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Motivation - Highly Granular Calorimeters

Particle flow:
Add reconstructed tracks to inputs

End-to-end:

Single step from hits (tracks) to showers

Output:
e Clustered detector hits and tracks
e Perform particle identification
e Energy regression
e Energy uncertainty

Literature:

[11  arXiv:1902.07987 GravNet
[2] arXiv:2002.03605 Object Condensation
[3] arXiv:2204.01681 Full Reconstruction

CMS - High-Granularity Calorimeter (HGCAL)

e 6 million readout channels (silicon + scintillators)

e Expected 200 pile-up (PU)
e Around 200k active channels per event

ﬂjblished work (toy detectch

Ongoing work (toy detector)

Clustering in 200 PU
with energy prediction
in toy detector

See publication [3]

or ACAT 2022

inclusion of tracks
energy uncertainty
particle identification

updated toy detector
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https://arxiv.org/abs/1902.07987
https://arxiv.org/abs/2002.03605
https://arxiv.org/abs/2204.01681
https://arxiv.org/abs/2204.01681
https://indico.cern.ch/event/1106990/contributions/4998017/
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Toy Detector used for these studies

Sampling calorimeter

1.5<n<3.0
200 pm silicon sensors 21
0.8M sensors (V1)

3.1M sensors (V2)

180k hits in 200 PU (V1)
300k hits in 200 PU (V2)
square inn and ¢

28 layers ECAL

17 radiation lengths (V1) -1
28 layers HCAL

10 nuclear interaction lengths (V1) -
3.25 350 375 400 425 450 475 50k nOise h|tS (E 120 GeV) (V2)
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Aiming for events with similar complexity -

Longitudinal view [3 Transverse view [3
J 3] as HGCAL, while simplifying simulation 13l
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https://arxiv.org/abs/2204.01681
https://arxiv.org/abs/2204.01681

Training Data (V1)

% Single Particle
Simulated with GEANT4
6_, ’Ya 71—:‘:7 ﬂ-O) Ti
E €]0.1,200] GeV
particles generated 1 mm in front of
detector (no tracker or magnetic field)
% Pile Up
> Minimum bias proton-proton collisions
generated using PYTHIAS8

Example train event - 60 Particles + PU in 30° ¢ region

g

YVVYY

> s=13TeV
el e > only added in random 30° ¢ region
400 m memory constraints while training
I m reduces hits from ~180k to ~34k
5® b N m this will not be applied to test sets
By, 400 So

Training events are 60 single particle simulations
# P combined random Gaussian detector noise and 200 PU
added in a random 30° ¢ region
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Architecture - GravNet

Architecture is based around GravNet [1] layers GravNet
a) Transform input features F, into
. o transformed features F
% Graph based approach is natural for sparse data Speed o latent coordinates §
% Allows propagation of information through detector b) Build graph using coordinates §
o P, d) Aggregate weighted features
% Faster than similar approaches e.g. DGCNN [4] > Weights depending on distance
Performance o  Aggregation typically is mean or max
e) Concatenate the new features
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[4] Yue Wang et al. Dynamic Graph CNN for Learning on Point Clouds f n A_Ifx(ﬁb
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Object Condensation Loss
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Enables us to reconstruct an a priori unknown number of partiﬂes

Every vertex can represent a shower

Encourage model to have one representative vertex (RV) per object »
In the latent space: ‘
> Vertices are pulled towards their RV

> Vertices are pushed away from other RVs

> Hits of the same shower are clustered together

Points around RVs in the latent space are collected as shower

RV is then used to predict shower’s properties

[ ][ — ] [ qusepspace | J. Kieseler, arXiv:2002.03605, Eur. Phys. J. C 80, 886 (2020)
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https://arxiv.org/abs/2002.03605

Energy & Momentum

Energy Regression Transverse Momentum

% Unfavourable to directly predict % Calculated from energy using the
showers’ energies as showers energy weighted mean
> energies can differ by orders of magnitude it
> sensitive to splitting or merging showers position

% Instead learn a correction factor y < For consistency this is used for
multiplied to shower’s energy > Prpreq (USING E o)

= thruth (USIﬂg Etruth)

[Epred = Zheshowereh} [ pPr = E/ COSh"?}
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Test Data

Example test event - Single Particle + 200 PU 4 Single Particle
> Simulated with GEANT4
> e, v, m
> FE €[0.1,200] GeV

>  nel.6,2.9
% Jets
* > qq —tt
3 > generated at Vs = 13 TeV using PYTHIAS
3° ¢ Pile Up

> Minimum bias proton-proton collisions
generated using PYTHIAS8

50

> s=13TeV
»..
~Z . . . .

*f;’g " Test sets are a single particle or jet events combined

0 0 with random Gaussian detector noise and up to 200 PU

ef“@w“ 24

o ‘% | Test sets are very different from training set
; —We test the model’s ability to generalize
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Efficiency & Unmatched Rate
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Efficiency EM

« Efficiency quickly approached 100%
with high p.

s PU reduces efficiency for showers
with small p. (< 20 GeV)

Efficiency HAD

% PU has larger impact on
reconstruction efficiency

% 200 PU hadronic showers are the
most challenging case

Unmatched Rate

< High PU causes low p. showers to
be unmatched

Unmatched rate
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EM & HAD
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Response & Resolution e
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EM HAD
2.0 2.0
1.751 + nPU=0 Y nPU=40 1.751 +  nPU=0 Y nPU=40
Q 151 2 % Baseline 4 nPU=200 9 1.5 % Baseline A nPU=200
c 1.25 . c 1.25
2 1.0 X % % % % " 8 1.0
3 0.751 3 0.75 % " ¥ * ¥ i
< 0.5 © 0.5
0.251 ' ' ' ' ' ‘ 0.251
0.251 X
o + nPU=0 Y nPU=40 0.4 1— + nPU=0 Y nPU=40
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& 0.05- & X X X - v & 0.1 * X X %
0.01 : . : : . : 0.01 : . s : : =
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True pr [GeV] True pr [GeV]
< Without PU resolution and response match % Lower resolution for hadronic particles also fo
truth aSS|sted base I|ne truth assisted base |ine
<> PU influences reSOIUtion, but OnIy affects < PU again mosﬂy affects resolution

response for low energies
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Jet Reconstruction

MUNCHEN

Pile Up 40 Pile Up 200
2.0 2.0
o 1.751 Predicted o 1.751 +  Predicted
g 157 Baseline ¢ 15 x  Baseline
8 1.25 8_ 1.25 <
8 1.0 R SV " $ 1.04 A B T X x x
5 0.75+ : : ; . 5 0.75+ & *
9 0.5 () 0.5+
0.251 0.251
0.5 - - - - 0.5
S 0.4 Predicted g 0.4- > Predlc?ted
=] < Baseline E= x  Baseline
= 0.3 =03 .
2 ? =
$02] . 0 0.2 — "
4w 0.1; e S 2 . . io.l- e B a .
0.01—, . : , : 0.0t . : : :
0 50 100 150 200 0 50 100 150 200
True pr [GeV] True pr [GeV]
aseline: Response < 1 due to large hadronic contributions

Comparable response to baseline
Resolution approaching 10% in both PU scenarios

based on true deposited energy of incident
non-pileup particles
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Computational Requirements

{mference time and memory both scale Iinearh ’ 1400
i o 4V

-

number of hits in detector - 3

1200

% Less than 10 seconds inference time for 200 PU . ” 5 O
n 1000 ©

(NVIDIAV100 GPU) i< 5 ° 1000 s

% Less than 1.5 GB peak memory usage for 200 PU E- a 800 ©
:>\

—Can be deployed on low-end GPUs -5 3 600 S

% Ongoing work on inclusion of small clustering § ‘ v
1 100 <

models to compress input indicate potential for a5 2 >

-

'ai

Q.

\\significant speed ups / . ¢ 200
|9 0

0 40 80 140 200
Pileup

o
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Ongoing Work - Overview

Addition of Tracks

Tracks assigned to charged particles

Energy corresponds to particles’ true energy with
Gaussian noise added

Boolean flag to separate tracks from hits
Network embeds hits and tracks in first layers

Updated Detector

Finer granularity,

number of channels as well as number of active
hits now larger than expected for HGCAL

More realistic noise level, both in terms of noise
hits and noise-related energy deposits

More absorber material for ECAL

11.07.2023

Particle Identification

Classifying between: photon, electron, muon,
charged hadron and neutral hadron

Prediction on each individual hit, condensation
point decides prediction for full shower
Categorical cross-entropy loss,

non-linear scaled with 3

Energy Uncertainty Linergy=

(Eprecr Etrue) 2

Ino% + —~

Predicted energy Epred= ¢+ Edep

where c is learned as correction factor multiplied
to the deposited energy E

Predicted uncertainty og = ca Egep +1GeV
where c_is a learned correction factor
Mlnlmlzmg LEnergy should give reasonable
estimates for the uncertainty
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Particle Flow with Tracks

Tracks are treated like detector hits

in front of calorimeter

Tracks contain the particle’s full energy
Flag is used to embed tracks and hits at
beginning of network

Tracks will be clustered together with hits
(ideally never more than one)

Different strategies on choosing best energy

(especially with realistic track resolution)

%
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Detector and Noise

@N toy detector: \
e More channels compared to HGCAL

e More expected hits than in HGCAL
e Significantly more noise than previous
version

Noise Filter
e Reduces the number of hits by ~50k
e Simple message passing in
low-dimensional cluster space
e Trained separately at beginning,
afterwards weights are fixed
e Very efficient and does not

\ significantly reduce real hits /
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Summary and Outlook

@mmary \ ﬂjtlook \

e Demonstrated end-to-end reconstruction
of particles and jets in up to 200 PU
e Promising performance, often close to a

truth assisted base line

e Demonstrated generalization over different
types of events

e Fast execution time scaling linear with
detector hits

\\ / \fnned to be published toward the end of the summer/

e Adding track information to use a
particle-flow approach

e Upgraded detector geometry towards even
higher granularity

e Significantly higher noise levels taken care
of by noise filter

e Uncertainty estimate for energy regression

11.07.2023 Particle-Flow End-to-end Reconstruction for Highly Granular Calorimeters




Backup
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Matching & Metrics

EIOU: Energy-weighted hit-intersection over hit-union

EIOM: Energy-weighted hit-intersection over hit-minimum | Saseline

Ehaseline= Zh H, €h
Zhthan €n :
> heH,uH, ©h This baseline will be hard to match as it uses the
truth information of the showers

EIOU (¢,p) =

Zhthme €h

min(Ehth €h, Zher eh)
p = argmax,, (EI0U(t, p))

EIOM(t,p) =

Efficiency: Response
% of true showers where EIOU (£,5) > 0.5 < PTyes /PToun >
Unmatched Rate: Mean-corrected resolution
% of predicted showers where EIOU(¢,p) < 0.5 o (PTyt /PTour ) | < PTyea /PToun >

EIOM(t,p) > 0.9
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Jet Reconstruction e
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truth predicted
showers showers

Example test event: qq — tt + 200 PU

) ;“ remove ] filter ]
s pileup pileup
50
i i o anti-kt
3° g o jet-clustering™!
-5 S
: predicted
400 .
~15 jets
>
/X:g?(l ) ’ (
0(}(\\ .
o e+ matching
fc‘,bJAQO L
Q 100
)

o
[5] M. Cacciari, G. P. Salam, and G. Soyez. The anti-kt jet clustering algorithm. Journal of High Energy Physics, 2008(04):063, 2008.
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