An overview of HIKE Phase 1 & 2

Karim Massri CERN karim.massri@cern.ch

Kaons @ CERN workshop - CERN - 12/09/2023

The golden modes

The golden modes

high sensitivity

to new physics

- FCNC forbidden at tree level: 1-loop contributions as leading order
- Highest CKM suppression: BR ~ $|V_{ts}^*V_{td}|^2 \sim \lambda^{10}$

Decay	$\Gamma_{\rm SD}/\Gamma$	Theory error*	SM BR \times 10 ¹¹	Experimental BR $\times 10^{11}$	Experiment	Year
$K_L \rightarrow \pi^0 \nu \overline{\nu}$	>99%	2%	2.94 ± 0.15	< 200		2023
$K^+ \rightarrow \pi^+ \nu \overline{\nu}$	90%	4%	8.6 ± 0.4	$10.6^{+4.0}_{-3.4} \pm 0.9$	NA62	2021
$K_L \rightarrow \pi^0 e^+ e^-$	40%	10%	3.2 ± 1.0	< 28	KTeV	2004
$K_{L} \rightarrow \pi^{0} \mu^{+} \mu^{-}$	30%	15%	1.5 ± 0.3	< 38	KTeV	2000
$K_{L} \rightarrow \mu^{+} \mu^{-}$	10%	30%	79 ± 12 (SD)	684 ± 11	BNL-871	2000

* approximate error on LD-subtracted rate excluding parametric contributions

$K^{}_{L} \rightarrow \pi^{\,0} \, \ell^{\scriptscriptstyle +} \ell^{\scriptscriptstyle -} \, vs \, K \rightarrow \pi vv$:

- Larger theoretical uncertainties from LD physics
 - SD CPV amplitude: γ/Z exchange
 - LD indirect CPV amplitude: $K_L \rightarrow K_S$
 - LD CPC amplitude from 2γ exchange
- Explore helicity suppression in FCNC decays

The golden modes

The golden modes

high sensitivity

to new physics

- FCNC forbidden at tree level: 1-loop contributions as leading order
- Highest CKM suppression: BR ~ $|V_{ts}^*V_{td}|^2 \sim \lambda^{10}$

Decay	$\Gamma_{\rm SD}/\Gamma$	Theory error*	SM BR $\times 10^{11}$	Experimental BR $\times 10^{11}$	Experiment	Year
$K_L \rightarrow \pi^0 v v$	>99%	2%	2.94 ± 0.15	< 200		2023
$K^+ \rightarrow \pi^+ \nu \overline{\nu}$	90%	4%	8.6 ± 0.4	$10.6^{+4.0}_{-3.4} \pm 0.9$	NA62	2021
$K_L \rightarrow \pi^0 e^+ e^-$	40%	10%	3.2 ± 1.0	< 28	KTeV	2004
$K_{L} \rightarrow \pi^{0} \mu^{+} \mu^{-}$	30%	15%	1.5 ± 0.3	< 38	KTeV	2000
$K_{L} \rightarrow \mu^{+} \mu^{-}$	10%	30%	79 ± 12 (SD)	684 ± 11	BNL-871	2000

* approximate error on LD-subtracted rate excluding parametric contributions

$K \rightarrow \pi v v$: new physics scenarios

New physics affects K^+ and K_L BRs differently

Measurements of both can discriminate among NP scenarios

$K^+ \rightarrow \pi^+ v v a$ HIKE: physics reach

present or future

From NA62 to HIKE: precision on BR($K^+ \rightarrow \pi^+ v v$) improved by 3x!

$K^+ \rightarrow \pi^+ v v$: decay-in-flight technique

The NA62 decay-in-flight technique is now well established!

$K^+ \rightarrow \pi^+ v v v$ at CERN: HIKE-Phase1

 \rightarrow Max possible intensity in HIKE-Phase1 (after major beamline upgrades): 1.2 ×10¹³ POT / spill = 4x NA62 max beam intensity

Statistical power: 2×10^{13} Kaon decays in decay volume per year (7×10^{18} POT / year)

NA62-like design of experiment will work at high intensity

HIKE-Phase1 improvements wrt NA62:

- Improved timing is the crucial element to be able to stand the intensity increase

- Equal or better key performances at high-rate to keep background under control [e.g. kinematic rejection, photon rejection, PID]
- Up to x2 increase in signal acceptance thanks to new, more granular/performant detectors [higher efficiency in K- π association, PID, kinematic rejection] & fully-software trigger
- Further suppress dominant background from upstream K⁺ decays

$K^+ \rightarrow \pi^+ v v v$ at CERN: HIKE-Phase1

 \rightarrow Max possible intensity in HIKE-Phase1 (after major beamline upgrades): 1.2 ×10¹³ POT / spill = 4x NA62 max beam intensity

Statistical power: 2×10^{13} Kaon decays in decay volume per year (7×10^{18} POT / year)

NA62-like design of experiment will work at high intensity

Technological solutions exists for all detectors

Synergies with Hi-Lumi LHC projects and next generation flavor/dark matter experiments

- Next-generation silicon detectors for beam spectrometer
- Design studies in progress for downstream spectrometer with **5-mm diameter** straws

$K^+ \rightarrow \pi^+ v v a$ HIKE: K/π ID

RICH PID for π with 15 C. RICH granularity increased + better photodetectors (x2 Quantum Efficiency,

time resolution: $300 \rightarrow 100 \text{ps}$)

 \rightarrow Improved photon yield and time resolution

K-π matching: x4 better timing,x3 smaller pixel size in beam tracker,40% lower material budget in STRAW

HIKE:

- π ID efficiency: > 10% higher than NA62, keeping same μ/π misID probability.
- K– π efficiency: ~ 10% higher than NA62. K- π misID probability ~2%, similar to NA62.

$K^+ \rightarrow \pi^+ v v a$ HIKE: Kinematics

NA62 MC extensively validated with data.

Main kaon decay modes enter the signal regions via resolution tails in the reconstructed value of m^2_{miss}

- Signal regions determined by resolution
- Slightly better m^2_{miss} resolution at HIKE wrt NA62
- (40% less material budget in STRAW spectrometer)
- Missing mass with RICH much improved

HIKE signal regions can be optimised: signal acceptance 10% higher than NA62, keeping same level of kinematic rejection

$K^+ \rightarrow \pi^+ v v a$ HIKE: Random veto

Criteria to veto photons and extra activity in-time + pileup = intensity-dependent signal loss Critical performance indicator: "random veto efficiency", measured on data (with $K^+ \rightarrow \mu^+ \nu$)

<u>NA62:</u>

- Signal selection efficiency ~ 65% at max beam intensity
- Quasi-linear dependence on the instantaneous beam intensity.
- Limiting factor: timing precision of the detectors (and double pulse resolution).

HIKE: Maintain or improve the random-veto efficiency.

 \rightarrow Requires an improvement in the time resolution for the veto systems at least by the same factor as the intensity increase

$K^+ \rightarrow \pi^+ v v u$ a HIKE: Physics sensitivity

Background from K decays to remain the same fraction of signal

Improved coverage and design of upstream background veto \rightarrow Upstream background reduced to same level as K background

Number of spills	2.4×10^{6}
Protons on target	3.2×10^{19}
K^+ decays in FV	8.0×10^{13}
Expected SM $K^+ \rightarrow \pi^+ \nu \bar{\nu}$	480
Background from K^+ decays	115
Upstream/accidental background	85–240
Expected statistical precision $\sigma(\mathcal{B})/\mathcal{B}$	5.4%-6.1%

With background contamination and systematic uncertainty under control, measurement of BR(K⁺ $\rightarrow \pi^+ v v$) at O(5%) precision in 4 years of data-taking

$K^+ \rightarrow \pi^+ v v a$ HIKE: specific models

Top-philic Z': (revisited by F. Kahlhoefer)

Constraints on a top-philic Z', on mass vs gauge coupling [JHEP 03 (2018) 074, Phys. Rev. D 97 (2018) 035002]. Assumed vector couplings to muons and tau leptons, and couplings to top quarks induced via mixing with a vector-like quark with mass 2 TeV and mixing angle 0.5.

[CERN Physics Beyond Colliders Document, in preparation]

Leptoquark model: (revisited by D.Marzocca)

Constraints on coupling of S1 leptoquark from flavour and electroweak observables vs leptoquark mass. Region above each line is excluded at 95%CL. Constraints are derived using the complete one-loop matching of this leptoquark to the SMEFT derived in Ref. [JHEP 07 (2020) 225] following the pheno analysis of Refs. [JHEP 01 (2021) 138, Eur. Phys. J. C 82 (2022) 320].

Karim Massri - Kaons @ CERN workshop - CERN

HIKE-Phase1: $K^+ \rightarrow \pi^+ \ell^+ \ell^-$ decays

HIKE-Phase1: >2x increased precision on $a_{\perp}^{\mu\mu} - a_{\perp}^{ee}$ measurement

Karim Massri – Kaons @ CERN workshop – CERN

75

100

A multi-purpose K_L decay experiment focussed on $K_L \rightarrow \pi^0 \ell^+ \ell^-$ decays

 \rightarrow Max possible intensity in HIKE-Phase2: 2 ×10¹³ POT / spill

Statistical power: 3.8×10^{13} Kaon decays in decay volume per year (1.2×10^{19} POT / year)

- 120 m long neutral beamline:
 - Secondary beam opening angle = 0.4 mrad; 2.4 mrad production angle
 - Mean momentum of decaying K_L mesons = 46 GeV/c
- Reconfigured HIKE-Phase1 detector:
 - Kaon tagger, beam spectrometer, RICH, small-angle calorimeter removed
 - STRAW spectrometer shortened, chambers realigned

12/09/2023

Karim Massri - Kaons @ CERN workshop - CERN

tigh Intensity Kaon Experimen

Main background: $K_L \rightarrow \gamma \gamma \ell^+ \ell^-$ [Greenlee, PRD42 (1990)]

Mode	Phase space region	Branching ratio
$K_L \rightarrow \gamma \gamma e^+ e^-$	$x = (m_{ee}/m_K)^2 > 0.05,$	$(1.55 \pm 0.05) \times 10^{-7}$
	$x_{\gamma} = (m_{\gamma\gamma}/m_K)^2 > 0.01$	
$K_L \to \gamma \gamma \mu^+ \mu^-$	$x_{\gamma} = (m_{\gamma\gamma}/m_K)^2 > 0.01$	$(1.49 \pm 0.28) \times 10^{-9}$
	/ · · //· =-/	. ,

 $K_L \rightarrow \pi^+ \pi^- \pi^0$ decay with π^{\pm} decaying in flight is sub-dominant

Suppression of the $K_L \rightarrow \gamma \gamma \ell^+ \ell^-$ background: rely on **excellent photon energy resolution** provided by the HIKE EM calorimeter.

12/09/2023

Karim Massri – Kaons @ CERN workshop – CERN

HIKE-Phase2: background estimate

HIKE-Phase2: physics sensitivity

Number of spills		3	10^{6}	
Protons on target		6	$\times 10^{19}$	
K_L decays in FV		1.9	9×10^{14}	
Mode	N_S	N_{B}	$N_S/\sqrt{N_S+N_B}$	$\delta \mathcal{B}/\mathcal{B}$
$K_L \to \pi^0 e^+ e^-$	70	83	5.7	18%
$K_L \rightarrow \pi^0 \mu^+ \mu^-$	100	53	8.1	12%

First observation $@>5\sigma$ and measurement of both ultra-rare decay modes

$$\mathcal{B}_{\rm SM}(K_L \to \pi^0 e^+ e^-) = \left(15.7|a_S|^2 \pm 6.2|a_S| \left(\frac{{\rm Im}\,\lambda_t}{10^{-4}}\right) + 2.4 \left(\frac{{\rm Im}\,\lambda_t}{10^{-4}}\right)^2\right) \times 10^{-12}$$
$$\mathcal{B}_{\rm SM}(K_L \to \pi^0 \mu^+ \mu^-) = \left(3.7|a_S|^2 \pm 1.6|a_S| \left(\frac{{\rm Im}\,\lambda_t}{10^{-4}}\right) + 1.0 \left(\frac{{\rm Im}\,\lambda_t}{10^{-4}}\right)^2 + 5.2\right) \times 10^{-12}$$

[LHCb Phase-I upgrade: form-factor parameter a_s to 5% relative precision]

Assuming constructive interference, determine the CKM parameter λ_t :

$$\frac{\delta(\operatorname{Im}\lambda_t)}{\operatorname{Im}\lambda_t}\bigg|_{K_L \to \pi^0 e^+ e^-} = 0.33 \qquad \frac{\delta(\operatorname{Im}\lambda_t)}{\operatorname{Im}\lambda_t}\bigg|_{K_L \to \pi^0 \mu^+ \mu^-} = 0.28$$

 \Rightarrow 20% precision on CKM parameter λ_t

12/09/2023

Karim Massri – Kaons @ CERN workshop – CERN

HIKE – Physics sensitivity

HIKE: many flavour observables

HIKE: rare K^+ and K_L decay programme to an unprecedented level of precision

$K^+ \to \pi^+ \nu \bar{\nu}$	$\sigma_{\mathcal{B}}/\mathcal{B}\sim 5\%$	BSM physics, LFUV
$K^+ \rightarrow \pi^+ \ell^+ \ell^-$	Sub-% precision on form-factors	LFUV
$K^+ \to \pi^- \ell^+ \ell^+, K^+ \to \pi \mu e$	Sensitivity $O(10^{-13})$	LFV / LNV
Semileptonic K^+ decays	$\sigma_{\mathcal{B}}/\mathcal{B}\sim 0.1\%$	V_{us} , CKM unitarity
$R_K = \mathcal{B}(K^+ \to e^+ v) / \mathcal{B}(K^+ \to \mu^+ v)$	$\sigma(R_K)/R_K \sim O(0.1\%)$	LFUV
Ancillary K^+ decays	% – % o	Chiral parameters (LECs)
(e.g. $K^+ \rightarrow \pi^+ \gamma \gamma, K^+ \rightarrow \pi^+ \pi^0 e^+ e^-$)		
$K_L \to \pi^0 \ell^+ \ell^-$	$\sigma_{\mathcal{B}}/\mathcal{B} < 20\%$	Im λ_t to 20% precision,
		BSM physics, LFUV
$K_L \to \mu^+ \mu^-$	$\sigma_{\mathcal{B}}/\mathcal{B} \sim 1\%$	Ancillary for $K \rightarrow \mu \mu$ physics
$K_L \to \pi^0(\pi^0) \mu^{\pm} e^{\mp}$	Sensitivity $O(10^{-12})$	LFV
Semileptonic K_L decays	$\sigma_{\mathcal{B}}/\mathcal{B}\sim 0.1\%$	V_{us} , CKM unitarity
Ancillary K_L decays	% – % o	Chiral parameters (LECs),
(e.g. $K_L \to \gamma \gamma, K_L \to \pi^0 \gamma \gamma$)		SM $K_L \to \mu \mu, K_L \to \pi^0 \ell^+ \ell^-$ rates

HIKE – Physics sensitivity

HIKE: Kaon Global fit

Global fits to set of kaon measurements, in the framework of lepton universality. Effect on Wilson coefficients for NP scenarios with only left-handed quark currents.

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}}\lambda_t^{sd}\frac{\alpha_e}{4\pi}\sum_k C_k^\ell O_k^\ell$$

 $C_k^{\ell} = C_{k,\text{SM}}^{\ell} + \delta C_k^{\ell}$ $O_L^{\ell} = (\bar{s}\gamma_{\mu}P_L d) (\bar{\nu}_{\ell} \gamma^{\mu} (1 - \gamma_5) \nu_{\ell})$

[CERN Physics Beyond Colliders Document in preparation, and paper in preparation by D'Ambrosio, Mahmoudi, Neshatpour]

Bounds from individual observables. Coloured regions are 68%CL measurements Dashed lines are 90%CL upper limits

Projections assumptions:

A: central value for existing measurements kept the same
+ SM expectation used for measurement with upper bounds
B: central value of all observables is projected to the best-fit points obtained from fits to existing data

Feebly-interacting particles @ HIKE

HIKE: Fixed-target configuration, long decay volume \rightarrow suitable to search for FIPs, in kaon and beam-dump

Search for FIP production in **kaon mode**: $K^+ \rightarrow \ell^+ N$, $K^+ \rightarrow \pi^+ X$, ... (for details, see Evgueni's talk from yesterday)

Dump mode: most sensitive to forward processes, complementary to off-axis experiment SHADOWS. An ad-hoc setting of the dipoles allows a substantial reduction of the rate of muons emitted by pion decays in the proton-induced hadronic showers in the TAX.

Expected background in HIKE-dump (5×10¹⁹ POT) based on extrapolation from 1.4×10^{17} POT collected by NA62 in 2021 in beam-dump mode

Final state	Expected background
$\mu^+\mu^-$	< 0.02
e^+e^-	< 0.9
$\pi^+\pi^-(\gamma)$	< 0.09
$\mu^{\pm}\pi^{\mp}, e^{\pm}\pi^{\mp}$	< 0.1
$\gamma\gamma$	work in progress

Karim Massri - Kaons @ CERN workshop - CERN

HIKE – FIPs

ω10-

 10^{-3}

 10^{-4}

10

10-6

10

 10^{-8}

 10^{-1}

 10^{-2} 10^{-3}

 10^{-}

 10^{-5}

 10^{-6}

10

 10^{-}

 10^{-9}

 10^{-11}

 10^{-12}

. ۵۵

10

Feebly-interacting particles (a) HIKE

HIKE sensitive to all BC benchmarks except BC3 & BC5

HIKE – Physics sensitivity

HIKE: LNV/LFV decays

Lepton Number/Flavor Violation: many decay modes, forbidden in SM

12/09/2023

Karim Massri - Kaons @ CERN workshop - CERN

HIKE: Cabibbo angle anomaly

Disagreement leads to (apparent?) violation of CKM unitarity:

HIKE detector

Detector	Phase 1	Phase 2	Comment	Preliminary group interests
Cherenkov tagger	upgraded	removed	faster photo-detectors	UK
Beam tracker	replaced	removed	3D-trenched or monolithic silicon sensor	Italy,CERN,UK,Belgium,Canada,France
Upstream veto detectors	replaced	kept	SciFi	Switzerland
Large-angle vetos	replaced	kept	lead/scintillator tiles	UK
Downstream spectrometer	replaced	kept	STRAW (ultra-thin straws)	CERN, Kazakhstan, Slovakia, Czech Republic
Pion identification (RICH)	upgraded	removed	faster photo-detectors	Italy, Mexico
Main EM calorimeter	replaced	kept	fine-sampling shashlyk	Italy
Timing detector	upgraded	kept	higher granularity	Belgium
Hadronic calorimeter	replaced	kept	high-granularity sampling	Germany
Muon detector	upgraded	kept	higher granularity	Germany
Small-angle calorimeters	replaced	kept	oriented high-Z crystals	Italy
HASC	upgraded	kept	larger coverage	Romania

	2024	2025	2026	2027	2028	2029	2030	
1) Detector studies								
2) Technical Design Report								
3) Detector prototyping								
4) Detector production								
5) Installation and commissioning								
6) Start physics data-taking							•	

Kaon ID

Differential Cherenkov detector, refurbished readout

K ID for 4x intensity

- Max detected photon rate: >8 MHz/cm²
- High granularity
- Single-photon capability with σ_t (Kaon) = 15-20 ps
- K^+ tagging efficiency with 4 sectors: > 95%
- Good radiation resistance

Microchannel plate (MCP) PMTs

- Excellent time resolution (~20 ps)
- Low dark noise, Single-photon sensitivity
- High gain, good QE
- Good filling factor
- Input rate capability \sim MHz/cm²

QE Susceptible to aging: Atomic layer deposition (ALD) coating increases the lifetime dramatically

Simulation results obtained with geometrical filling factor of 75% and collection efficiency of 60% show that 15–20 ps kaon time resolution is achievable

MCP-PMT array and matrix of four MCP-PMT

Beam tracker

	NA62 GigaTracker	New beam tracker
Single hit time resolution	< 200 ps	< 50 ps
Track time resolution	< 100 ps	< 25 ps
Peak hit rate	2 MHz/mm^2	8 MHz/mm ²
Pixel efficiency	> 99 %	> 99 %
Peak fluence / 1 year $[10^{14} 1 \text{ MeV } n_{eq}/\text{cm}^2]$	4	16

Interest for silicon detectors with fast timing information capable to operate in a high- radiation environment is shared among different experiments, including the LHC experiments for the high luminosity phase of the collider.

Hybrid 3D-trenched technology can satisfy all requirements.

Pixel electrode geometry optimised for timing performa Able to withstand very large irradiation. Excellent detection efficiencies by operating the sensor inclined by angle 20° wrt beam incidence **Associated 28nm ASIC: first prototype**

TimeSPOT

STRAW detector

NA62 has developed techniques for making state-of-the-art straws by ultrasonic welding

	Current NA62 spectrometer	New straw spectrometer
Straw diameter	9.82 mm	4.82 mm
Straw length	2100 mm	2100 mm
Planes per view	4	8
Straws per plane	112	~160
Straws per chamber	1792	~5200
Mylar thickness	36 µm	(12 or 19) µm
Anode wire diameter	30 µm	(20 or 30) µm
Total material budget	$1.7\% X_0$	$(1.0 - 1.5)\% X_0$
Maximum drift time	~150 ns	~80 ns
Hit leading time resolution	(3-4) ns	(1-4) ns
Hit trailing time resolution	~30 ns	~6 ns
Average number of hits hits per view	2.2	3.1

Optimised layout for new STRAW detectors

Track angular X resolution

12/09/2023

Karim Massri – Kaons @ CERN workshop – CERN

Pion ID: RICH

	NA62 RICH	HIKE RICH
Sensor type	PMT	SiPM
Sensor time resolution	240 ps	100 ps
Sensor quantum efficiency	20%	40%
Number of hit for π^+ at 15 GeV/ <i>c</i>	7	14
Number of hit for π^+ at 45 GeV/ <i>c</i>	12	24
Time resolution for π^+ at 15 GeV/ <i>c</i>	90 ps	27 ps
Time resolution for π^+ at 45 GeV/ <i>c</i>	70 ps	20 ps

Sensor type	Layout	Sensor size	N _{Channels}	$\sigma_{\rm Hit}$	σ_{Radius}
Hamamatsu R7400U-03 (NA62 RICH)		R _{Winston} =18 mm R _{PMT} =7.5 mm	1952	4.7 mm	1.5 mm
		3x3 mm ²	62K	2.3 mm	0.66 mm
SiPM		6x6 mm ²	16K	2.8 mm	0.78 mm
		9x9 mm ²	7K	3.4 mm	0.95 mm

NA62 RICH detector

Radiator: neon at atmospheric pressure Major changes: Cherenkov light sensors and flanges hosting them.

→ **Opportunity to increase acceptance**

Main Electromagnetic calorimeter

Fine-sampling shashlyk based on PANDA forward EM calorimeter

Main electromagnetic calorimeter requirements:

excellent efficiency and time resolution (~100ps), good two-cluster separation, good energy resolution

PANDA prototypes:

- $\sigma_E / \sqrt{E} \sim 3\% / \sqrt{E}$ (GeV)
- $\sigma_t \sim 72 \text{ ps} / \sqrt{E} \text{ (GeV)}$
- $\sigma_x \sim 13 \text{ mm} / \sqrt{E} \text{ (GeV)}$

Quasi-homogeneous ionization calorimeter,
$$27X_0$$
 of LKr (a) **MA62**
 $\frac{\sigma_E}{E} = \frac{3.2\%}{\sqrt{E}} \oplus \frac{9\%}{E} \oplus 0.42\%$ $1 - \varepsilon < 10^{-5}$ for $E_{\gamma} > 10$ GeV
 $\sigma_t \sim 500$ ps for π^0 with $E_{\gamma\gamma} > 20$ GeV
Efficiency/energy resolution suitable for Phase 1,
time resolution needs 4x improvement for HIKE

Information from spy tiles provides 5-10x improvement in neutron rejection Overall neutron rejection at level of 10³

In synergy with AIDAinnova, exploring the potential use of nanocomposite scintillators for faster time response and increased radiation robustness. Also for LAV and SAC.

12/09/2023

Summary

• HIKE-Phase1:

- Main physics goals:
 - Measurement of BR(K⁺ $\rightarrow \pi^+ \nu \nu)$ at 5% precision
 - Lepton universality in $K^+ \rightarrow \pi^+ \ell^+ \ell^-$ decays (x2 better precision)

• Build on NA62 experience:

- NA62-like detector + major upgrades
- Keep same (or better) performances at 4x intensity
- -x2 signal acceptance increase from improved detector (e.g. granularity)
- Further suppression of dominant background from upstream kaon decays

• HIKE-Phase2:

- Main physics goals:
 - Measurement of BR($K_L \rightarrow \pi^0 \ell^+ \ell^-$) at 20% precision
- Expected physics sensitivity:
 - First observation $@>5\sigma$ and measurement of both ultra-rare decay modes
 - -20% precision on CKM parameter λ_t

Only place worldwide where this programme is addressed experimentally. Unique and timely opportunity to address a strongly motivated physics case at CERN NA facility

Spares

12/09/2023

Karim Massri – Kaons @ CERN workshop – CERN

 $K^+ \rightarrow \pi^+ v v v - state of the art$

The NA62 experiment

Nominal intensity: $\sim 3 \times 10^{12} \text{ POT/spill} \rightarrow 750 \text{ MHz}$ hadron beam

Primary beam:

- 400 GeV CERN SPS protons Secondary hadron beam:
- K^+ (6%) / π^+ (70%) / p (24%)
- $p = 75 \text{ GeV}, \Delta p/p \sim 1\%$
- 60 × 30 mm² transverse size **Decay region:**
- 60 m long fiducial volume
- Vacuum ~ $O(10^{-6} \text{ mbar})$
- ~ 5 MHz K⁺ decay rate

Karim Massri - Kaons @ CERN workshop - CERN

NA62 \Lambda

$K^+ \rightarrow \pi^+ v v v - state of the art$

NA62 Run1 (2016-2018) result

2018 data:

Background	Subset S1	Subset S2	
$\pi^+\pi^0$	0.23 ± 0.02	0.52 ± 0.05	
$\mu^+ u$	0.19 ± 0.06	0.45 ± 0.06	
$\pi^+\pi^-e^+ u$	0.10 ± 0.03	0.41 ± 0.10	
$\pi^+\pi^+\pi^-$	0.05 ± 0.02	0.17 ± 0.08	
$\pi^+\gamma\gamma$	< 0.01	< 0.01	
$\pi^0 l^+ u$	< 0.001	< 0.001	
Upstream	$0.54\substack{+0.39 \\ -0.21}$	$2.76\substack{+0.90 \\ -0.70}$	
Total	$1.11^{+0.40}_{-0.22}$	$4.31\substack{+0.91 \\ -0.72}$	

Expected: 7.6 signal + 5.4 background events **Observed:** 17 K⁺ $\rightarrow \pi^+ v \bar{v}$ candidates!

Combined NA62 2016-2018 data

SES = $(8.39 \pm 0.53_{syst}) \times 10^{-12}$ Expected signal: $10.01 \pm 0.42_{syst} \pm 1.19_{ext}$ Expected bkg: $7.03^{+1.05}_{-0.82}$ Observed: 20 (1+2+17) events

$$BR(K^+ \to \pi^+ v \bar{v}) = (10.6^{+4.0}_{-3.4 \text{ stat}} \pm 0.9_{\text{syst}}) \times 10^{-11}$$

3.4\sigma significance, most precise measurement to date!

12/09/2023

34

JHEP 06 (2021) 093

NA62

 $K^+ \rightarrow \pi^+ v v - state of the art$

NA62 Run2 (2021-2025)

NA62 recommended by SPSC and approved by Research Board until LS3

Improvements in NA62 Run2:

- DAQ stability improved: run at higher beam intensity $(70\% \rightarrow 100\%)$
- Rearrangement of beamline elements around GTK achromat
- Added 4th station to GTK beam tracker
- Additional veto counters around beam pipe (both upstream/downstream the FV)
- New veto hodoscope upstream of decay volume (ANTI0)
- New hydrogen-filled Kaon identification detector (CEDAR-H) to reduce material along the beam line (since 2023)

New ANTI0

NA62 🔊

New upstream veto

New downstream veto

New CEDAR-H

12/09/2023

Karim Massri – Kaons @ CERN workshop – CERN