Particle-Flow End-to-end Reconstruction for Highly Granular Calorimeters

Jan Kieseler, Shah Rukh Qasim, Philipp Zehetner

Work in context of CMS ML4Reco

11.07.2023

Motivation - Highly Granular Calorimeters

Particle flow:

Add reconstructed tracks to inputs

End-to-end:

Single step from hits (tracks) to showers

Output:

- Clustered detector hits and tracks
- Perform particle identification
- Energy regression
- Energy uncertainty

Literature:

11.07.2023

- [1] <u>arXiv:1902.07987</u> GravNet
- [2] arXiv:2002.03605 Object Condensation
- [3] arXiv:2204.01681 Full Reconstruction

CMS - High-Granularity Calorimeter (HGCAL)

- 6 million readout channels (silicon + scintillators)
- Expected 200 pile-up (PU)
- Around 200k active channels per event

Detector

Longitudinal view [3]

11.07.2023

Toy Detector used for these studies

- Sampling calorimeter
- $1.5 \le \eta \le 3.0$
- 200 µm silicon sensors
- 0.8M sensors (V1)
- 3.1M sensors (V2)
- 180k hits in 200 PU (V1)
- 300k hits in 200 PU (V2)
- square in η and ϕ
- 28 layers ECAL
 17 radiation lengths (V1)
- 28 layers HCAL
 10 nuclear interaction lengths (V1) -2 -
- 50k noise hits (≅ 120 GeV) (V2)

Aiming for events with similar complexity as HGCAL, while simplifying simulation

y (m)

Training Data (V1)

Example train event - 60 Particles + PU in $30^{\circ} \phi$ region

Single Particle

- ➢ Simulated with GEANT4
- \succ $e^-,~\gamma,~\pi^\pm,~\pi^0,~ au^\pm$
- \blacktriangleright $E \in [0.1, 200]$ GeV
- particles generated 1 mm in front of detector (no tracker or magnetic field)

Pile Up

- Minimum bias proton-proton collisions generated using PYTHIA8
 - √s = 13 TeV
 - only added in random $30^{\circ} \phi$ region
 - memory constraints while training
 - reduces hits from ~180k to ~34k
 - this will not be applied to test sets

Training events are 60 single particle simulations combined random Gaussian detector noise and 200 PU added in a random 30° ϕ region

11.07.2023

Architecture - GravNet

Architecture is based around GravNet [1] layers

- Graph based approach is natural for sparse data
- Allows propagation of information through detector
- Faster than similar approaches e.g. DGCNN [4]

[4] Yue Wang et al. Dynamic Graph CNN for Learning on Point Clouds

GravNet Transform input features F_{TN} into **~**a) transformed features **F**_L Speed latent coordinates S Build graph using coordinates S b) d) Aggregate weighted features Weights depending on distance 0 Performance Aggregation typically is mean or max Concatenate the new features e

Object Condensation Loss

Enables us to reconstruct an a priori unknown number of particles

- Every vertex can represent a shower
- Encourage model to have one representative vertex (RV) per object
- In the latent space:

11.07.2023

- Vertices are pulled towards their RV
- Vertices are pushed away from other RVs
- Hits of the same shower are clustered together
- Points around RVs in the latent space are collected as shower
- RV is then used to predict shower's properties

Energy & Momentum

Energy Regression

- Unfavourable to directly predict showers' energies as
 - > energies can differ by orders of magnitude
 - sensitive to splitting or merging showers
- Instead learn a correction factor ψ multiplied to shower's energy

Transverse Momentum

- Calculated from energy using the showers energy weighted mean position
- For consistency this is used for
 - ightarrow p_{Tpred} (using E_{pred})

$$>$$
 p_{Ttruth} (using E_{truth})

$$E_{pred} = \psi \; \sum_{h \in ext{shower}} e_h$$

$$\int p_T = E/\cosh\eta$$

Test Data

11.07.2023

Example test event - Single Particle + 200 PU

Single Particle

- Simulated with GEANT4
- $e^-,~\gamma,~\pi^+$ \succ
- $E \in [0.1, 200] ext{ GeV}$
- $\eta \in \left[1.6, 2.9
 ight]$
- Jets
 - \succ q ar q o t t
 - generated at \sqrt{s} = 13 TeV using PYTHIA8 \succ
- Pile Up
 - Minimum bias proton-proton collisions \succ generated using PYTHIA8
 - √s = 13 TeV \succ

Test sets are a single particle or jet events combined with random Gaussian detector noise and up to 200 PU

Test sets are very different from training set \rightarrow We test the model's ability to generalize

Efficiency & Unmatched Rate

1.0 0.8 * Efficiency 6.0 nPU=0nPU=40nPU=200 * 0.2 EM 0.0 20 40 60 80 100 120 True p_T [GeV] * 1.0 ** 0.8 Efficiency 6.0 nPU=0nPU=40nPU=200* 0.2 HAD 0.0 20 80 100 120 0 40 60 True p_T [GeV]

11.07.2023

Efficiency EM

- Efficiency quickly approached 100% with high p_T
- PU reduces efficiency for showers with small p_T (< 20 GeV)

Efficiency HAD

- PU has larger impact on reconstruction efficiency
- 200 PU hadronic showers are the most challenging case

Unmatched Rate

 High PU causes low p_T showers to be unmatched

Response & Resolution

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- Without PU resolution and response match truth assisted base line
- PU influences resolution, but only affects response for low energies

- Lower resolution for hadronic particles also for truth assisted base line
- PU again mostly affects resolution

Jet Reconstruction

Computational Requirements

CERN LMU WIG-MAXIMILIANS-UNIVERSITÄT WÜNCHEN

- Inference time and memory both scale linear with number of hits in detector
- Less than 10 seconds inference time for 200 PU (NVIDIA V100 GPU)
- Less than 1.5 GB peak memory usage for 200 PU
 →Can be deployed on low-end GPUs
- Ongoing work on inclusion of small clustering models to compress input indicate potential for significant speed ups

11.07.2023

Ongoing Work - Overview

- Tracks assigned to charged particles
- Energy corresponds to particles' true energy with Gaussian noise added
- Boolean flag to separate tracks from hits
- Network embeds hits and tracks in first layers

Updated Detector

- Finer granularity, number of channels as well as number of active hits now larger than expected for HGCAL
- More realistic noise level, both in terms of noise hits and noise-related energy deposits
- More absorber material for ECAL

Particle Identification

- Classifying between: photon, electron, muon, charged hadron and neutral hadron
- Prediction on each individual hit, condensation point decides prediction for full shower
- Categorical cross-entropy loss, non-linear scaled with β

Energy Uncertainty $L_{\text{Energy}} = \ln \sigma_{\text{F}}^2 + \frac{(E_{\text{pred}} - E_{\text{true}})^2}{-2}$

- Predicted energy $E_{\text{pred}} = c \cdot E_{\text{dep}}$ where *c* is learned as correction factor multiplied to the deposited energy E_{dep}
- Predicted uncertainty $\sigma_E = c_{\sigma} \cdot E_{dep} + 1 \text{ GeV}$ where c_{σ} is a learned correction factor
- Minimizing $L_{\rm Energy}$ should give reasonable estimates for the uncertainty

Particle Flow with Tracks

- Tracks are treated like detector hits in front of calorimeter
- Tracks contain the particle's full energy
- Flag is used to embed tracks and hits at beginning of network
- Tracks will be clustered together with hits (ideally never more than one)
- Different strategies on choosing best energy (especially with realistic track resolution)

11.07.2023

Detector and Noise

New toy detector:

- More channels compared to HGCAL
- More expected hits than in HGCAL
- Significantly more noise than previous version

Noise Filter

- Reduces the number of hits by ~50k
- Simple message passing in low-dimensional cluster space
- Trained separately at beginning, afterwards weights are fixed
- Very efficient and does not significantly reduce real hits

Summary

- Demonstrated end-to-end reconstruction of particles and jets in up to 200 PU
- Promising performance, often close to a truth assisted base line
- Demonstrated generalization over different types of events
- Fast execution time scaling linear with detector hits

Outlook

- Adding track information to use a particle-flow approach
- Upgraded detector geometry towards even higher granularity
- Significantly higher noise levels taken care of by noise filter
- Uncertainty estimate for energy regression

Planned to be published toward the end of the summer

Backup

Matching & Metrics

EIOU: <u>Energy-weighted hit-intersection</u> over hit-<u>u</u>nion

EIOM: <u>Energy-weighted hit-intersection</u> <u>over hit-minimum</u>

 $egin{aligned} ext{EIOU}(t,p) &= rac{\sum_{h \in H_t \cap H_p} e_h}{\sum_{h \in H_t \cup H_p} e_h} \ ext{EIOM}(t,p) &= rac{\sum_{h \in H_t \cap H_p} e_h}{\minigl(\sum_{h \in H_t} e_h, \sum_{h \in H_p} e_higr)} \ \hat{p} &= rgmas_{p \in P} \left(ext{EIOU}(\hat{t}\,,pigr)
ight) \end{aligned}$

Efficiency:

11.07.2023

% of true showers where $\, {
m EIOU} \left({\hat t} \, , {\hat p}
ight) \ge 0.5$

Unmatched Rate:

% of predicted showers where $ext{EIOU}ig(\hat{t},pig) < 0.5$ $ext{EIOM}ig(\hat{t},pig) > 0.9$

Baseline

$$E_{ ext{baseline}} = \sum_{h \in H_t} e_h$$

This baseline will be hard to match as it uses the truth information of the showers

Response

 $< p_{T_{mod}}/p_{T_{tmuth}} >$

Mean-corrected resolution $\sigma \left(p_{T_{pred}}/p_{T_{truth}} ight) / < p_{T_{pred}}/p_{T_{truth}} >$

Jet Reconstruction

11.07.2023

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

