Kaons@CERN 2023

QED radiative corrections in Monte Carlo simulations of pion and kaon decays

Tomáš Husek

Institute of Particle and Nuclear Physics, Charles University, Prague

CERN September 11, 2023

Tomáš Husek (IPNP, CUNI)

QED radiative corrs. in pion/kaon measurements and simulations

11/9/2023 1 / 60

Hadronic parameters from experiment

- QED corrections left out entirely
- some of the relevant terms neglected
- approximative results (leading logs, soft-photon approximation)

Artificial discrepancies between theory and experiment

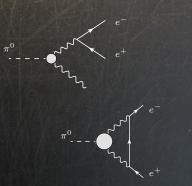
 \hookrightarrow measured observables or related hadronic parameters may include unsubtracted QED part

QED radiative corrections in the low-energy QCD sector

 $\hookrightarrow \pi^0, \eta^{(\prime)}, \Sigma^0, K^+, \dots$

 \hookrightarrow direct application to experiment

Tomáš Husek (IPNP, CUNI)


Outline

• $\pi^0 \rightarrow e^+ e^-$ • $\pi^0 \rightarrow e^+ e^- \gamma$ • $K^+ \to \pi^+ \ell^+ \ell^-$ • $K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$ • $K^+ \to \pi^0 e^+ \nu \gamma$

Radiative corrections for π^0 decays

Decay modes of the neutral pion:

Process	Branching ratio				
$\pi^0 o \gamma\gamma$	(98.823 ± 0.034) %				
$\pi^0 \to e^+ e^- \gamma$	(1.174 ± 0.035) %				
$\pi^0 \rightarrow e^+ e^+ e^- e^-$	$(3.34 \pm 0.16) \times 10^{-5}$				
	$(6.46 \pm 0.33) \times 10^{-8}$				

Decay modes of the neutral pion:

Process	Branching ratio
$\pi^0 o \gamma\gamma$	(98.823 ± 0.034) %
$\pi^0 \to e^+ e^- \gamma$	(1.174 ± 0.035) %
$\pi^0 \rightarrow e^+ e^+ e^- e^-$	$(3.34 \pm 0.16) \times 10^{-5}$
	$(6.46 \pm 0.33) \times 10^{-8}$

Rare decay $\pi^0 \to e^+ e^-$

- interesting way to study low-energy (long-distance) dynamics in the SM
- systematic theoretical treatment dates back to Drell, NC (1959)
- suppressed compared to the decay $\pi^0 o \gamma\gamma$ by a factor of $2\,(lpha m_e/M_\pi)^2$
 - \hookrightarrow one-loop structure + helicity suppressed
 - \hookrightarrow may be sensitive to possible effects of new physics

 π^0

 π^0

KTeV-E799-II experiment at Fermilab (*Abouzaid et al.*, PRD 75 (2007)) \hookrightarrow precise measurements of branching ratio $\pi^0 \rightarrow e^+e^-$ (794 candidates)

 $\frac{\Gamma(\pi^0 \to e^+e^-(\gamma), \, x > 0.95)}{\Gamma(\pi^0 \to e^+e^-\gamma, \, x > 0.232)} = (1.685 \pm 0.064 \pm 0.027) \times 10^{-4}$

 \hookrightarrow extrapolate the Dalitz decay branching ratio to full range of $x \equiv m_{e^+e^-}^2/M_{\pi^0}^2$

 $B_{\mathsf{KTeV}}(\pi^0 \to e^+ e^-(\gamma), \, x > 0.95) = (6.44 \pm 0.25 \pm 0.22) \times 10^{-8}$

 \hookrightarrow PDG average value $(6.46 \pm 0.33) \times 10^{-8}$ mainly based on this result

 \hookrightarrow extrapolate full radiative tail beyond x > 0.95 (*Bergström*, Z.Ph.C 20 (1983)) & scale the result back by the overall radiative corrections

$$B_{\text{KTeV}}^{\text{no-rad}}(\pi^0 \to e^+ e^-) = (7.48 \pm 0.29 \pm 0.25) \times 10^-$$

SM prediction (Dorokhov and Ivanov, PRD 75 (2007))

 $B_{\rm SM}^{\rm no-rad}(\pi^0 \to e^+e^-) = (6.23 \pm 0.09) \times 10^{-8}$

 \hookrightarrow interpreted as 3.3 σ discrepancy between theory and experiment

Tomáš Husek (IPNP, CUNI)

Radiative corrections for $\pi^0 \rightarrow e^+ e^-$

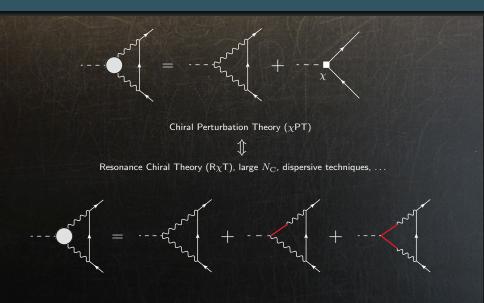
Vaško and Novotný, JHEP 1110 (2011)

Size of the NLO radiative corrections (exact calculation)

$$\delta^{\mathsf{NLO}}(0.95) \equiv \delta^{\mathsf{virt.}} + \delta^{\mathsf{BS}}(0.95) = (-5.5 \pm 0.2) \%$$

 \hookrightarrow differs significantly from earlier approximate calculations Bergström, Z.Ph.C 20 (1983): $\delta(0.95) = -13.8\%$ Dorokhov et al., EPJC 55 (2008): $\delta(0.95) = -13.3\%$

 \hookrightarrow original KTeV vs. SM discrepancy reduced to 2σ level


 \hookrightarrow can be thought as model-independent

$$\hookrightarrow \chi_{\mathsf{LMD}}^{(\mathsf{r})}(M_{\rho}) = 2.2 \pm 0.9$$

TH, Kampf and Novotný, EPJC 74 (2014)

Tomáš Husek (IPNP, CUNI)

Theoretical descriptions for $\pi^0 \rightarrow e^+ e^-$

QED radiative corrs. in pion/kaon measurements and simulations

$\pi^0 \rightarrow e^+ e^-$ branching ratio

At LO in QED and ChPT expansion:

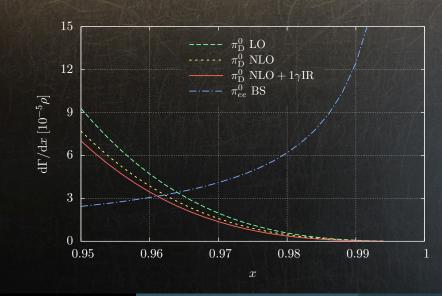
$$\left[\begin{array}{cc} \text{using} \quad z = -\frac{1-\beta}{1+\beta} \,, \quad \beta = \sqrt{1-\frac{4m_e^2}{M_\pi^2}} \end{array} \right]$$

$$\begin{aligned} &\frac{B(\pi^0 \to e^+ e^-)}{B(\pi^0 \to \gamma\gamma)} \\ &= 2\beta \left(\frac{\alpha}{\pi} \frac{m_e}{M_\pi}\right)^2 \left\{ \left[-\frac{5}{2} + \chi^{(\mathbf{r})}(\mu) + \frac{3}{2}\log\frac{m_e^2}{\mu^2} + \frac{1}{2\beta} \left(\operatorname{Li}_2 z - \operatorname{Li}_2\frac{1}{z}\right) \right]^2 + \left[\frac{\pi}{2\beta} \log(-z) \right]^2 \right\} \end{aligned}$$

Theoretical predictions and models suggest $\chi^{(r)}(770\,{
m MeV})\sim~2 ext{--}3$

Knecht et al., PRL 83 (1999) Dorokhov and Ivanov, PRD 75 (2007) TH and Leupold, EPJC 75 (2015) Hoferichter et al., PRL 128 (2022)

 $B(\pi^0 \to e^+ e^-) \approx (6.21 + 0.15 \widetilde{\chi}) \times 10^{-8}, \qquad \widetilde{\chi} \equiv 2 \left[\chi^{(r)}(770 \,\text{MeV}) - \frac{5}{2} \right] \in (-1, 1)$


The experiment-friendly choice is then

 $B(\pi^0 \to e^+e^-(\gamma), \, x > 0.95) = \delta(0.95)B(\pi^0 \to e^+e^-) \approx (5.87 + 0.14\widetilde{\chi}) \times 10^{-8}$

Tomáš Husek (IPNP, CUNI)

11/9/2023 9 / 60

$\pi^0 \rightarrow e^+ e^-$ branching ratio

Tomáš Husek (IPNP, CUNI)

QED radiative corrs. in pion/kaon measurements and simulations

11/9/2023 10 / 60

Dalitz decay of the neutral pion

Quantity measured by KTeV

$$\frac{\Gamma(\pi^0 \to e^+ e^-(\gamma) , \ x > 0.95)}{\Gamma(\pi^0 \to e^+ e^- \gamma(\gamma) , \ x > 0.2319)} \bigg|_{}$$

 \hookrightarrow precise theoretical description of Dalitz decay essential

Dalitz decay

- first studied by Richard H. Dalitz, PPSA 64 (1951)
- second most important decay channel of the neutral pion
 → branching ratio (1.174 ± 0.035) %
- experimental data provide information on singly-virtual π^0 TFF $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,q^2)$ \hookrightarrow in particular about its slope parameter a_{π}

$$\frac{\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,M_{\pi}^2x)}{\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,0)} \simeq 1 + \frac{a_{\pi}x}{M_{\pi}^2}, \qquad x = \frac{(p_{e^+} + p_{e^-})^2}{M_{\pi}^2}$$

Tomáš Husek (IPNP, CUNI)

11 / 60

Radiative corrections for $\pi^0 \to e^+ e^- \gamma$ $_{\rm Introduction}$

- radiative corrections to the total decay rate of the Dalitz decay
 - \hookrightarrow first addressed (numerically) by *Joseph*, NC 16 (1960)

$$\Delta R|_{\mathsf{Jph.}} = 1.05 \times 10^{-4} \quad \longleftrightarrow \quad \delta = 0.88\%$$

- pioneering study of corrections to the differential decay rate
 - ↔ Lautrup and Smith, PRD 3 (1971)
 - \hookrightarrow soft-photon approximation
 - \hookrightarrow negative all over the Dalitz plot
 - \hookrightarrow simple analytical expression for $\Delta R, m_e \to 0$

$$\begin{split} \Delta R \big|_{\mathsf{L\&S}} &= \left(\frac{\alpha}{\pi}\right)^2 \left[\frac{8}{9} \log^2 \frac{M_\pi}{m_e} - \frac{1}{9} \left(19 - 4a_\pi\right) \log \frac{M_\pi}{m_e} \\ &+ 2\zeta(3) - \frac{2}{27} \pi^2 + \frac{137}{81} - \frac{63}{108} a_\pi + \mathcal{O}\left(\frac{m_e}{M_\pi}\right)\right] \end{split}$$

$$= (1.038 + 0.102a_{\pi}) \times 10^{-4} \quad \longleftrightarrow \quad \delta = (0.874 + 0.086a_{\pi})\%$$

- extended by Mikaelian and Smith, PRD 5 (1972)
 - \hookrightarrow hard-photon corrections
 - \hookrightarrow whole range of bremsstrahlung photon energy
 - $\hookrightarrow \mathsf{table} \mathsf{ of values}$

Tomáš Husek (IPNP, CUNI)

QED radiative corrs. in pion/kaon measurements and simulations

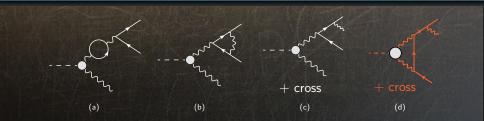
11/9/2023 12 / 60

cross

Discussion around $1\gamma IR$ contribution

 1γ IR (two-photon exchange) contribution at one loop

- First neglected completely by Lautrup and Smith or Mikaelian and Smith
 - \hookrightarrow suspected suppression due to (m_e/M_π) dependence of $\pi^0 o e^+e^-$ amplitude


→ supportive arguments appeared based on Low's theorem → Lambin and Pestieau, PRD 31 (1985)

• Explicit calculation within $m_e
ightarrow 0$ and f(x)
ightarrow 1 approximation

- ↔ Tupper, Grose, Samuel, PRD 28 (1983)

 \hookrightarrow pointed out non-interchangeability of soft-photon and massless limits

Radiative corrections for $\pi^0 \to e^+ e^- \gamma$ $_{\rm Exact\ result\ for\ MC}$

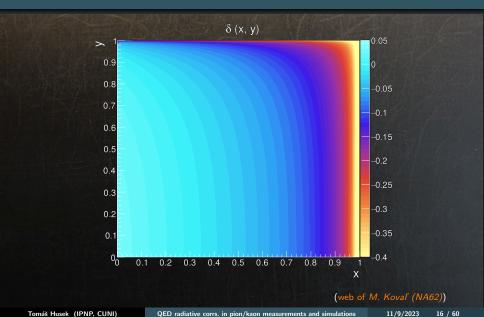
New calculations motivated by needs of NA62 experiment at CERN

- ↔ TH, Kampf and Novotný, PRD 92 (2015)
- \hookrightarrow unlike before no approximation was used + 1γ IR correction
 - \hookrightarrow can be partially used also for related decays $\eta \to \ell^+ \ell^- \gamma$ etc.
- \hookrightarrow C++ code returns correction for any given point of Dalitz plot (x and y)
 - \hookrightarrow MC generator of NA62 experiment

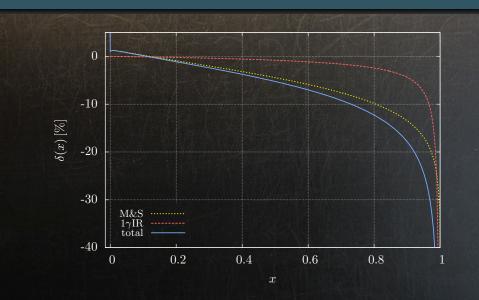
Latest measurement of the $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,q^2)$ slope \hookrightarrow Lazzeroni et al., PLB 768 (2017)

 $a_{\pi}^{\mathsf{NA62}} = 3.68(57)\%$

Tomáš Husek (IPNP, CUNI)


Radiative corrections for $\pi^0 \to e^+ e^- \gamma$ The overall NLO correction $\delta(x,y)$ given in percent (Dalitz-plot corrections)

x	<i>y</i> 0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	0.99
0.01	2.761	2.714	2.599	2.449	2.273	2.061	1.786	1.402	0.803	-0.357	-5.657
0.02	2.756	2.720	2.622	2.480	2.300	2.073	1.774	1.355	0.703	-0.546	-5.859
0.03	2.669	2.639	2.552	2.419	2.242	2.012	1.704	1.267	0.586	-0.716	-6.125
0.04	2.558	2.531	2.452	2.327	2.155	1.925	1.611	1.164	0.464	-0.874	-6.372
0.05	2.437	2.412	2.340	2.221	2.053	1.824	1.509	1.054	0.341	-1.025	-6.601
0.06	2.311	2.288	2.221	2.108	1.944	1.717	1.400	0.940	0.216	-1.172	-6.815
0.07	2.184	2.163	2.099	1.990	1.830	1.605	1.288	0.824	0.092	-1.315	-7.017
0.08	2.056	2.036	1.975	1.870	1.714	1.491	1.173	0.707	-0.033	-1.455	-7.211
0.09	1.928	1.909	1.851	1.749	1.596	1.374	1.057	0.588	-0.157	-1.593	-7.397
0.10	1.801	1.783	1.726	1.628	1.477	1.257	0.940	0.469	-0.281	-1.729	-7.578
0.15	1.170	1.154	1.105	1.016	0.874	0.661	0.345	-0.131	-0.900	-2.394	-8.424
0.20	0.546	0.532	0.486	0.402	0.266	0.057	-0.258	-0.738	-1.520	-3.048	-9.219
0.25	-0.079	-0.092	-0.135	-0.217	-0.350	-0.556	-0.871	-1.355	-2.148	-3.704	-9.995
0.30	-0.713	-0.726	-0.768	-0.847	-0.978	-1.184	-1.499	-1.988	-2.790	-4.372	-10.77
0.35	-1.366	-1.378	-1.419	-1.497	-1.627	-1.833	-2.149	-2.641	-3.454	-5.058	-11.56
0.40	-2.044	-2.056	-2.097	-2.174	-2.304	-2.509	-2.827	-3.324	-4.146	-5.773	-12.37
0.45	-2.759	-2.771	-2.811	-2.887	-3.017	-3.222	-3.543	-4.044	-4.875	-6.525	-13.22
0.50	-3.521	-3.533	-3.572	-3.648	-3.777	-3.983	-4.306	-4.811	-5.653	-7.324	-14.12
0.55	-4.344	-4.356	-4.395	-4.470	-4.599	-4.806	-5.130	-5.640	-6.492	-8.186	-15.08
0.60	-5.249	-5.261	-5.299	-5.373	-5.501	-5.708	-6.034	-6.549	-7.410	-9.128	-16.12
0.65	-6.262	-6.273	-6.310	-6.383	-6.510	-6.717	-7.044	-7.563	-8.435	-10.18	-17.28
0.70	-7.425	-7.435	-7.470	-7.541	-7.666	-7.871	-8.198	-8.721	-9.603	-11.37	-18.60
0.75	-8.802	-8.811	-8.844	-8.910	-9.031	-9.232	-9.558	-10.08	-10.98	-12.77	-20.14
0.80	-10.51	-10.52	-10.54	-10.60	-10.72	-10.91	-11.23	-11.76	-12.66	-14.49	-22.02
0.85	-12.78	-12.78	-12.80	-12.85	-12.95	-13.13	-13.44	-13.96	-14.86	-16.72	-24.47
0.90	-16.21	-16.21	-16.21	-16.23	-16.29	-16.43	-16.71	-17.21	-18.11	-20.00	-28.00
0.95	-23.17	-23.14	-23.08	-23.01	-22.96	-22.98	-23.14	-23.53	-24.36	-26.26	-34.45
0.99	-54.29	-54.07	-53.44	-52.50	-51.35	-50.15	-49.03	-48.16	-47.76	-48.47	-55.83


11/9/2023 15 / 60

Radiative corrections for $\pi^0 \rightarrow e^+ e^- \gamma$

The overall NLO correction $\delta(x, y)$ given in percent (Dalitz-plot corrections)

Radiative corrections for $\pi^0 \to e^+ e^- \gamma$ $_{\rm Results}$

Tomáš Husek (IPNP, CUNI)

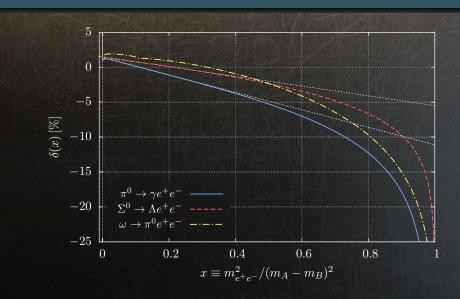
QED radiative corrs. in pion/kaon measurements and simulations

Radiative corrections for $\pi^0 \to e^+ e^- \gamma$

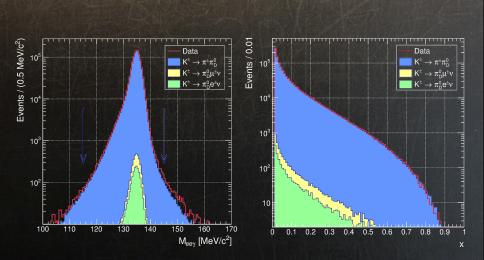
Size of the correction

PHYSICAL REVIEW D

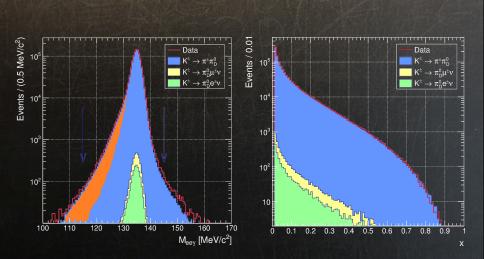
VOLUME 28, NUMBER 11


1 DECEMBER 1983

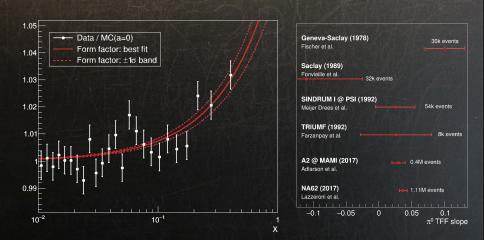
Two-photon-exchange effect in radiative corrections to $\pi^0 \rightarrow \gamma e^- e^+$


Gary B. Tupper, T. R. Grose, and Mark A. Samuel (Received 27 May 1983) Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078

Theoretically, the form-factor slope *a* is expected to be small and positive, with most models³ giving predictions near the intuitive estimate $a \equiv (m_{\pi}/m_{\mu})^2 = 0.03$. On the other hand the first three experiments⁴⁻⁶ to determine *a* from the *x* distribution reported large negative values. Ap-


Inclusive NLO QED radiative corrections for Dalitz decays $A \to B e^+ e^ _{\rm Comparison plot}$

Result of π^0 form-factor-slope measurements


Result of π^0 form-factor-slope measurements

Tomáš Husek (IPNP, CUNI)

QED radiative corrs. in pion/kaon measurements and simulations 11/9/2023 21 / 60

Result of π^0 form-factor-slope measurements

Tomáš Husek (IPNP, CUNI)

QED radiative corrs. in pion/kaon measurements and simulations 11/9/2023

1/9/2023 22 / 60

Radiative corrections for $\pi^0 \rightarrow e^+ e^- \gamma$

Precise and reliable determination of $R \equiv \frac{\Gamma(\pi^0 \to e^+ e^- \gamma)}{\Gamma(\pi^0 \to \gamma \gamma)}$

 \hookrightarrow for small slope and up to NLO radiative corrections

$$R\simeq \frac{\alpha}{\pi} \iint \left(1+a_\pi x)^2 \left(1+\delta(x,y)\right) \frac{(1-x)^3}{4x} \left[1+y^2+\frac{4m_e^2}{M_\pi^2 x}\right] \mathrm{d}x \mathrm{d}y$$

Choose $a_{\pi}^{\text{univ}} = 3.55(70) \%$, covers

source	VMD	LMD	THS	dispers.	Padé aps.	NA62	A2	PDG
a_{π} [%]	3.00	2.45	2.92(4)	3.15(9)	3.21(19)	3.68(57)	3.0(1.0)	3.35(31)
$b_{\pi} [10^{-3}]$	0.90	0.74	0.87(2)	1.14(4)	1.04(22)			

 $R = 1.1978(5)_{a_{\pi}}(3)_{\text{NNLO}} \%$

 $\text{Constraint: } 1 \simeq \mathcal{B}(\pi^0 \to \gamma \gamma) + \mathcal{B}(\pi^0 \to e^+ e^- \gamma(\gamma)) + \mathcal{B}(\pi^0 \to e^+ e^- e^+ e^-)$

	R	$\mathcal{B}(\pi^0 o \gamma \gamma)$	$\mathcal{B}(\pi^0 \to e^+ e^- \gamma(\gamma))$
TH et al., PRL 122 (2018)	1.1978(6)%	98.8131(6)%	1.1836(6)%
PDG	1.188(35)%	98.823(34)%	1.174(35)%

Tomáš Husek (IPNP, CUNI)

QED radiative corrs. in pion/kaon measurements and simulations

11/9/2023 23 / 60

'Recent' KTeV measurement

Abouzaid et al., PRD 100 (2019)

 \hookrightarrow based on 1999 data and *E. Abouzaid*, Ph.D. thesis (2007)

$$\frac{\Gamma(\pi^0 \to e^+ e^- \gamma)}{\Gamma(\pi^0 \to \gamma\gamma)} = 1.1559(46)(106) \%$$

PDG average: R = 1.188(35) %

↔ most recent (archived ALEPH data) Beddall and Beddall, EPJC 54 (2008)

TH, Goudzovski and Kampf, PRL 122 (2018): R = 1.1978(6) %

- \hookrightarrow chosen $a_{\pi}^{\text{univ}} = 3.55(70) \%$
- \hookrightarrow conservative estimate for uncertainty

 \implies 3.6 σ discrepancy between theory and experiment

Need for new measurements

 $\hookrightarrow R$, improvement on a_{π} (maybe b_{π}) welcome

Tomáš Husek (IPNP, CUNI)

11/9/2023 24 / 60

(Auditorium Gong gallery, Ostrava, Czechia)

Radiative corrections for $K^+ \to \pi^+ \ell^+ \ell^-$ decays

Tomáš Husek (IPNP, CUNI)

QED radiative corrs. in pion/kaon measurements and simulations 11/9/2023 26 / 60

Flavor-changing (strangeness-changing) neutral-current weak transitions

- \hookrightarrow absent at tree level in Standard Model
- \hookrightarrow manifest in radiative non-leptonic kaon decays like $K^+ \to \pi^+ \ell^+ \ell^-(\gamma)$, $\ell = e, \mu$
 - \hookrightarrow interesting probe of SM quantum corrections and beyond

Underlying long-distance-dominated radiative modes (transitions) $K^+ \rightarrow \pi^+ \gamma^*(\gamma)$ studied before \hookrightarrow calculated in Chiral Perturbation Theory (ChPT) enriched with electroweak perturbations \hookrightarrow *Ecker, Pich, de Rafael,* NPB 291 (1987), 303 (1988), at leading order (LO) (at one-loop level)

beyond LO: including the dominant unitarity corrections from $K \rightarrow 3\pi$

- ↔ D'Ambrosio, Ecker, Isidori, Portolés, JHEP 08 (1998)
- ↔ Gabbiani, PRD 59 (1999)

Radiative decays $K^+ \rightarrow \pi^+ \ell^+ \ell^-$

LO appears at $\mathcal{O}(p^4)$ + unitarity loop correction from $\pi\pi$ rescattering \downarrow \hookrightarrow universally used parametrization for the fit: $V_+(z) = a_+ + b_+ z + V_+^{\pi\pi}(z)$ \hookrightarrow Ecker et al., NPB 291 (1987), D'Ambrosio et al., JHEP 08 (1998)

$$rac{\mathrm{d}\Gamma_+}{\mathrm{d}z} = rac{G_{\mathsf{F}}^2 lpha^2 M_K^5}{3(4\pi)^5} \lambda^{3/2}(z) \sqrt{1 - rac{4r_\ell^2}{z}} \left(1 + rac{2r_\ell^2}{z}
ight) |V_+(z)|^5$$

LFU

 $\hookrightarrow a_+$ s and b_+ s should be the same for both (e and μ) channels \hookrightarrow discrepancy due to NP via SD effects

Moreover, the ratio deviates significantly from the VMD ansatz

$$\mathsf{VMD:} \quad \frac{b_+}{a_+} = \frac{M_K^2}{M_\rho^2} \approx 0.4\,, \qquad \exp.: \quad \frac{b_+}{a_+} \approx 1.25\,.$$

Measurement of quadratic term $c_+ z^2$ may further test the VMD hypothesis

l	a_+	b_+	exp.	
e e	$-0.587(10) \\ -0.578(16)$	-0.655(44) -0.779(66)	E865 NA48/2	
$\begin{array}{c c} \mu \\ \mu \end{array}$	-0.575(39) -0.575(13)	-0.813(145) -0.722(43)	NA48/2 NA62(2022)	← JHEP 11

improve precision — radiative corrections, studied earlier: Kubis and Schmidt, EPJC 70 (2010)

Tomáš Husek (IPNP, CUNI)

QED radiative corrs. in pion/kaon measurements and simulations 11/9/2023

9/2023 28 / 60

 K^+

Measure (one-photon-)inclusive process $K^+ \rightarrow \pi^+ \mu^+ \mu^-(\gamma)$ \hookrightarrow EM effects subtracted in terms of NLO radiative corrections

Separate $K^+ \to \pi^+ \mu^+ \mu^-(\gamma)$ final-state phase space into two parts

- \hookrightarrow soft-photon 3-body process $K^+ \to \pi^+ \mu^+ \mu^-(\gamma)$
- \hookrightarrow hard-photon 4-body process $\overline{K^+} \to \pi^+ \mu^+ \mu^- \gamma$
- \hookrightarrow based on the Lorentz-invariant kinematical conditions $2p_\pi \cdot p_\gamma \gtrless 100 \; {\sf MeV}^2$
 - \hookrightarrow cutoff value is optimized with respect to the resolution of the NA62 detector system

 \longrightarrow Ratio of the 4-body to 3-body integrated decay widths found to be (1.64 ± 0.02) %

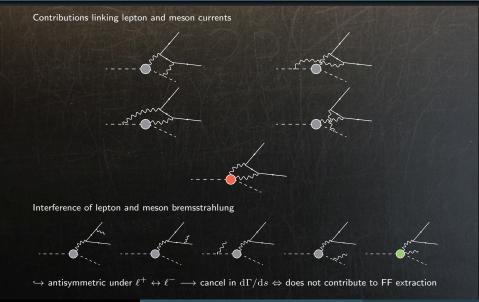
3-body part

- \hookrightarrow radiative corrections studied also earlier \longrightarrow starting point *Kubis et al.*, EPJC 70 (2010)
- \hookrightarrow NLO virtual and bremsstrahlung corrs. (integrated over photon energies and emission angles) \hookrightarrow implementation going beyond the soft-photon approximation

$\underset{\mbox{Radiative corrections: Lepton part}}{\mbox{Radiative corrections: Lepton part}} K^+ \to \pi^+ \ell^+ \ell^-$

Vacuum-polarization contribution

QED vertex correction


lepton bremsstrahlung

Radiative decays $K^+ \to \pi^+ \ell^+ \ell^-$

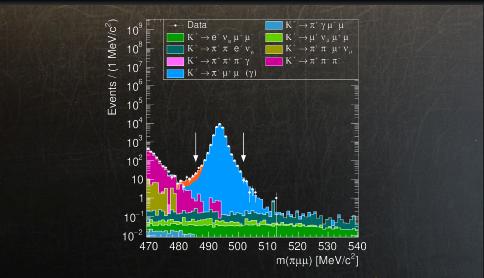
Radiative decays $K^+ \to \pi^+ \ell^+ \ell^-$ Radiative corrections: Lepton–meson interplay

Tomáš Husek (IPNP, CUNI)

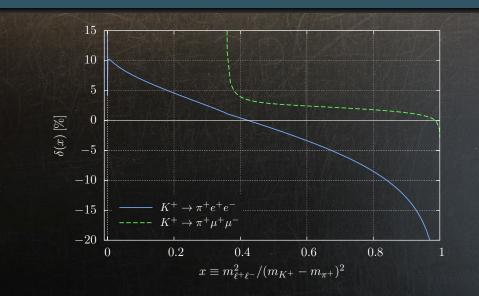
 \hookrightarrow LO (scalar) QED contributions where the real photon is radiated from lepton (meson) legs \hookrightarrow radiation from effective $K^+ \to \pi^+ \gamma^*$ vertex \longrightarrow gauge invariant \hookrightarrow represented in terms of F(s):

$$\mathcal{M}_{\rho\sigma}\left(K^{+}(P) \to \pi^{+}(r)\gamma_{\rho}^{*}(k_{1})\gamma_{\sigma}(k_{2})\right) = e^{2}F(k_{1}^{2})\left\{k_{1}^{2}\left(r_{\rho}\frac{P_{\sigma}}{P \cdot k_{2}} - P_{\rho}\frac{r_{\sigma}}{r \cdot k_{2}} + g_{\rho\sigma}\right)\right\}$$
$$+ e^{2}\tilde{\kappa}F(k_{1}^{2})\left[(k_{1} \cdot k_{2})g_{\rho\sigma} - k_{1\sigma}k_{2\rho}\right]$$

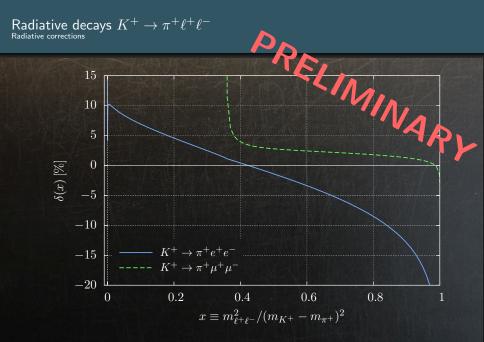
 \hookrightarrow term proportional to $\tilde{\kappa}$ represents estimate of associated uncertainty \hookrightarrow small in given set-up



Radiative decays $K^+ \rightarrow \pi^+ \ell^+ \ell^-$


(Thanks to L. Bičian (NA62))

Radiative decays $K^+ \rightarrow \pi^+ \ell^+ \ell^-$


(Thanks to L. Bičian (NA62))

Radiative decays $K^+ \to \pi^+ \ell^+ \ell^-$

Tomáš Husek (IPNP, CUNI)

QED radiative corrs. in pion/kaon measurements and simulations 11/9

Tomáš Husek (IPNP, CUNI)

QED radiative corrs. in pion/kaon measurements and simulations 11/9/

$$K^+
ightarrow \pi^+ 4e \ decay$$

 $K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$ Introduction

The long-distance-dominated $K^+ \to \pi^+ \gamma^*$ transition essential also for $K^+ \to \pi^+ 4e$ \hookrightarrow one also needs to consider $K^+ \to \pi^+ \gamma^* \gamma^*$ transition

Neutral-pion exchange $(K^+ \to \pi^+ \pi^{0*}, \pi^{0*} \to 4e)$ clearly dominates when $m_{4e} \simeq M_{\pi^0}$ \hookrightarrow overall branching ratio saturated by contribution of associated narrow π^0 peak \hookrightarrow directly determined as $B(K^+ \to \pi^+ 4e) = B(K^+ \to \pi^+ \pi^0)B(\pi^0 \to 4e)$

Challenging to observe $K^+ \to \pi^+ 4e$ away from $m_{4e} \simeq M_{\pi^0}$

 \hookrightarrow suppressed decay rate \longrightarrow attractive to study possible effects of BSM physics

 \hookrightarrow to identify new-physics-scenario contribution \longrightarrow need for (rough) estimate of SM rate \hookrightarrow new-physics effects spotted as deviations from such SM predictions

 $K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$ Introduction

No number for BR in literature better than order-of-magnitude estimate \rightarrow naturally believed that is unlikely to exceed $\mathcal{O}(10^{-10})$ (Hostert, Pospelov, PRD 105 (2022)) \rightarrow suppressed with respect to

$$B(K^+ \to \pi^+ e^+ e^-) \approx 3 \times 10^{-7}$$
$$B(K^+ \to \pi^+ \gamma \gamma, \text{ non-res.}) \approx 1 \times 10^{-6}$$

simply due to phase-space factors and additional QED vertices by $\mathcal{O}(\alpha^2)$ \hookrightarrow indeed, non-resonant topologies give rise to

$$B(K^+ \to \pi^+ 4e, \text{ non-res.}) = 7.2(7) \times 10^{-11}$$

 \longrightarrow possible BSM scenarios are being explored

Hostert, Pospelov, PRD 105 (2022)

- $\hookrightarrow K \to \pi 4e$ decays proceed via $K \to \pi (X' \to XX)$ intermediate states
 - \hookrightarrow cascade of dark-sector particles $X^{(\prime)}$
 - \hookrightarrow underlying dynamics potentially significantly enhanced compared to the SM case
- \longrightarrow searches in suitable experiments
- \hookrightarrow more precise knowledge of SM background essential
 - \hookrightarrow ideally at level suited for Monte Carlo (MC) implementation

Tomáš Husek (IPNP, CUNI)

11/9/2023 39 / 60

One-photon-exchange topology

Two-photon-exchange topology

TH, PRD 106 (2022)

Tomáš Husek (IPNP, CUNI)

QED radiative corrs. in pion/kaon measurements and simulations 11/9/2023

2023 40 / 60

 $K^+ \to \pi^+ \gamma^*$ transition

$$\mathcal{M}_{\rho}(K^{+}(P) \to \pi^{+}(r)\gamma_{\rho}^{*}(k)) \equiv i \int \mathrm{d}^{4}x \, e^{ikx} \langle \pi(r) | T[J_{\rho}^{\mathsf{EM}}(x)\mathcal{L}^{\Delta S=1}(0)] | K(P) \rangle$$
$$= \frac{e}{2}F(k^{2})[(P-r)^{2}(P+r)_{\rho} - (P^{2}-r^{2})(P-r)_{\rho}]$$

 \hookrightarrow based on gauge and Lorentz symmetries \hookrightarrow simplified when coupled to a conserved current:

$$\mathcal{M}_{\rho}\left(K^{+}(P) \to \pi^{+}(r)\gamma_{\rho}^{*}(k)\right) \stackrel{\text{eff.}}{=} eF(k^{2})k^{2}r_{\rho}$$

The lepton part of the amplitude then amounts to

$$\begin{aligned} \mathcal{M}^{\rho}_{\gamma^* \to 4e} &\equiv \mathcal{M}^{\rho} \left(\gamma^{*\rho} \to e^{-}(p_1) e^{+}(p_2) e^{-}(p_3) e^{+}(p_4) \right) \\ &= \mathcal{M}^{\rho}_{\gamma} \left(p_1, p_2; p_3, p_4 \right) + \mathcal{M}^{\rho}_{\gamma} \left(p_3, p_4; p_1, p_2 \right) - \mathcal{M}^{\rho}_{\gamma} \left(p_1, p_4; p_3, p_2 \right) - \mathcal{M}^{\rho}_{\gamma} \left(p_3, p_2; p_1, p_4 \right) \end{aligned}$$

 \hookrightarrow overall amplitude for the topology (1) reads

$$\mathcal{M}_{K \to \pi 4e}^{(1)} = \mathcal{M}_{\rho} \left(K^{+}(P) \to \pi^{+}(r) \gamma_{\rho}^{*}(k) \right) \frac{1}{k^{2}} \mathcal{M}_{\gamma^{*} \to 4e}^{\rho}$$
$$= e^{4} F \left((P-r)^{2} \right) r_{\rho} \widetilde{\mathcal{M}}_{\gamma^{*} \to 4e}^{\rho}$$

The two-photon transition of topology (2a) can be written, approximately, as follows:

$$\begin{aligned} \mathcal{M}_{\rho\sigma}^{(a)}(K(P) \to \pi(r)\gamma_{\rho}^{*}(k_{1})\gamma_{\sigma}^{*}(k_{2})) \\ &\simeq e^{2}F(k_{1}^{2}) \bigg\{ (k_{1}^{2}r_{\rho} - r \cdot k_{1}k_{1\rho}) \frac{(2P - k_{2})\sigma}{2P \cdot k_{2} - k_{2}^{2}} - (k_{1}^{2}P_{\rho} - P \cdot k_{1}k_{1\rho}) \frac{(2r + k_{2})\sigma}{2r \cdot k_{2} + k_{2}^{2}} \\ &+ (k_{1}^{2}g_{\rho\sigma} - k_{1\rho}k_{1\sigma}) \\ &+ \kappa \big[(k_{1} \cdot k_{2})g_{\rho\sigma} - k_{1\sigma}k_{2\rho} \big] \bigg\} \end{aligned}$$

$$+ \{k_1 \leftrightarrow k_2, \rho \leftrightarrow \sigma\}$$

 \hookrightarrow in this model depends on a single form factor (the same F(s)) \hookrightarrow useful when measuring $F(s) \longrightarrow$ radiative corrections for the $K^+ \to \pi^+ \ell^+ \ell^-$ decay \hookrightarrow one of the photons on-shell

Soft-photon regime \longrightarrow approximation justified Hard photons \longrightarrow free parameter $|\kappa| \lesssim 1$ introduced to cover model uncertainty \hookrightarrow physical results do not seem to be sensitive to this parameter

For $K^+ \to \pi^+ 4e$, we assume it is good enough (at least) as an order-of-magnitude guess \hookrightarrow numerically negligible (one order of magnitude) compared to the topology (1)

pion-pole enhancement + simplicity \hookrightarrow proceed with the on-shell pion form factor and only consider the LO formula

→ combining with a π⁰-width-regulated propagator
 → matrix element for the two-photon transition of the topology (2b):

 $\mathcal{M}_{\rho\sigma}^{(b)}(K(P) \to \pi(r)\gamma_{\rho}^{*}(k_{1})\gamma_{\sigma}^{*}(k_{2})) = -\frac{ie^{2}G_{27}}{12\pi^{2}}\frac{2(P-r)^{2} + 5M_{K}^{2} - 7M_{\pi}^{2}}{(P-r)^{2} - M_{\pi0}^{2} + iM_{\pi0}\Gamma_{\pi0}} \epsilon_{\rho\sigma(k_{1})(k_{2})}$

[shorthand notation $\epsilon_{
ho\sigmalphaeta}k_1^{lpha}k_2^{eta} = \overline{\epsilon_{
ho\sigma(k_1)(k_2)}}$]

$$K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$$

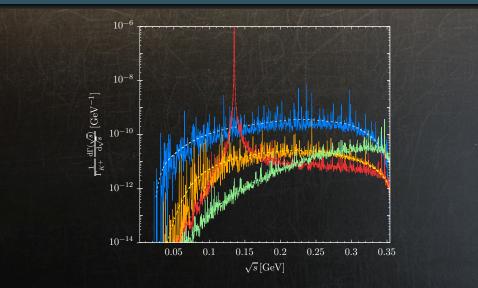
Phase space

The differential decay width for the $K \to \pi 4e$ process

$$d\Gamma = \frac{1}{4} \frac{1}{2M_K} |\mathcal{M}_{K \to \pi 4e}|^2 d\Phi_5(P; r, p_1, \dots, p_4)$$

with differential phase space

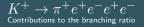
$$\mathrm{d}\Phi_5(P;r,p_1,\ldots,p_4) = (2\pi)^4 \delta^{(4)}(P-r-\sum_i p_i) \frac{\mathrm{d}^3 r}{(2\pi)^3 \, 2E_r} \frac{\mathrm{d}^3 p_1}{(2\pi)^3 \, 2E_{p_1}} \cdots \frac{\mathrm{d}^3 p_4}{(2\pi)^3 \, 2E_{p_4}}$$


 $|\mathcal{M}_{K \to \pi 4e}|^2$ depends on the particles' momenta \hookrightarrow subsequent integral largely nontrivial \longrightarrow use MC \longrightarrow normalization?

Turns out, in general, the branching ratio B can be obtained as

$$B = S \frac{1}{2M} \frac{1}{\Gamma_0} \Phi \frac{1}{N} \sum_{N \text{ events}} \overline{|\mathcal{M}|^2}$$

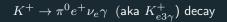
 \hookrightarrow rescaled average of the matrix element squared over the phase space \times phase-space volume Φ \hookrightarrow N events randomly and evenly distributed in the momentum space



[large MC samples generated by A. Shaikhiev, E. Goudzovski]

Tomáš Husek (IPNP, CUNI)

QED radiative corrs. in pion/kaon measurements and simulations 11/9/2023 45 / 60


Branching ratio calculated using Monte Carlo event generator technique:

$$B = rac{1}{\Gamma_0} rac{1}{4} rac{1}{2M_K} \Phi_5 \; rac{1}{N} \sum_{N \; {
m events}} \overline{|\mathcal{M}|^2}$$

	$B(\sqrt{s} < 120 {\rm MeV})$	$B(\sqrt{s}>150{\rm MeV})$	В
(1)	5.60×10^{-12}	5.44×10^{-11}	6.70×10^{-11}
(2a)	3.11×10^{-13}	3.85×10^{-12}	4.60×10^{-12}
(2b)	1.40×10^{-13}	1.97×10^{-12}	$7.0(3) \times 10^{-6}$
κ	7.08×10^{-15}	3.69×10^{-12}	3.72×10^{-12}
Σ	$6.1(4) \times 10^{-12}$	$6.0(6) \times 10^{-11}$	$ 7.2(7) \times 10^{-11}$

 $\begin{array}{l} B(K^+ \rightarrow \pi^+ 4e) \simeq B(K^+ \rightarrow \pi^+ \pi^0) B(\pi^0 \rightarrow 4e) \\ \hookrightarrow B(K^+ \rightarrow \pi^+ \pi^0) = 20.67(8) \, \% \text{ and } B(\pi^0 \rightarrow 4e) = 3.38(16) \times 10^{-5} \end{array}$

TH, PRD 106 (2022)

Tomáš Husek (IPNP, CUNI)

QED radiative corrs. in pion/kaon measurements and simulations 11/9/2023 47 / 60

Fruitful era of publications peaked in late 60s

↔ Fischbach, Smith, PR 184 (1969); Fearing, Fischbach, Smith, PRL 24 (1970)

Holstein, PRD 41 (1990)

 \hookrightarrow ChPT calculation, tree level at NLO

Bijnens, Ecker, Gasser, NPB 396 (1993) ↔ NLO ChPT calculation at one-loop level

Kubis, Müller, Gasser, Schmid, EPJC 50 (2007)

- \hookrightarrow phenomenological approach for IB
- \hookrightarrow existing $\mathcal{O}(p^4)$ ChPT results for SD
- \hookrightarrow extended by some $\mathcal{O}(p^6)$ ChPT pieces

Khriplovich, Rudenko, PAN 74 (2011)

 \hookrightarrow only consider LO (IB with constant form factors)

Tomáš Husek (IPNP, CUNI)

11/9/2023 48 / 60

For $R=rac{"\Gamma(ar{K}_{e3\gamma})"}{\Gamma(K_{e3})}$ disagreement between (most recent/precise results)

- \hookrightarrow theory: *Kubis et al.*, EPJC 50 (2007)
- \hookrightarrow experiment: NA62, JHEP 09 (2023)

NA62	preliminary (2021) 0.599(6)%	final (2023) 0.609(6)%
theory	0.640(8)	%

discrepancy $\approx 3 \, \sigma \rightarrow 2 \, \sigma$

 \hookrightarrow improved photon veto relevant for the $K_{e3\gamma(\gamma)}$ part

uncertainties at the level $\approx 1 \%$, 'missing effect' $\approx 5 \%$

In terms of hadronic tensors

$$V(A)_{\mu\nu} = i \int \mathrm{d}^4 x \, e^{iqx} \langle \pi^0 | T V^{\mathsf{em}}_{\mu}(x) [\bar{s}\gamma_{\nu}(\gamma_5)u](0) | K^+ \rangle \,, \quad F_{\nu} = \langle \pi^0 | \bar{s}\gamma_{\nu}u | K^+ \rangle \,.$$

satisfying Ward identities $q^\mu V_{\mu\nu}=q^\mu (V^{\rm IB}_{\mu\nu}+V^{\rm SD}_{\mu\nu})=q^\mu V^{\rm IB}_{\mu\nu}=F_\nu$ and $q^\mu A_{\mu\nu}=0$

$$\begin{split} \mathcal{M}(K_{e3\gamma}) \\ &= \frac{G_{\mathsf{F}}}{\sqrt{2}} eV_{us}^* \ \overline{u}(p_{\nu}) \ \epsilon^{\mu *}(q) \gamma^{\nu} (1-\gamma_5) \bigg[\underbrace{V_{\mu\nu}^{\mathsf{IB}} - \frac{F_{\nu}(t)}{2p_e \cdot q} (2p_{e\mu} + q \gamma_{\mu})}_{\mathsf{Internal bremsstrahlung}} \ + \underbrace{V_{\mu\nu}^{\mathsf{SD}} - A_{\mu\nu}}_{\mathsf{Structure-dependent}} \bigg] v(p_e) \end{split}$$

The K_{e3} form factor: $F_{\nu}(t) = \frac{1}{\sqrt{2}} \left[(p_K + p_\pi)_{\nu} f_+(t) + (p_K - p_\pi)_{\nu} f_-(t) \right] \longrightarrow \sqrt{2} p_{\pi\nu} f_+(t)$

$$V^{\rm IB}_{\mu\nu}\simeq \sqrt{2}p_{\pi\nu}\left\{\frac{p_{K\mu}}{p_K\cdot q}f_+(t)+\mathcal{O}(f'_+)\right\},\quad t=(p_K-p_\pi)^2$$

SOFT-PHOTON THEOREMS AND RADIATIVE K13 DECAYS*

Harold W. Fearing,† Ephraim Fischbach,‡ and Jack Smith Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York (Received 12 December 1969)

$$\begin{split} T(K^{-} \to \pi^{0} l^{-} \overline{\nu} \gamma) &= \overline{u}(p) \bigg(\frac{\epsilon \cdot p}{k \cdot p} - \frac{\epsilon \cdot P}{k \cdot p} + \frac{\gamma \cdot \epsilon \gamma \cdot k}{2k \cdot p} \bigg) [2f_{+}(t) i \gamma \cdot Q - m f_{1}(t)] (1 + \gamma_{5}) v(q) \\ &- 2 \bigg(\epsilon \cdot Q - k \cdot Q \frac{\epsilon \cdot P}{k \cdot P} \bigg) \overline{u}(p) \bigg[2 \frac{\partial}{\partial t} f_{+}(t) i \gamma \cdot Q - m \frac{\partial}{\partial t} f_{1}(t) \bigg] (1 + \gamma_{5}) v(q) \end{split}$$

+ structure-dependent terms of O(k),

$$R(E_{\min}, \theta_{\min}) = \frac{\Gamma(K^+ \to \pi^0 e^+ \nu \gamma(\gamma), E^* > E_{\min}, \theta_{e\gamma}^* > \theta_{\min})}{\Gamma(K^+ \to \pi^0 e^+ \nu(\gamma))}$$

<u>Numerator</u>: $K_{e3\gamma}^+$ with cuts + any number of other (soft/hard) photons

- \hookrightarrow frequent choice is $E_{\min} = 30 \text{ MeV}$
- \hookrightarrow since *Bijnens et al.*, also cut on emission angle, e.g. $\theta_{\min} = 20^{\circ}$
 - \hookrightarrow motivated from K^0 sector

<u>Denominator</u>: inclusive K_{e3}^+

 \hookrightarrow arbitrarily many photons allowed in the final state, energy/emission angle unconstrained

$K_{e3\gamma}^+$ decay Theoretical predictions and experimental results ($E_{\min}=30$ MeV)

	year	E_{\min}	$ heta_{\min}$	$R [10^{-2}]$	
		Theory			
FFS	1969	30 MeV	0°	2.04	
Holstein	1990	30 MeV	0°	2.098(4)	
Bijnens et al.*	1993	30 MeV	20°	0.611(18)	
Kubis et al.	2007	30 MeV	20°	0.640(8)	
Khriplovich et al.†	2011	30 MeV	20°	0.54(7)	
		Experiment			
ISTRA+	2007	30 MeV	20°	0.64(4)	4.5k
OKA	2021	30 MeV	20°	0.587(18)	32k
NA62	2023	30 MeV	20°	0.609(6)	130k

* Bijnens et al. obtained $B(K_{e3\gamma}^+, 30 \text{ MeV}, 20^\circ) = 3.0 \times 10^{-4}$

- \hookrightarrow up-to-date values for physical constants with uncertainties, double precision, higher statistics $\hookrightarrow B(K_{e3\gamma}^+, 30 \text{ MeV}, 20^\circ) = 3.10(6) \times 10^{-4}$
 - $\hookrightarrow B(K_{e3}^+) = 5.07(4) \%$ (PDG)

Khriplovich et al. obtained $B(K_{e3\gamma}^+, 30 \text{ MeV}, 20^\circ) = 2.72((40)) \times 10^{-4}$

$[10^{-2}]$	$R(10 \text{ MeV}, 10^\circ)$	$Rig(30\;{\sf MeV},20^\circig)$	$Rig(10\;{\sf MeV},{\sf acos}(0.6{ extsf{}0.9}ig)ig)$
		Experiment	
ISTRA+	1.81(8)	0.64(4)	0.47(4)
OKA	1.990(27)	0.587(18)	0.532(16)
PDG			0.525(17)
NA62	1.715(11)	0.609(6)	0.533(4)
		Theory	剂。 <u>我</u> 的海绵和铜制剂。
Bijnens et al.*	1.725(52)	0.611(18)	0.534(16)
Kubis et al.	1.804(21)	0.640(8)	0.559(6)

* obtained using the original code of *Bijnens et al.*, with PDG value for $B(K_{e3}^+)$

 \hookrightarrow up-to-date values for physical constants with uncertainties, double precision, higher statistics

Bijnens et al

- \hookrightarrow NLO ChPT result (at one loop) for $B(K^{+,0}_{\ell_{3\gamma}}, 30 \text{ MeV}, 20^{\circ})$
 - \hookrightarrow both for IB and SD parts
- \hookrightarrow to obtain R, simply normalize on experimental value for $B(K_{e3}^+)$
 - \hookrightarrow LO QED in numerator
 - \hookrightarrow inclusive decay in denominator

Kubis et al.

 \hookrightarrow more general phenomenological approach for IB: $f_+(t) \simeq f_+(0) \left(1 + \lambda_+ rac{t}{M^2}\right)$

- \hookrightarrow depends on extracted/calculated K_{e3}^+ FF parameters from elsewhere
- \hookrightarrow ChPT for SD part + partly $\mathcal{O}(p^6)$
- \hookrightarrow makes use of cancellations in R
- \hookrightarrow considers LO/LO (regarding QED)
 - \hookrightarrow extends to estimate on equivalent inclusive quantities in the ratio (RCs discussed)

Major differences

- \hookrightarrow (in)dependence on $f_+(0)$; result not very sensitive to λ_+
 - ↔ Bijnens et al. does not contain isospin-breaking corrections
- \hookrightarrow inclusive/exclusive quantities

Underlying NLO ChPT expressions in SD part equivalent in both papers

- R in Kubis et al. defined using phenomenological expression for IB
- \hookrightarrow in terms of K_{e3}^+ FF parameters
- \hookrightarrow normalizations (including $f_+(0)$) in theoretical expressions cancel in the ratio R

$$\mathcal{R} \equiv \frac{\Gamma\left(K^+ \to \pi^0 e^+\nu\gamma, 30 \text{ MeV}, 20^\circ\right)}{\Gamma\left(K^+ \to \pi^0 e^+\nu\right)} \simeq \frac{8\alpha}{\pi^4} \frac{b_0 + b_1\lambda_+ + b_2\lambda_+^2}{a_0 + a_1\lambda_+ + a_2\lambda_+^2} = 0.633(2) \%$$

Reproduce result from *Bijnens et al.**

 \hookrightarrow remove isospin-breaking corrections $(\mathcal{R}/1.022^2)$

OR

 $\hookrightarrow \text{ fit the NLO ChPT result on } f_{+}(t) \simeq f_{+}(0) \overline{\left(1 + \lambda_{+} \frac{t}{M_{\pi}^{2}}\right)}$ $\hookrightarrow f_{+}(0) = 0.973, \ \lambda_{+} = 0.033(3)$

 \hookrightarrow reintroduce normalization into the numerator

$$R \simeq \underbrace{\frac{4\alpha M_K^5 G_F^2 |V_{us}|^2}{(2\pi)^7 \Gamma_{K+}}}_{2.739 \to 2.850(25) \times 10^{-4}} \underbrace{\frac{f_+^2(0) (b_0 + b_1 \lambda_+ + b_2 \lambda_+^2)}{1.084 \to 1.087(13)}}_{1.084 \to 1.087(13)} \underbrace{\frac{1}{\frac{B_{\exp}(K_{c3}^+)}{1}}}_{\frac{1}{5.07(4).\%}} = 0.611(18)\%$$

How to obtain (inclusive) R from (exclusive) \mathcal{R} ?

- Some corrections appear both in numerator and denominator and cancel in R
- Isospin-breaking and radiative corrections
 - \hookrightarrow for K_{e3} up to $\mathcal{O}(p^2 e^2, p^2(m_u m_d))$ calculated in *Cirigliano et al.*, EPJC 23 (2002)
 - \hookrightarrow partly cancel in R [those contributing to $f_+(0)$]
 - \hookrightarrow denominator (K_{e3})
 - \hookrightarrow rest considered by modifying the a_i coefficients of slope expansion
 - \hookrightarrow overall effect $\approx -1 \%$

numerator

- \hookrightarrow radiative corrections expected small ($\mathcal{O}(1\%)$)
 - \hookrightarrow taken as uncertainty
- \hookrightarrow remaining residual $\mathcal{O}(p^2(m_u m_d))$ corrections considered negligible

Considered final enhancement by 1 % leads to

$$R = [1.01(1)] \times \mathcal{R} = 0.640(8)\%$$

How to obtain (inclusive) R from (exclusive) \mathcal{R} ?

- Some corrections appear both in numerator and denominator and cancel in R
- Isospin-breaking and radiative corrections
 - \hookrightarrow for K_{e3} up to $\mathcal{O}(p^2 e^2, p^2(m_u m_d))$ calculated in *Cirigliano et al.*, EPJC 23 (2002)
 - \hookrightarrow partly cancel in R [those contributing to $f_+(0)$]
 - \hookrightarrow denominator (K_{e3})
 - \hookrightarrow rest considered by modifying the a_i coefficients of slope expansion
 - \hookrightarrow overall effect $\approx -1 \%$

numerator

- \hookrightarrow radiative corrections expected small ($\mathcal{O}(1\%)$)
 - \hookrightarrow taken as uncertainty
- \hookrightarrow remaining residual $\mathcal{O}(p^2(m_u m_d))$ corrections considered negligible

Considered final enhancement by 1 % leads to

$$R = \left[1.01(1)\right] \times \mathcal{R} = 0.640(8)\%$$

1) Improve MC generator

 $\begin{array}{l} \underline{\text{Numerator:}} \quad K_{e3\gamma}(E_{\min}, \theta_{\min}) \\ \hookrightarrow \text{ originally only 1 photon} \\ \hookrightarrow \text{ extra photons using PHOTOS} \\ \hookrightarrow \text{ introduce a complete generator for } K^+_{e3\gamma\gamma} \text{ (not available nor trivial)} \end{array}$

2) 'Exclusive' measurement

<u>Numerator</u>: only 1 hard photon above the sensitivity threshold <u>Denominator</u>: no detectable photons

$$R(E_{\min}, \theta_{\min}) = \frac{\Gamma(K^+ \to \pi^0 e^+ \nu \gamma, E^* > E_{\min}, \theta_{e\gamma}^* > \theta_{\min})}{\Gamma(K^+ \to \pi^0 e^+ \nu)}$$

Summary

Pion decays

- \hookrightarrow NLO QED radiative corrections available
 - $\pi^0 \rightarrow e^+e^-$ Vaško and Novotný, JHEP 1110 (2011) *TH, Kampf and Novotný*, EPJC 74 (2014) \hookrightarrow measure $B(\pi^0 \rightarrow e^+e^-)$, extract $\chi^{(r)}(M_\rho)$
 - $\pi^0 \rightarrow e^+e^-\gamma$ *TH, Kampf and Novotný*, PRD 92 (2015) \hookrightarrow precise determination of *R*: *TH, Goudzovski and Kampf*, PRL 122 (2018) \hookrightarrow could be used in future exp. analysis of $K^+ \rightarrow \pi^+e^+e^-$

NLO QED radiative corrections for $K^+ \rightarrow \pi^+ \ell^+ \ell^ \hookrightarrow$ used in recent NA62 analysis \longrightarrow JHEP 11 (2022) 011

SM estimate of $B(K^+ \rightarrow \pi^+ 4e)$ $\hookrightarrow B(K^+ \rightarrow \pi^+ 4e, \text{ non-resonant}) = 7.2(7) \times 10^{-11}$, *TH*, PRD 106 (2022) 7

Tension between theory and experiment in $K_{e3\gamma}$

- \hookrightarrow investigate the origin of 'missing' 5 % effect
- \hookrightarrow room for improvement on both (experiment and theory) sides