitting.

Model
(1 Channel)

Trainable 
Parameters

SimpleMLP 192,001

SimpleCNN 106,317

ResNet10 4,900,033

ResNet18 11,170,753

CvT 4,895,873

Phys+CvT 4,896,641

Phys+CvT
(Small Kernels) 4,895,489
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• Plotted loss and accuracy curves for ResNets è No significant difference between ResNets

Exp 5 – Comparison on 2nd Reconstructed Energy Dataset
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• Plotted loss and accuracy curves for PhysCvTs è CvT & Phys+CvT perform similarly.

Exp 5 – Comparison on 2nd Reconstructed Energy Dataset
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Exp 5 – Proton Rej. vs. Electron Efficiency

At 90% electron efficiency, CvT outperforms the Phys+CvT, Phys+CvT
(small kernels), ResNet18, ResNet10, SimpleCNN, AMS BDT, and AMS
Likelihood models by factors of 8, 12, 24, 25, 74, 600, and 1581,
respectively.

At 90% electron efficiency, CvT performs equally with the Phys+CvT,
outperforms the ResNet10 and Phys+CvT (small kernels), which perform
equally, by a factor of 2 and outperforms the AMS BDT, RestNet18, AMS
Likelihood, and SimpleCNN models by factors of 3, 5, 6, and 23,
respectively.

Conclusion: ResNet10 comparable to ResNet18. Phys+CvT does not improve over CvT.



Does Phys+CvT perform better on limited 
amounts of MC?
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• Plotted loss and accuracy curves after training on 0.29 million particlesè Phys+CvT performs the best on Val set.

Exp 6 – Phys+CvT Performance on a Smaller Training Set
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Exp 6 – Proton Rej. vs. Electron Efficiency

None of the models trained on 5% of the train set compare to the DL
models trained on 100% of the data. Phys+CvT (5%) did worse than CvT
(5%).

The Phys+CvT trained on 5% of the train set outperforms the CvT trained
on the same amount of data and is close in performance to the DL models
trained on 100% of the train set.

Conclusion: Phys+CvT did not improve efficiency on MC data.
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Exp 6 – Proton Rej. vs. Electron Efficiency

Conclusion: Phys+CvT did not improve efficiency on MC data.

At lower energies, the Phys+CvT model trained on 0.29 M particles falls rapidly below 800 GeV.



Does Phys+CvT perform better on limited 
amounts of ISS data?
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We extract 4 datasets from AMS ROOT files to be used in Python using a script with defined cuts:

1. MC with a generated energy between 200 – 600 GeV.

2. MC with a reconstructed energy between 200 – 2000 GeV.

3. MC with a reconstructed energy between 200 – 2000 GeV + Additional variables from Tracker.

4. ISS data with a reconstructed energy between 50 – 70 GeV.
• Used TRD as an independent method to get electrons and protons.
• Energy range selected to get a pure (reliable labeling) and large dataset (large amounts of electrons and protons at this energy

range in space).

ECAL – Datasets

Source Dataset Below 1 TeV (in Millions) Above 1 TeV (in Millions)
Electrons Protons Electrons Protons

MC 200-600 GeV, Generated 4.60 0.16 0 0
MC 200-2000 GeV, Reconstructed 7.03 3.90 2.69 1.19
MC 200-2000 GeV, Rec. + Tracker Variables 7.51 3.98 2.89 1.21
ISS 50-70 GeV, Reconstructed 0.03 1.19 0 0

Number of events (i.e. images) in each dataset.
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Exp 7 – Performance on ISS Data

The AMS BDT outperforms the Phys+CvT, ResNet10, ResNet18, SimpleCNN,
and CvT models by factors of 4.11, 4.69, 4.72, 7.87, and 9.21, respectively.

• Tested our MC trained and validated models on full ISS dataset.
• Conclusion: AMS models, which were trained on ISS data, perform better.
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• Plotted loss and accuracy curves (zoomed and scaled) è CNN overfits the most, Phys+CvT performs the best on Val set.

Exp 7 – Train/Val/Test on ISS Data
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The Phys+CvT model outperforms the ResNet10, ResNet18, CvT, AMS BDT, SimpleCNN, and AMS Likelihood models by 
factors of 1.74, 1.79, 2.38, 2.53, 3.18, and 3.39, respectively

Exp 7 – Train/Val/Test on ISS Data

Conclusion: Phys+CvT was successful in being more data efficient on ISS Data. All DL models (except SimpleCNN) outperform 
the current AMS models, albeit on this very, very small range of data.
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Summary

• We evaluated the potential of deep learning to separate electrons (and by extension
positrons) from protons.
• Used an MLP, CNN, two ResNets, a CvT, built a physics-based feature engineering, and evaluated it

using two CvT variants.

• With the 1st Dataset (MC 200 – 600 GeV, generated):
• We showed DL models outperformed Simple ML models.

• With the 2nd Dataset (MC 200 – 2000 GeV, reconstructed):
• We showed the CvT has an excellent performance on the 0.2 – 2 TeV (while only being trained on

0.2 – 1 TeV)
• Demonstrated CvT’s need for large amounts of training data.
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Summary

• With the 3rd Dataset (MC 200 – 2000 GeV, reconstructed + Tracker variables):
• We developed a feature engineering, though it was not successful at making the CvT more data 

efficient on MC data.
• We also showed the ResNet10 had comparable performance to the ResNet18, but was not 

comparable to CvT models.

• Finally, with the 4th Dataset (ISS 50 – 70 GeV, reconstructed):
• We showed further evidence of the discrepancies between MC and ISS data by noting the poor 

performance of MC-trained models against ISS data-trained models.
• Outperformed AMS models after training DL models on a small sample of ISS data.
• For this small range of ISS data, the feature engineering improved learning performance for the 

CvT.
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In conclusion.

We have provided empirical evidence of newer architectures, such as the 
Convolutional vision Transformer, being a viable alternative to the 

commonly used BDTs and CNNs and provided evidence that they show 
promise for future use in the AMS experiment.
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Future Direction

• Use 2 Additional Datasets: Test Beam and MC of Test Beam.
• Train on Test Beam, Test on MC.
• Train on MC, Test on Test Beam.
• Cross Reference and See Performance.



54

Future Direction

• Further hyperparameter optimization.

• Tackling domain shift (from below 1 TeV to above 1 TeV and potentially MC to ISS) directly using an unsupervised
domain adaption technique [15]

The loss on the domain is subtracted from the loss on the class label, and therefore, minimizing the total loss 
results in a balance between reducing the class loss but keeping the domain loss up to get an overall minimal 
value. This allows the model to improve class label classification while learning domain-invariant features that 
increase the loss on the domain label

[15] Y. Ganin and V. Lempitsky, 32nd International Conference on Machine Learning, ICML 2015, vol. 2, pp. 1180–1189, Sep. 2014, doi: 10.48550/arxiv.1409.7495
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Future Direction

After extracting and evaluating our models on a larger range of ISS data (which requires 
more steps), we hope to present our work (again) to IML and the AMS collaboration for 

potential use in their future physics analyses.
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