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Motivation - Highly Granular Calorimeters

HGCAL
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CMS - High-Granularity Calorimeter (HGCAL)

● 6 million readout channels (silicon + scintillators)
● Expected 200 pile-up (PU)
● Around 200k active channels per event

Particle flow:
Add reconstructed tracks to inputs 

End-to-end:
Single step from hits (tracks) to showers

Output: 
● Clustered detector hits and tracks
● Perform particle identification
● Energy regression
● Energy uncertainty

 Literature:

[1] arXiv:1902.07987 GravNet

[2] arXiv:2002.03605 Object Condensation

[3] arXiv:2204.01681 Full Reconstruction

Published work (toy detector)
● Clustering in 200 PU
● with energy prediction
● in toy detector
● See publication [3] 
● or ACAT 2022

Ongoing work (toy detector)
● inclusion of tracks
● energy uncertainty
● particle identification
● updated toy detector

https://arxiv.org/abs/1902.07987
https://arxiv.org/abs/2002.03605
https://arxiv.org/abs/2204.01681
https://arxiv.org/abs/2204.01681
https://indico.cern.ch/event/1106990/contributions/4998017/
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Detector

Longitudinal view [3] Transverse view [3]
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Toy Detector used for these studies

● Sampling calorimeter
● 1.5 ≤ η ≤ 3.0 
● 200 µm silicon sensors
● 0.8M sensors (V1)
● 3.1M sensors (V2) 
● 180k hits in 200 PU (V1)
● 300k hits in 200 PU (V2)
● square in η and φ
● 28 layers ECAL

17 radiation lengths (V1)
● 28 layers HCAL

10 nuclear interaction lengths (V1)
● 50k noise hits (≌ 120 GeV) (V2)

Aiming for events with similar complexity 
as HGCAL, while simplifying simulation

https://arxiv.org/abs/2204.01681
https://arxiv.org/abs/2204.01681
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Training Data (V1)
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❖ Single Particle
➢ Simulated with GEANT4
➢  
➢
➢ particles generated 1 mm in front of 

detector (no tracker or magnetic field)
❖ Pile Up

➢ Minimum bias proton-proton collisions
generated using PYTHIA8

➢ √s = 13 TeV 
➢ only added in random 30° φ region

■ memory constraints while training
■ reduces hits from ~180k to ~34k
■ this will not be applied to test sets

Training events are 60 single particle simulations 
combined random Gaussian detector noise and 200 PU 
added in a random 30° φ region

Example train event - 60 Particles + PU in 30° φ region
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Architecture - GravNet 
Architecture is based around GravNet [1] layers

❖ Graph based approach is natural for sparse data 
❖ Allows propagation of information through detector
❖ Faster than similar approaches e.g. DGCNN [4]

GravNet
a) Transform input features FIN into

○ transformed features FLR
○ latent coordinates S

b) Build graph using coordinates S
d) Aggregate weighted features

○ Weights depending on distance 
○ Aggregation typically is mean or max

e) Concatenate the new features
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[4] Yue Wang et al. Dynamic Graph CNN for Learning on Point Clouds

Architecture of our model

Speed

Performance
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Object Condensation Loss

Enables us to reconstruct an a priori unknown number of particles
❖ Every vertex can represent a shower 
❖ Encourage model to have one representative vertex (RV) per object
❖ In the latent space:

➢ Vertices are pulled towards their RV
➢ Vertices are pushed away from other RVs
➢ Hits of the same shower are clustered together

❖ Points around RVs in the latent space are collected as shower
❖ RV is then used to predict shower’s properties

J. Kieseler, arXiv:2002.03605, Eur. Phys. J. C 80, 886 (2020)
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←before Training
after Training →

Inputs + 
representative point Activation Cluster space 

Coordinates

https://arxiv.org/abs/2002.03605
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Energy & Momentum

Energy Regression

❖ Unfavourable to directly predict 
showers’ energies as 
➢ energies can differ by orders of magnitude
➢ sensitive to splitting or merging showers

❖ Instead learn a correction factor ψ 
multiplied to shower’s energy
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Transverse Momentum

❖ Calculated from energy using the 
showers energy weighted mean 
position

❖ For consistency this is used for 
➢ pTpred (using Epred) 
➢ pTtruth (using Etruth) 
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Test Data
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❖ Single Particle
➢ Simulated with GEANT4
➢
➢  
➢

❖ Jets
➢
➢ generated at √s = 13 TeV using PYTHIA8

❖ Pile Up
➢ Minimum bias proton-proton collisions

generated using PYTHIA8
➢ √s = 13 TeV 

Test sets are a single particle or jet events combined 
with random Gaussian detector noise and up to 200 PU 

Example test event - Single Particle + 200 PU

Test sets are very different from training set
→We test the model’s ability to generalize
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Efficiency & Unmatched Rate
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HAD

EM
EM & HAD

Efficiency EM
❖ Efficiency quickly approached 100% 

with high pT  
❖ PU reduces efficiency for showers 

with small pT (< 20 GeV)

Efficiency HAD
❖ PU has larger impact on 

reconstruction efficiency 
❖ 200 PU hadronic showers are the 

most challenging case
Unmatched Rate
❖ High PU causes  low pT showers to 

be unmatched
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Response & Resolution

10

EM HAD

❖ Without PU resolution and response match 
truth assisted base line 

❖ PU influences resolution, but only affects 
response for low energies

❖ Lower resolution for hadronic particles also for 
truth assisted  base line

❖ PU again mostly affects resolution
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Jet Reconstruction
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Pile Up 40 Pile Up 200

❖ Response < 1 due to large hadronic contributions
❖ Comparable response to baseline
❖ Resolution approaching 10% in both PU scenarios 

Baseline:
based on true deposited energy of incident
non-pileup particles
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Computational Requirements
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❖ Inference time and memory both scale linear with 

number of hits in detector

❖ Less than 10 seconds inference time for 200 PU

(NVIDIA V100 GPU)

❖ Less than 1.5 GB peak memory usage for 200 PU

→Can be deployed on low-end GPUs

❖ Ongoing work on inclusion of small clustering 

models to compress input indicate potential for 

significant speed ups
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Ongoing Work - Overview
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Addition of Tracks

● Tracks assigned to charged particles
● Energy corresponds to particles’ true energy with 

Gaussian noise added
● Boolean flag to separate tracks from hits
● Network embeds hits and tracks in first layers

Particle Identification

● Classifying between: photon, electron, muon, 
charged hadron and neutral hadron

● Prediction on each individual hit,  condensation 
point decides prediction for full shower

● Categorical cross-entropy loss, 
non-linear scaled with β

Energy Uncertainty

● Predicted energy 
where c is learned as correction factor multiplied 
to the deposited energy Edep

● Predicted uncertainty
where cσ is a learned correction factor

● Minimizing                 should give reasonable 
estimates for the uncertainty

Updated Detector

● Finer granularity, 
number of channels as well as number of active 
hits now larger than expected for HGCAL

● More realistic noise level, both in terms of noise 
hits and noise-related energy deposits

● More absorber material for ECAL
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Particle Flow with Tracks
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Tracks Hits

Dense Dense

Merged

● Tracks are treated like detector hits 
in front of calorimeter

● Tracks contain the particle’s full energy
● Flag is used to embed tracks and hits at 

beginning of network
● Tracks will be clustered together with hits

(ideally never more than one)
● Different strategies on choosing best energy 

(especially with realistic track resolution)
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Detector and Noise
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New toy detector: 
● More channels compared to HGCAL 
● More expected hits than in HGCAL
● Significantly more noise than previous 

version

Noise Filter
● Reduces the number of hits by ~50k
● Simple message passing in 

low-dimensional cluster space
● Trained separately at beginning, 

afterwards weights are fixed
● Very efficient and does not 

significantly reduce real hits
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Summary and Outlook
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Summary

● Demonstrated end-to-end reconstruction 
of particles and jets in up to 200 PU

● Promising performance, often close to a 
truth assisted base line

● Demonstrated generalization over different 
types of events

● Fast execution time scaling linear with 
detector hits

Outlook

● Adding track information to use a 
particle-flow approach

● Upgraded detector geometry towards even 
higher granularity

● Significantly higher noise levels taken care 
of by noise filter

● Uncertainty estimate for energy regression

Planned to be published toward the end of the summer
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Backup

Backup
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Matching & Metrics
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EIOU: Energy-weighted hit-intersection over hit-union

EIOM: Energy-weighted hit-intersection over hit-minimum

Efficiency: 
% of true showers where 

Unmatched Rate: 
% of predicted showers where 

Response

Mean-corrected resolution

Baseline

This baseline will be hard to match as it uses the 
truth information of the showers
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Jet Reconstruction
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[5] M. Cacciari, G. P. Salam, and G. Soyez. The anti-kt jet clustering algorithm. Journal of High Energy Physics, 2008(04):063, 2008.

Example test event:                  + 200 PU predicted 
showers

truth 
jets

truth 
showers

predicted 
jets

remove 
pileup

filter 
pileup

anti-kt 
jet-clustering[5]

matching

Only consider truth showers 
from non-pileup particles

Remove predicted showers 
with > 90% of their energy 
from pileup interaction
(assume existence of pileup 
identification algorithm)

Distance parameter R=0.4

Based on
Among jets with 

select best match by 


