The BSM potential of rare kaon decays

Gino Isidori [University of Zürich]

- Introduction
- The two flavor problems
- Flavor non-universal interactions
- The role of K → πνν
 ★ Effective-theory approach ★ A motivated BSM example
- Other modes [very incomplete...]
- Conclusions

European Research Council Established by the European Commission

There are several reasons why we think the SM must be extended at high energies:

Electroweak hierarchy problem

Flavor puzzle U(1) charges Neutrino masses

Dark-matter Dark-energy Inflation

Quantum gravity

There are several reasons why we think the SM must be extended at high energies:

Electroweak hierarchy problem

Flavor puzzle U(1) charges Neutrino masses

Dark-matter Dark-energy Inflation

Quantum gravity

problem due to...

→ <u>Instability</u> of the Higgs mass term

 \rightarrow Ad hoc <u>tuning</u> in the model parameters

 \rightarrow Cosmological implementation of the SM

 \rightarrow General problem of any QFT non-trivial properties of the SM Lagrangian if interpreted as EFT

…indicating

<u>Useful hints for its</u> <u>UV completion</u>

<u>UV completion</u>

There are several reasons why we think the SM must be extended at high energies:

Key role played by future rare-K decay experiments in exploiting further these hints

Kaons @ CERN – Sept. 2023

The two flavor puzzles

There are two (long-standing) open issues in flavor physics:

I. The observed pattern of SM Yukawa couplings does not look accidental

 \rightarrow Is there a deeper explanation for this peculiar structures?

The SM flavor puzzle

II. If the SM is only an effective theory, valid below an ultraviolet cut-off, why we do not see any deviation from the SM predictions in the (suppressed) flavor changing processes?

 \rightarrow Which is the flavor structure of physics beyond the SM?

The NP flavor puzzle

The two flavor puzzles

There are two (long-standing) open issues in flavor physics:

The two flavor puzzles

There are two (long-standing) open issues in flavor physics:

I. The observed pattern of SM Yukawa couplings does not look accidental:

What we observe in the Yukawa couplings is an <u>approximate U(2)</u>ⁿ <u>symmetry</u> acting on the <u>light families</u>

The two flavor puzzles

There are two (long-standing) open issues in flavor physics:

I. The observed pattern of SM Yukawa couplings does not look accidental

 \rightarrow Is there a deeper explanation for this peculiar structures?

The SM flavor puzzle

II. If the SM is only an effective theory, valid below an ultraviolet cut-off, why we do not see any deviation from the SM predictions in the (suppressed) flavor changing processes?

 \rightarrow Which is the flavor structure of physics beyond the SM?

The NP flavor puzzle

Eg:

- $U(1)_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\mu}} = (individual) \text{ Lepton Flavor } [exact symmetry]$
- $m_u \approx m_d \approx 0 \rightarrow \text{Isospin symmetry } [approximate symmetry]$

The two flavor puzzles

$$\mathscr{L}_{\text{SM-EFT}} = \mathscr{L}_{\text{gauge}} + \mathscr{L}_{\text{Higgs}} + \sum_{d,i} \frac{C_i^{t-1}}{\Lambda^{d-4}} O_i^{d \ge 5}$$

In principle, we could expect many violations of the accidental symmetries from the heavy dynamics (\rightarrow *new flavor violating effects*). However, beside some anomalies in B-physics (*still unclear*...), we observe none.

<u>Stringent bounds</u> on the scale of possible new <u>flavor non-universal interactions:</u>

The NP flavor puzzle

N.B: These high scales can be a "mirage" (= artifact of the accidental symmetry).

[b]

The only unambiguous message of these bounds is:

No large breaking of the approximate $U(2)^n$ flavor symmetry at near-by energy scales

The big questions in flavor physics:

- Can we find an explanation for the Yukawa hierarchies?
- If the (residual) flavor symmetries are accidental symmetries, at which scale are they broken? Can be there multiple scales behind the origin of flavor?

The role or rare K decays

In this context Kaon physics plays a unique role:

Unique probe of flavor-symmetry breaking involving light families

The SM (approximate) accidental symmetries imply an <u>extremely strong</u> <u>suppression</u> for

• $A(s_L \rightarrow d_L)_{FCNC}$ [probed precisely only by $B(K^+ \rightarrow \pi^+ \nu \nu)$]

• helicity-suppressed amplitudes, such as $A(s_R \rightarrow u_L e_R v_L)$ [probed by $R_{e/\mu}(K)$]

The role or rare K decays

In this context Kaon physics plays a unique role:

Unique probe of flavor-symmetry breaking involving light families

The SM (approximate) accidental symmetries imply an <u>extremely strong</u> suppression for $A(s_L \rightarrow d_L)_{FCNC} [\rightarrow B(K^+ \rightarrow \pi^+ \nu \nu)]$ and helicity-suppressed amplitudes, such as $A(s_R \rightarrow u_L e_R \nu_L) [\rightarrow R_{e/\mu}(K)]$

(+)

Unique probe of possible light, weakly coupled, new dynamics

Unique probe of some of the fundamental SM parameters

Ideal set-up for the "R&D" of theory tools about non pert. dynamics

The role or rare K decays

In this context Kaon physics plays a unique role:

Unique probe of flavor-symmetry breaking involving light families

The SM (approximate) accidental symmetries imply an <u>extremely strong</u> suppression for $A(s_L \rightarrow d_L)_{FCNC} [\rightarrow B(K^+ \rightarrow \pi^+ \nu \nu)]$ and helicity-suppressed amplitudes, such as $A(s_R \rightarrow u_L e_R \nu_L) [\rightarrow R_{e/\mu}(K)]$

(+)

Unique probe of possible light, weakly coupled, new dynamics

Unique probe of some of the fundamental SM parameters

Not covered in this talk, despite <u>very interesting</u>

Ideal set-up for the "R&D" of theory tools about non pert. dynamics

The big questions in flavor physics:

- Can we find an explanation for the Yukawa hierarchies?
- If the (residual) flavor symmetries are accidental symmetries, at which scale are they broken? Can be there multiple scales behind the origin of flavor?

\rightarrow Some (general) hypotheses needed to address these questions

Flavor non-universal interactions

Flavor non-universal interactions

For a long time, the vast majority of model-building attempts to extend the SM was based on the *implicit* hypotheses of *flavor-universal* New Physics

Flavor non-universal interactions

For a long time, the vast majority of model-building attempts to extend the SM was based on the *implicit* hypotheses of *flavor-universal* New Physics

Flavor non-universal interactions

A more efficient paradigm to address <u>both</u> flavor puzzles (I+II), & *possibly* the Higgs hierarchy, is a *multi-scale* UV with *flavor non-universal* interactions

Basic idea:

- Dvali & Shifman '00 Panico & Pomarol '16 E Bordone *et al.* '17 Allwicher, GI, Thomsen '20 Barbieri '21 Davighi & G.I. '23
- 1st & 2nd generations have small masses (+ small coupling to NP) because these are generated by new dynamics at heavier scales
- *"flavor deconstruction*" of the SM gauge symmetry → flavor hierarchies emerge as accidental symmetries

Flavor non-universal interactions

A more efficient paradigm to address <u>both</u> flavor puzzles (I+II), & *possibly* the Higgs hierarchy, is a *multi-scale* UV with *flavor non-universal* interactions

* *"<u>flavor deconstruction</u>"* of the SM gauge symmetries:

- ✓ This symmetry-breaking pattern is very general (*no need to tune couplings or potential*) → flavor universality emerges "naturally" at low energies
- ✓ Charging the Higgs under $G_{SM}^{[3]}$ → only Yukawa of the third generation are allowed → "solution" of the SM flavor problem
- $G_{SM}^{[12]}$ symmetry \rightarrow accidental U(2)ⁿ flavor symmetry \rightarrow protection of flavor-changing processes as effective as in MFV

Flavor non-universal interactions

A more efficient paradigm to address <u>both</u> flavor puzzles (I+II), & *possibly* the Higgs hierarchy, is a *multi-scale* UV with *flavor non-universal* interactions

Effective organizing principle for the flavor structure of the SMEFT

The role of $K \rightarrow \pi v v$

 \blacktriangleright The role of $K \rightarrow \pi v v$

 $B(K^+ \rightarrow \pi^+ \nu \nu)_{SM} = (8.60 \pm 0.42) \times 10^{-11}$ Buras et al. '15, '21

Th. error with sizable parametric component [Lattice, CKM, m_c] \rightarrow will go down to $\leq 3\%$

 \rightarrow Juttner, Sachrajda, *et al.* '15

$$\Gamma(K \to \pi v v) = \Gamma(K \to \pi v_e \overline{v}_e) + \Gamma(K \to \pi v_\mu \overline{v}_\mu) + \Gamma(K \to \pi v_\tau \overline{v}_\tau)$$

SM like

few %

deviation as in $b \rightarrow s \mu \mu$ O(1) deviations in models with TeV-scale NP coupled mainly to 3rd gen.

Explicit examples discussed in:

Marzocca, Trifinopulos, Venturini '21 Crosas, GI, Lizana, Selimovic Stefanek, '22 The role of $K \rightarrow \pi v v$

$$B(K^{+} \to \pi^{+}vv)_{SM} = (8.60 \pm 0.42) \times 10^{-11} \text{ Buras et al. '15, '21}$$
$$B(K^{+} \to \pi^{+}vv)_{exp} = (10.6 \pm 4.0) \times 10^{-11} \text{ NA62 [2016+2017+2018]}$$

$$\begin{split} B(K_L \to \pi^0 v v)_{SM} &= (3.0 \pm 0.3) \times 10^{-11} \quad \text{Buras et al. '15} \\ B(K_L \to \pi^0 v v)_{exp} &< 3.6 \times 10^{-9} \quad \text{Koto '19} \end{split}$$

G. Isidori – The BSM potential of rare kaon decays

$\begin{bmatrix} u_{L}^{i} \\ d_{L}^{i} \end{bmatrix} \longleftarrow q_{L}^{i} \qquad \qquad l_{L}^{3} \longleftarrow \begin{bmatrix} v_{L}^{\tau} \\ \tau_{L} \end{bmatrix}$ $q_{L}^{j} \qquad \qquad$						
$s_{\rm L}$ $v_{\rm L}^{\tau}$ $d_{\rm L}$ $v_{\rm L}^{\tau}$	$b_{\rm L} \qquad v_{\rm L}^{\rm T}$ $s_{\rm L} \qquad v_{\rm L}^{\rm T}$	$\begin{vmatrix} b_{\rm L} & \tau_{\rm L} \\ c_{\rm L} & v_{\rm L}^{\rm T} \end{vmatrix}$	$b_{\rm L}$ $\tau_{\rm L}$ $t_{\rm L}$	$ \begin{array}{c c} \nu_{\rm L}^{\tau} & \tau_{\rm L} \\ \hline \\ d_{\rm L} & u_{\rm L} \end{array} \end{array} $		
$B(K^+ \rightarrow \pi^+ \nu \nu)$	$B(B^+ \to K^+ \nu \nu)$	R[D ^(*)]	$\sigma(pp \to \tau\tau)$	$\sigma(\nu^{\tau} N \to N' \tau)$		
Now [NA62]: $\Lambda > 95 \text{ TeV}$ $\delta B=5\%$ [HIKE]: $\Lambda > 270 \text{ TeV}$	Now [Belle-II]: $\Lambda > 6.4 \text{ TeV}$ $50ab^{-1}$ [Belle-II]: $\Lambda > 18 \text{ TeV}$	Now [HFLAV]: $\Lambda > 2.7 \text{ TeV}$ $50ab^{-1}$ [Belle-II]: $\Lambda > 6.0 \text{ TeV}$	Now [ATLAS]: $\Lambda > 1.2 \text{ TeV}$ $3ab^{-1}$ [HL-LHC]: $\Lambda > 1.7 \text{ TeV}$	Now: - $\delta\sigma=5\%$ [future ?]: $\Lambda > 0.75$ TeV		

$C \times V_{ts} V_{td} $	$C \times V_{ts} $	$C \times V_{cb} $	С	$C \times V_{ub} V_{td} $
s _L v _L ^τ	$b_{\rm L}$ $v_{\rm L}^{\tau}$		$b_{\rm L}$ $\tau_{\rm L}$	ν_L^{τ} τ_L
$d_{\rm L}$ $v_{\rm L}^{\tau}$	$s_{\rm L}$ $v_{\rm L}^{\tau}$	$c_{\rm L}$ $v_{\rm L}^{\tau}$	$b_{\rm L}$ $\tau_{\rm L}$	d _L u _L
$B(K^+ \rightarrow \pi^+ \nu \nu)$	$B(B^+ \to K^+ \nu \nu)$	R[D ^(*)]	$\sigma(pp\to\tau\tau)$	$\sigma(\nu^\tau N \to N'\tau)$
Now [NA62]:	Now [Belle-II]:	Now [HFLAV]:	Now [ATLAS]:	Now:
$\Lambda > 1.7 \text{ TeV}$	$\Lambda > 1.3 \text{ TeV}$	$\Lambda > 0.6 \text{ TeV}$	$\Lambda > 1.2 \text{ TeV}$	_
δB=5% [HIKE]:	50ab ⁻¹ [Belle-II]:	50ab ⁻¹ [Belle-II]:	3ab ⁻¹ [HL-LHC]:	$\delta\sigma=5\%$ [future ?]:
$\Lambda > 4.7 \text{ TeV}$	$\Lambda > 3.6 \text{ TeV}$	$\Lambda > 1.2 \text{ TeV}$	$\Lambda > 1.7 \text{ TeV}$	_

G. Isidori – The BSM potential of rare kaon decays

Effective-theory approach

In models with NP coupled mainly to the 3rd gen. a key aspect in comparing flavor-conserving vs. flavor-violating processes is the orientation in flavor space [alignment of the 3rd gen.]

Effective-theory approach

In models with NP coupled mainly to the 3rd gen. a key aspect in comparing flavor-conserving vs. flavor-violating processes is the orientation in flavor space [alignment of the 3rd gen.]

Effective-theory approach

In models with NP coupled mainly to the 3rd gen. a key aspect in comparing flavor-conserving vs. flavor-violating processes is the orientation in flavor space [alignment of the 3rd gen.]

G. Isidori – The BSM potential of rare kaon decays

G. Isidori – The BSM potential of rare kaon decays

G. Isidori – The BSM potential of rare kaon decays

G. Isidori – The BSM potential of rare kaon decays

<u>A motivated BSM example</u>

Among models with flavor non-universal gauge interactions, a particularly interesting set up is provided by "4321 models" [*natural "last step" in the SSB chain down to SM of various motivate UV completions*]

Virtues [*theory*]:

- natural Yukawa structure
- quantization of electric charge
- UV complete

Virtues [pheno]:

- addresses R(D) anomalies
- addresses LU b \rightarrow s*ll* anomalies

<u>A motivated BSM example</u>

Two clean predictions of this setup following from present data on R(D) & $R(D^*)$:

- 1) <u>enhancement</u> of B($B \rightarrow Kvv$) & B($B \rightarrow K^*vv$)
- 2) <u>enhancement</u> of $\sigma(pp \rightarrow \tau\tau)$

Fuentes-Martin, GI, Konig, Selimovic, '20

 $\sigma(pp \rightarrow \tau\tau)$

<u>A motivated BSM example</u>

Crosas, GI, Lizana, Selimovic Stefanek '22

<u>A motivated BSM example</u>

Possible impact of future precision measurements.

Crosas, GI, Lizana, Selimovic Stefanek '22

\rightarrow More in the talk by Yuval Grossman...

<u>Other modes</u>

I. Tests of μ/e universality in $s \rightarrow u$ transitions

A very sensitive probe of μ/e universality in the kaon system is $R_{\kappa} = \Gamma(K^+ \to e^+ v) / \Gamma(K^+ \to \mu^+ v) \quad [\to high-sensitivity to scalar amplitudes]$

Using simple EFT considerations, we can expect violations from SM in $R_K(K)$ up to ~ 10⁻³

 Highly Precise SM value
 R_κ = (2.477 ± 0.001) x 10⁻⁵
 [V. Cirigliano, I. Rosell, Phys. Rev. Lett. 99, 231801

 World Average (2013)

 $R_{\kappa} = (2.488 \pm 0.01) \times 10^{-5} \quad \Delta R_{\kappa}/R_{\kappa} \approx 0.4\%$

Sizable NP parameter space still to probed

<u>Other modes</u>

II. Tests of μ/e universality in $s \rightarrow d$ (FCNC) transitions

In $K^+ \rightarrow \pi^+ ll$ we can probe μ/e universality in vector-type amplitudes.

Given present bounds on $R_K(B) \rightarrow$ simple EFT considerations imply LFU violations at the per-mil level in the coefficients (slopes) of the $K^+ \rightarrow \pi^+ ll$ form factors [vs. current exp. bounds @ 10% level]

While it is impossible to reach this NP benchmark, there is still a large room for improvement on a very "clean" SM test

D'Ambrosio, Iyer, Mahmoudi, Neshatpour '22

<u>Other modes</u>

II. Tests of μ/e universality in $s \rightarrow d$ (FCNC) transitions

In $K^+ \rightarrow \pi^+ ll$ we can probe μ/e universality in vector-type amplitudes.

Given present bounds on $R_K(B) \rightarrow$ simple EFT considerations imply LFU violations at the per-mil level in the coefficients (slopes) of the $K^+ \rightarrow \pi^+ ll$ form factors [vs. current exp. bounds @ 10% level]

While it is impossible to reach this NP benchmark, there is still a large room for improvement on a very "clean" SM test

D'Ambrosio, Iyer, Mahmoudi, Neshatpour '22

Conclusions

- Flavor is an essential ingredient to understand the structure of physics beyond the SM.
- Measuring $B(K^+ \rightarrow \pi^+ \nu \nu)$ @ 5% relative error is a milestone in this respect: unique probe of flavor mixing among the light generations at the electroweak scale and above.
- Present data are fully compatible with a "flavor-full" extension of the SM, where NP is dominantly coupled to the 3rd generation at the TeV scale. In this general (*and well-motivated*) context, the key role of a precise measurement of B(K $\rightarrow \pi vv$) is further reinforced.
- While the role of $K \to \pi v v$ decays is somehow unique, other rare K decays do offer complementary windows on more specific SM extensions