EXOTICA FROM KAON DECAYS: THEORY

JURE ZUPAN U. OF CINCINNATI

Kaons@CERN 2023, Sept 11 2023

G. Isidori – The BSM potential of rare kaon decays

<u>The role or rare K decays</u>

In this context Kaon physics plays a unique role:

Unique probe of flavor-symmetry breaking involving light families

The SM (approximate) accidental symmetries imply an <u>extremely strong</u> <u>suppression</u> for $A(s_L \rightarrow d_L)_{FCNC} [\rightarrow B(K^+ \rightarrow \pi^+ \nu \nu)]$ and helicity-suppressed amplitudes, such as $A(s_R \rightarrow u_L e_R \nu_L) [\rightarrow R_{e/\mu}(K)]$

Unique probe of possible light, weakly coupled, new dynamics

(+)

Unique probe of some of the fundamental SM parameters

Not covered in this talk, despite <u>very interesting</u>

This talk

Ideal set-up for the "R&D" of theory tools about non pert. dynamics

OUTLINE

- searching for light new physics
 - increased sensitivity to UV
- rare kaon decays
 - "exotica" may not be so exotic

THE CASE FOR LIGHT NEW PHYSICS SEARCHES

- explored only part of the NP parameter space
- light particles: a window to high UV dynamics

4

Kaons@CERN 2023, Sep 11, 2023

THE CASE FOR LIGHT NEW PHYSICS SEARCHES

- explored only part of the NP parameter space
- light particles: a window to high UV dynamics

THE CASE FOR LIGHT NEW PHYSICS SEARCHES

- explored only part of the NP parameter space
- light particles: a window to high UV dynamics

4

LOW ENERGY FCNC PROBES

- parametric gain in sensitivity to UV scales
 - SM decay widths small for weak decays $\Gamma \propto m^5/m_W^4$
- if light NP couples through dim 5 ops. supp. by $1/f_a$
 - $\Rightarrow Br(K \to \pi \varphi) \propto (m_W^2 / f_a m_K)^2$
 - similar for other mesons, leptons ⇒ which wins depends on flavor and CP structure of the NP

LOW ENERGY FCNC PROBES

- parametric gain in sensitivity to UV scales
 - SM decay widths small for weak decays $\Gamma \propto m^5/m_W^4$
- if light NP couples through dim 5 ops. supp. by $1/f_a$
 - $\Rightarrow Br(K \to \pi \varphi) \propto (m_W^2 / f_a m_K)^2$
 - similar for other mesons, leptons ⇒ which wins depends on flavor and CP structure of the NP

THE REST OF THIS TALK

searches for light new (pseudo)scalars
from rare kaon decays

Kaons@CERN 2023, Sep 11, 2023

6

ALPS

- focus on pseudoscalars (ALPs)
- generic in NP scenarios : whenever global U(1) spontaneously broken ⇒ pNGB
 - celebrated example: QCD axion
- in general flavor violating couplings
- from low energy perspective the EFT starts at dim 5

$$\mathcal{L}_{\text{ALP-gauge}} = \frac{N_3 \alpha_s}{8\pi f_a} a G^a_{\mu\nu} \tilde{G}^{a\mu\nu} + \frac{N_2 \alpha_2}{8\pi f_a} a W^i_{\mu\nu} \tilde{W}^{i\mu\nu} + \frac{N_1 \alpha_1}{8\pi f_a} a B_{\mu\nu} \tilde{B}^{\mu\nu} .$$

$$\mathcal{L}_{\text{ALP-f}} = \frac{\partial_{\mu} a}{2f_a} \bar{f}_i \gamma^{\mu} (C^V_{f_i f_j} + C^A_{f_i f_j} \gamma_5) f_j ,$$
J. Zupan Kaon exolica - theory γ - Kaonsee Len 2023, Sep 11, 2023

FLAVOR STRUCTURE

- two phenomenologically very different regimes
- if FV in the UV: $C_{ds}^{A,V}(\Lambda_{UV}) \neq 0$
 - very stringent constraints on $f_a \Rightarrow a$ does not decay in the detector
 - $K^+ \rightarrow \pi^+ a$ decay results in $K^+ \rightarrow \pi^+ + \text{inv signature}$
- if FV only from the SM: $C_{ds}^{A,V}(\Lambda_{UV}) = 0$

J. Zupan Kaon exotica - theory

J --- 0

FLAVOR STRUCTURE

- two phenomenologically very different regimes
- if FV in the UV: $C_{ds}^{A,V}(\Lambda_{UV}) \neq 0$
 - very stringent constraints on $f_a \Rightarrow a$ does not decay in the detector
 - $K^+ \rightarrow \pi^+ a$ decay results in $K^+ \rightarrow \pi^+ + \text{inv signature}$
- if FV only from the SM: $C_{ds}^{A,V}(\Lambda_{UV}) = 0$

J. Zupan Kaon exotica - theory

J --- 0

PROMPT ALPS

- searches for prompt ALPs in $K \rightarrow \pi a$
 - either $a \rightarrow \gamma \gamma$ or $a \rightarrow e^+e^-$
- the bounds depend on what exactly the couplings are
- several examples for $C_{ij}^{V,A}$ at $\mu = \Lambda_{\rm UV} = 4\pi f_a$
 - coupling to only gluons: $N_3 \neq 0$
 - coupling to W, Z only: $N_2 \neq 0$
 - only $C_{uu}^A \neq 0$
 - only $C_{dd}^A \neq 0$

J. Zupan Kaon exotica - theory

J. Zupan Kaon exotica - theory

J. Zupan Kaon exotica - theory

9

9

PROMPT ALPS

- searches for prompt ALPs in $K \rightarrow \pi a$
 - either $a \rightarrow \gamma \gamma$ or $a \rightarrow e^+ e^-$
 - close the gap to constraints from beam dump searches
- \Rightarrow either discovery or only $K \rightarrow \pi a_{inv}$ signature remains

- close the gap to constraints from beam dump searches
- \Rightarrow either discovery or only $K \rightarrow \pi a_{inv}$ signature remains

- close the gap to constraints from beam dump searches
- \Rightarrow either discovery or only $K \rightarrow \pi a_{inv}$ signature remains

FLAVOR VIOLATING QCD AXION

- QCD axion with FV couplings to quarks
 - solves the strong CP problem
 - can be a cold DM candidate
 - effectively massless in FV transitions
- stringent constraints from $K \rightarrow \pi a$, $K \rightarrow \pi \pi a$ where *a* invisible
 - can be a discovery mode

J. Zupan Kaon exotica - theory

J. Zupan Kaon exotica - theory

Alonso-Alvarez et al, 2201.07805

FLAVOR VIOLATING QCD AXION

MANY OTHER FV SEARCHES FOR QCD AXION

Martin Camalich, Pospelov, Vuong, Ziegler, JZ, 2002.04623

LIGHT SCALARS

- above general analysis valid for pNGBs with pseudoscalar and scalar couplings
 - what changes for scalars with dim-4 couplings?
- usual benchmark: light Higgs mixed scalar
 - couplings to WW, ZZ and fermions are now dim-4
 - proportional to mixing angle $\sin \theta$
- not the most general possibility
 - couplings to the SM fields could be a combination of Higgs mixed scalar and higher dim couplings
 - can be phenomenologically important for couplings to light quarks since Higgs yukawas are very suppressed

HIGGS MIXED SCALAR

- for two to three orders of magnitude larger datasets
 - ⇒ could close the gap for Higgs-mixed scalar all the way to the BBN floor

LIGHT SCALAR -MORE GENERALLY

- light Higgs mixed scalar may be a too simplistic model
 - in general one could have the same bottom up approach as for ALPs
- the most general interaction Lagrangian ($\mu = \mu_{\rm EW}$)

$$\mathcal{L}_{\rm int}(\mu \sim m_W) = \frac{\phi}{v} \left[\kappa_g \frac{\alpha_s}{12\pi} G^a_{\mu\nu} G^{\mu\nu\,a} - \sum_{f,i,j} \left(\kappa_{f_i f_j} \sqrt{m_i m_j} \bar{f}_{Li} f_{Rj} + \text{h.c.} \right) + 2\kappa_W m_W^2 W^+_{\mu} W^{\mu\,-} + \dots \right] \,,$$

- for Higgs mixed scalar $\kappa_{f_i f_i} = \kappa_W = \sin \theta, \ \kappa_g = \kappa_{f_i f_i} = 0 \text{ (for } i \neq j \text{)}$
- two qualitatively different regimes
 - $\kappa_{f_i f_j} \neq 0$ in the UV $\Rightarrow K \rightarrow \pi \phi$ probes very high scales
 - FV only from W^{\pm} loop \Rightarrow similar to Higgs-mixed scalar

J. Zupan Kaon exotica - theory

PHENO IMPLICATIONS

- the bounds depend heavily on assumed flavor structure
 - also for just flavor diagonal coupl.: $\kappa_{f_i f_i} = 0$ for $i \neq j$
- example: hadro-phylic scalar
 - no $\phi \rightarrow \mu^+ \mu^- \Rightarrow$ LHCb +KTEV bounds gone
 - no $\phi \rightarrow e^+e^- \Rightarrow$ MicroBooNE, LSND, PS191, CHARM bounds gone
 - NA62 and KOTO searches for $K \rightarrow \pi + \text{inv still apply}$

3@CERN 2023, Sep 11, 2023

MANY OTHER MODELS

2201.07805

Decay \ Model	2.1 Higgs	2.2 AL D	2.3 Heavy	2.4 Dark	2.5 Leptonic	2.6 Strongly	2.7 GN	2.8 Two dark	2.9 Dark	2.10 More	2.11 Heavy
Decay (Model	portal	2.2 ALF	Neutral Lepton	Photon	Force (X)	Int. Neutrino	Violation	sector particles	Baryons	exotic	New Physics
4.1 $K \rightarrow \pi$ +inv	~	~	-	√	_	~	~	√	-	-	~
4.2 $K \rightarrow \pi\pi$ +inv	CP viol.	axial coupl.	-	√ even massless	-	-	_	-	-	-	-
4.3 $K \rightarrow \pi \gamma$ +inv	possible in extensions	possible in extensions	-	√ even massless	-	-	-	-	-	-	-
4.4 $K \rightarrow 2\pi\gamma$ +inv	_	-	-	$\pi^0 \rightarrow \gamma A'$	-	-	_	-	_	possible	-
4.5 $K \rightarrow \pi \gamma \gamma$	negligible (√ dilaton)	√prompt	-	-	-	-	lifetime loophole	-	-	-	-
${\bf 4.6} \ K \to \pi \ell_\alpha \ell_\alpha$	√ prompt	√ prompt	-	√	-	-	lifetime loophole		-	-	-
4.7 $K \rightarrow \pi \pi \ell_{\alpha} \ell_{\alpha}$	CP viol.	axial coupl. & prompt	_	\checkmark	-	_	_	-	-	-	_
4.8 $K \to \pi \ell_{\alpha} \ell_{\alpha} \ell_{\beta} \ell_{\beta}$	-	-	-	-	-	-		A', MeV axion, also $K \rightarrow \pi 2 \ell_{\alpha} 2 \ell_{\beta}$ inv	_	-	-
4.9 $K_L \rightarrow \gamma + inv$	-	-	-	\checkmark	-	-	-	-	-	-	-
4.10 $K \rightarrow \pi \gamma, 3\gamma$	-	-	-	-	-	-	-	-	-	Lorentz viol.	-
4.11 $K_L \rightarrow \gamma \gamma + \text{inv}$	-	-	-	-	-	-	√(Table 2)	-	-	-	-
4.12 $K_{S,L} \rightarrow \ell^+ \ell^- + inv$	-	-	-	-	-	-	possible	possible	-	-	$K_S \rightarrow \mu \mu$
$4.12 K_{S,L} \rightarrow 2\ell 2\gamma$	-	-	-	-	-	-	possible	possible	-	-	-
$4.13 K^0 \rightarrow 4\ell$	-	-	-	-	-	-	possible	possible	-	-	-
$4.14 K^+ \rightarrow \ell^+ + inv$	-	-	~	-	$\checkmark(X \rightarrow inv)$	~	-	-	-	-	-
$4.15 K^+ \rightarrow 3\ell + inv$	-	-	possible	-	$\checkmark (X \rightarrow \ell \ell)$	-	_	U(1)+HNL	-	-	-
4.16 $K^+ \rightarrow \ell \gamma \gamma \text{+inv}$	-	-	$K^+ \rightarrow \pi^0 \ell^+ N$ $(m_N \lesssim 20 \text{ MeV})$	-	possible $(X \rightarrow 2\gamma)$	possible	-	possible	-	-	-
4.17 LFV	_	-	-	_	-	_	_	-	_	FV ALP, Z'	FV ALP
4.18 LNV	-	-	$\checkmark (K^+ \rightarrow \ell^+ N, N \rightarrow \pi^- \ell^+)$	-	-	-	-	-	-	-	√(Maj. HNL)
4.19 Rare K_S decays	$K_S \to \pi(\pi) 2\ell$	$K_S \rightarrow \pi(\pi) 2\ell,$ $\rightarrow \pi(\pi) 2\gamma$	-	$K_S \rightarrow A' \gamma$ $\rightarrow A' \gamma \pi$	-	-	-	$K_S \to 4\ell$	-	$K_S \to 2\gamma {+} {\rm inv}$	$K_S \to \mu \mu$
4.20 Dark Shower	-	-	-	-	-	-	-	-	-	~	-
5 Hyperon	$B_1 \to B_2 \varphi$	Table 8 $B_1 \rightarrow B_2 a$	-	Table 1 $B_1 \rightarrow B_2 A'$		_	-	-	Table 4 $B \rightarrow \gamma/M$ +inv	-	-

Kaons@CERN 2023, Sep 11, 2023

"EXOTICA": HIGGSED U(1)'

- even not very exotic models can lead to nontrivial experimental signatures
- case in point light higgsed U(1)'
 - induces $K \rightarrow \pi + 2(e^+e^-)$

Hostert, Pospelov, 2012.02142

- current NA62 bound $Br(K^+ \rightarrow \pi^+ 4e) < 1.4 \times 10^{-8}$
- FV from dim-5 operator $\mathscr{L}_{int} \supset \frac{c}{\Lambda} H \bar{s}_L d_R \phi \Rightarrow \Lambda \gtrsim 5 \times 10^{13} \text{ GeV}$

J. Zupan Kaon exotica - theory

CONCLUSIONS

- rare kaon processes: if ∃ light NP ⇒
 parametrically enhanced sensitivity to UV
- "exotica":
 - many possible signatures
 - many well motivated models

BACKUP SLIDES

FV FROM RUNNING

numerical solution to RG running

$$C_{ds}^{V} \supset -10^{-6} \left[(2+i)C_{tt}^{A} \left(\log \frac{\Lambda_{\rm UV}}{\mu_{t}} + 0.02 \right) + 0.08 C_{cc}^{A} \left(\log \frac{\Lambda_{\rm UV}}{\mu_{c}} + 11 \right) - (4+2i)10^{-3} N_{2} \right]$$

J. Zupan Kaon exotica - theory

Kaons@CERN 2023, Sep 11, 2023

22

PROTON CHARGE RADIUS PUZZLE+

Delaunay, Karr, Kitahara, Koelemeij, Soreq, JZ, 2210.10056

- important to stress how sensitive are rare kaon decays
- compare with sensitivity of spectroscopic probes
 - hydrogen/deuterium+muonic hydrogen/deuterium data
- several $\sim 3\sigma$ anomalies in obs. related to proton charge radius and mass
 - exp+th errors under-appreciated? \Rightarrow CODATA 2018
 - NP? : global analysis of SM + light scalar ⇒ consistent description
 - light Higgs mixed scalar excluded by NA62 $K^+ \rightarrow \pi^+ + \text{inv search}$

• light Higgs mixed scalar excluded by NA62 $K^+ \rightarrow \pi^+ + \text{inv search}$

PROTON CHARGE RADIUS PUZZLE+

• possible to (almost) evade NA62 $K^+ \rightarrow \pi^+ + \text{inv}$. bound

ULD SCALAR

ULD scalar couples only to *u*, *e*, *μ* and a dark sector

$$\mathcal{L}_{\phi} = k \frac{m_{\ell}}{v} \phi \bar{\ell} \ell + k \frac{m_{u}}{v} \phi \bar{u} u + y_{\chi} \phi \bar{\chi} \chi ,$$

couplings to nucleons

J. Zup

$$\mathcal{L}_{\text{eff}} = g_{\ell} \phi \bar{\ell} \ell + g_N \phi \bar{N} N$$
$$g_{\ell} = k \frac{m_{\ell}}{v}, \qquad g_N = k \frac{\kappa'_N m_N}{v},$$
$$\kappa'_p \simeq 0.018(5) \qquad \kappa'_n \simeq 0.016(5)$$

ULD SCALAR

if these couplings are due to dim 5 ops

$$\mathcal{L}_{\phi} = \frac{y_{\ell}'}{\Lambda} \phi \, \bar{L}_{\ell} H \ell_R + \frac{y_u'}{\Lambda} \phi \, \bar{Q}_u \tilde{H} u_R + \text{h.c.} \,,$$

- for numerical expediency assume $y'_{\ell,u} = A \times m_{\ell,u}/v$
- the anomaly requires rougly $A \simeq 100 \times (\Lambda/10 \text{ TeV})$

J. Zupan Kaon exotica - theory

Kaons@CERN 2023, Sep 11, 2023

PORTALS

Portal	Interactions
Dark Photon, A'_{μ}	$-\epsilon F'_{\mu\nu}B^{\mu\nu}$
Dark Higgs, S	$(\mu S + \lambda S^2) H^{\dagger} H$
Heavy Neutral Lepton, N	$y_N LHN$
Axion-like pseudo scalar, a	$aF ilde{F}/f_a, aG ilde{G}/f_a, \left(ar{\psi}\gamma^\mu\gamma_5\psi ight)\partial_\mu a/f_a$

LIGHT NEW PHYSICS \Rightarrow PROBE OF HIGH SCALES

- rare decays into a light state, X, e.g., $K \rightarrow \pi X$,
 - exquisite probes of UV physics
- parametric gains compared to probing NP through dim-6 ops.

 $K^{-}\{$

- SM decay width power suppressed: $\Gamma_K \propto m_K^5/m_W^4$
- if through dim 5 op. suppressed by $1/f_a$
 - $\Rightarrow Br(K \to \pi \varphi) \propto (m_W^2 / f_a m_K)^2$
 - similar for dim 4
- no such $1/m_K$ enhancement for dim. 6 couplings
 - $Br(K \to \pi e^- \mu^+) \propto (m_W/\Lambda)^4$

HEAVY NEUTRINOS

- two orders improvement in $Br(K^+ \to \ell^+ N)$
 - start probing minimal see-saw neutrino mass models
 - for O(100 MeV) sterile neutrino masses

 start probing minimal see-saw neutrino mass models

for O(100 MeV) sterile neutrino masses

SELF INTERACTING ν 's

- order of magnitude improvement on $Br(K^+ \rightarrow \mu^+ \nu X_{inv})$
- probe fully self-interacting $\nu_{e,\mu}$ explanation of Hubble tension

K_L decays

- $K_L \to \pi^0 X_{\text{NP}}$ from $s \to dX_{\text{NP}}$ less sensitive than $K^+ \to \pi^+ X_{\text{NP}}$
- still, many K_L decays with leading sensitivity to NP
 - $K_L \rightarrow \pi^0 \nu \bar{\nu}$ theoretically the cleanest SM prediction
 - will provide higher sensitivity to heavy NP than $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
 - *K_L* decays can probe Grossman-Nir violating models
 Hostert, Kaneta, Pospelov, 2005.07102
 - Gori, Perez, Tobioka, 2005.05170
 subleading constr. from K⁺ decays Ziegler, Zupan, Zwicky, 2005.00451
 Egana-Ugrinovic, Homiller, Meade, 1911.10203; Kitahara, Okui, Perez, Soreq, Tobioka, 1909.1111; Liu, McGinnis, Wagner, Wang, 2001.06522; Liao, Wang, Yao, Zhang, 2005.00753
 J. Zupan Kaon exotica - theory 31

- still, many K_L decays with leading sensitivity to NP
 - $K_L \rightarrow \pi^0 \nu \bar{\nu}$ theoretically the cleanest SM prediction
 - will provide higher sensitivity to heavy NP than $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
 - *K_L* decays can probe Grossman-Nir violating models
 Hostert, Kaneta, Pospelov, 2005.07102
 - Gori, Perez, Tobioka, 2005.05170
 subleading constr. from K⁺ decays Ziegler, Zupan, Zwicky, 2005.00451
 Egana-Ugrinovic, Homiller, Meade, 1911.10203; Kitahara, Okui, Perez, Soreq, Tobioka, 1909.1111; Liu, McGinnis, Wagner, Wang, 2001.06522; Liao, Wang, Yao, Zhang, 2005.00753
 J. Zupan Kaon exotica - theory
 Kaons@CERN 2023, Sep 11, 2023