Semileptonic kaon decays in the Standard Model

Peter Stoffer Physik-Institut, University of Zurich and Paul Scherrer Institut

EPJC **74** (2014) 2749 with G. Colangelo and E. Passemar: EPJC **75** (2015) 172

12th September 2023

Kaons@CERN 2023

Outline

- 2 Dispersion relations
- 3 Decomposition of $K_{\ell 4}$ form factors
- 4 Integral equations
- 5 Fit to Data and Matching to χ PT

6 Outlook

- 2 Dispersion relations
- 3 Decomposition of $K_{\ell 4}$ form factors
- 4 Integral equations
- 5 Fit to Data and Matching to χ PT

6 Outlook

• $K_{\ell 2}$:

Motivation

- determination of $|V_{us}/V_{ud}|$ from $\Gamma_{K_{\mu 2(\gamma)}}/\Gamma_{\pi_{\mu 2(\gamma)}}$ together with lattice input
- lepton universality probed by $R_{e/\mu}^K = \Gamma_{K_{e2(\gamma)}} / \Gamma_{K_{\mu 2(\gamma)}}$
- *K*_{*ℓ*3}:
 - alternative determination of $|V_{us}/V_{ud}|$ from $\Gamma_{K_{\ell^3(\gamma)}}/\Gamma_{\pi_{\epsilon^3(\gamma)}}$
 - determination of $|V_{us}|$ with lattice input
 - knowledge of form factor allows to predict $K \rightarrow \pi \nu \bar{\nu}$

→ Bryman, Cirigliano, Crivellin, Inguglia, ARNPS 72 (2022) 69-91

Motivation

• $K_{\ell 4}$:

Motivation

- provides information on $\pi\pi$ -scattering lengths a_0^0 , a_0^2
- K_{e4} very precisely measured \Rightarrow test of χ PT

 \rightarrow Geneva-Saclay, E865, NA48/2

- best source of information on the χPT low-energy constants L^r₁, L^r₂ and L^r₃
- happens at very low energy, where χPT is expected to converge best
- background for $K \to \pi \nu \bar{\nu}$
- form-factor determination allows to predict $K \rightarrow \pi \pi \nu \bar{\nu}$

→ Colangelo, PoS KAON (2008) 038 → Colangelo, Gasser, Rusetsky, EPJC **59** (2009) 777-793

Motivation

- 2 Dispersion relations
- 3 Decomposition of $K_{\ell 4}$ form factors
- 4 Integral equations
- 5 Fit to Data and Matching to χ PT

6 Outlook

Dispersion relations

causality implies analyticity:

Cauchy integral formula:

$$f(s) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(s')}{s' - s} ds'$$

deform integration path:

$$f(s) = f(0) + \frac{s}{\pi} \int_{s_0}^{\infty} \frac{\operatorname{Im} f(s')}{(s' - s - i\epsilon)s'} ds'$$

.

Unitarity

unitarity of S-matrix determines discontinuities

Watson's final-state theorem for elastic region: $\delta = \text{scattering phase shift}$

Example: $K_{\ell 3}$ scalar form factor

twice-subtracted Omnès representation:

$$\bar{f}_0(t) = \exp\left\{\frac{t}{\Delta_{K\pi}} \ln \bar{f}_0(\Delta_{K\pi}) + \frac{t(t - \Delta_{K\pi})}{\pi} \int_{t_{K\pi}}^{\infty} \frac{\delta(t')}{t'(t' - \Delta_{K\pi})(t' - t - i\epsilon)} dt'\right\}$$

free parameter: $\bar{f}_0(\Delta_{K\pi})$ at Callan–Treiman point $\Delta_{K\pi} = M_K^2 - M_{\pi}^2 \Rightarrow$ use low-energy theorem

→ Bernard, Oertel, Passemar, Stern, PLB 638 (2006) 480, PRD 80 (2009) 034034

Advantages of dispersion relations

- based on analyticity and unitarity ⇒ model independence
- summation of rescattering
- connect different energy regions

Applications to $K_{\ell 4}$

• as a means to compute isospin breaking at two loops in χ PT:

→ Bernard, Descotes-Genon, Knecht, EPJC 73 (2013) 2478

numerical solution, Omnès methods:

→ Colangelo, Passemar, Stoffer, EPJC 75 (2015) 172

- 2 Dispersion relations
- 3 Decomposition of $K_{\ell 4}$ form factors
- 4 Integral equations
- 5 Fit to Data and Matching to χ PT

6 Outlook

Definition of the $K_{\ell 4}$ decay

decay of a kaon into two pions and a lepton pair

$$K^+(p) \to \pi^+(p_1)\pi^-(p_2)\ell^+(p_\ell)\nu_\ell(p_\nu)$$

with $\ell \in \{e, \mu\}$

(other modes involving neutral pions related by isospin symmetry)

Hadronic part of $K_{\ell 4}$ as $2 \rightarrow 2$ scattering

Mandelstam variables:

$$s = (p_1 + p_2)^2, \quad t = (k - p_1)^2, \quad u = (k - p_2)^2$$

Similar to $K\pi \to K\pi$ or $KK \to \pi\pi$

but: physical region for $K\pi$ scattering: $E > M_K + M_{\pi}$

Similar to $K \rightarrow 2\pi$

 \rightarrow Büchler, Colangelo, Kambor, Orellana (2001) with application in rare K_S decays

→ Colangelo, Stucki, Tunstall, EPJC 76 (2016) 11, 604

Form factors

 Lorentz structure allows four form factors in the hadronic matrix element (P = p₁ + p₂, Q = p₁ - p₂):

$$\langle \pi^{+}(p_{1})\pi^{-}(p_{2})|A_{\mu}(0)|K^{+}(k)\rangle = -i\frac{1}{M_{K}}\left(P_{\mu}F + Q_{\mu}G + L_{\mu}R\right) \langle \pi^{+}(p_{1})\pi^{-}(p_{2})|V_{\mu}(0)|K^{+}(k)\rangle = -\frac{H}{M_{K}^{3}}\epsilon_{\mu\nu\rho\sigma}L^{\nu}P^{\rho}Q^{\sigma}$$

- contribution of R helicity suppressed: invisible in K_{e4}
- *H* related to chiral anomaly: chirally suppressed
- concentrate here on F and G
- form factors are functions of the Mandelstam variables *s*, *t* and *u*

Analytic properties

- F(s,t,u) and G(s,t,u) have a right-hand branch cut in the complex *s*-plane, starting at the $\pi\pi$ -threshold
- left-hand cut present due to crossing
- analogous situation in *t* and *u*-channel

Reconstruction theorem

 \rightarrow Stern, Sazdjian, Fuchs (1993), Ananthanarayan, Buettiker (2001), \ldots

• define function with **only right-hand cut** of f_0 , the first partial wave of *F*:

$$M_0(s) := P(s) + \frac{s^2}{\pi} \int_{4M_\pi^2}^{\infty} \frac{\mathrm{Im}f_0(s')}{(s' - s - i\epsilon){s'}^2} ds'$$

- similar functions take care of the right-hand cuts of all other S- and P-waves (also crossed channels)
- all the discontinuities are split up into functions of a single variable
- neglect imaginary parts of *D* and higher waves

Reconstruction theorem

form factors decomposed into functions of one Mandelstam variable only:

$$F(s,t,u) = M_0(s) + \frac{u-t}{M_K^2}M_1(s) + (\text{functions of } t \text{ or } u),$$

$$G(s,t,u) = \tilde{M}_1(s) + (\text{functions of } t \text{ or } u).$$

- generalization of Khuri–Treiman equations
- violated only at $\mathcal{O}(p^8)$ in χPT

Overview

- 2 Dispersion relations
- 3 Decomposition of $K_{\ell 4}$ form factors
- 4 Integral equations
- 5 Fit to Data and Matching to χ PT

6 Outlook

Omnès representation

function M_0 contains only right-hand cut of the partial wave f_0 : difference is the 'inhomogeneity' \hat{M}_0 :

$$f_0(s) = M_0(s) + \hat{M}_0(s)$$

inhomogeneous Omnès problem:

$$\mathrm{Im}M_0(s) = (M_0(s) + \hat{M}_0(s))e^{-i\delta_0^0(s)}\sin\delta_0^0(s)$$

Watson's theorem: δ_0^0 is elastic $\pi\pi$ phase shift

Omnès representation

Omnès function takes care of rescattering:

$$\Omega_l^I(s) := \exp\left\{\frac{s}{\pi} \int_{s_0}^\infty \frac{\delta_l^I(s')}{(s' - s - i\epsilon)s'} ds'\right\}$$

 δ_l^I : elastic $\pi\pi$ or $K\pi$ phase shifts

write dispersion relation for
$$rac{M_0(s)}{\Omega_0^0(s)}$$

Omnès representation

Omnès solution for the functions $M_0(s)$, $M_1(s)$, $\tilde{M}_1(s)$, etc.:

$$M_0(s) = \Omega_0^0(s) \left\{ P(s) + \frac{s^3}{\pi} \int_{4M_\pi^2}^{\Lambda^2} \frac{\hat{M}_0(s') \sin \delta_0^0(s')}{|\Omega_0^0(s')| (s' - s - i\epsilon) {s'}^3} ds' \right\}$$

P: subtraction polynomial \hat{M}_i : inhomogeneities, angular averages of all the functions M_i

Obtained dispersive representation

- problem parametrized by 9 subtraction constants
- input: elastic $\pi\pi$ and $K\pi$ -scattering phase shifts
- energy dependence fully determined by the dispersion relation

Obtained dispersive representation

- set of coupled integral equations:
 - $\Rightarrow M_0(s), M_1(s), \ldots$: DR involving $\hat{M}_0(s), \hat{M}_1(s), \ldots$
 - $\Rightarrow \hat{M}_0(s), \hat{M}_1(s), \ldots$: angular integrals over $M_0(s), M_1(s), \ldots$
- system solved by iteration (alternatively: direct matrix inversion

→ Gasser, Rusetsky, EPJC 78 (2018) 11, 906)

problem linear in the subtraction constants

 \Rightarrow construct 9 basis solutions

Determination of the subtraction constants

- fit to data of the high-statistics experiments E865 and NA48/2
- soft-pion theorems as additional constraints
- chiral input for the subtraction constants that are not well determined by data

Overview

- 2 Dispersion relations
- 3 Decomposition of $K_{\ell 4}$ form factors
- 4 Integral equations
- 5 Fit to Data and Matching to χ PT

6 Outlook

Isospin-breaking corrections

→ EPJC **74** (2014) 2749

isospin-breaking effects beyond the ones taken into account in NA48/2 analysis:

- based on one-loop χPT calculation
- strong-isospin breaking effects $\propto (m_u m_d)$
- meson-mass difference effects $\propto Ze^2$
- purely photonic effects $\propto e^2$
- compared to Coulomb factor and PHOTOS MC

Fit results for partial waves

S-wave of F

$$F_s(s, s_\ell)$$

Fit results for partial waves

P-wave of G

Matching to χPT

- matching to \(\chi PT\) at the level of subtraction constants in Omnès form: separate rescattering effects
- fit to 2-dimensional data set of NA48/2
- L_9^r can be determined from dependence on s_ℓ

Matching at NNLO

- many poorly known LECs C_i^r at NNLO
- include additional constraints in the fit: require good chiral convergence
- input: C_i^r contribution to subtraction constants with $\pm 50\%$ uncertainty
- fit the C_i^r contribution
- not all sets of C^r_i input lead to a good chiral convergence: prefer BE14

→ Bijnens, Ecker, ARNPS 64 (2014) 149

Low-energy constants

Results for the LECs using χ PT at NLO and NNLO.

	NLO	NNLO	Bijnens, Ecker (2014)
$10^3 \cdot L_1^r$	0.51(2)(6)	0.69(16)(8)	0.53(6)
$10^3 \cdot L_2^r$	0.89(5)(7)	0.63(9)(10)	0.81(4)
$10^3 \cdot L_3^r$	-2.82(10)(7)	-2.63(39)(24)	-3.07(20)
$\chi^2/{ m dof}$	141/116 = 1.2	124/122 = 1.0	

Error budget: L_1^r

Error budget: L_2^r

Error budget: L_3^r

Overview

- 2 Dispersion relations
- 3 Decomposition of $K_{\ell 4}$ form factors
- 4 Integral equations
- 5 Fit to Data and Matching to χ PT

6 Outlook

Electron mode K_{e4}

Outlook

What could be done with higher statistics?

- *s*_ℓ-dependence of *F* and *G* can be used to extract *L*^{*r*}₉
 ⇒ relation to pion charge radius
- determination of L^r₁, L^r₂, L^r₃ with even higher precision
- (better) determination of linear combinations of C_i^r
- include 1-loop radiative corrections for $K_{e4}(\gamma)$ in PHOTOS Monte Carlo \rightarrow EPJC 74 (2014) 2749

Muon mode $K_{\mu4}$

- larger values of s_l
- form factor R is accessible
- s-dependence of R contains L_4^r , L_5^r and L_9^r
- information on $K\pi$ scattering

Summary

- parametrization valid up to and including $\mathcal{O}(p^6)$
- model independence
- resummation of rescattering effects
- very precise data available
- determination of LECs from matching to χPT

Summary

Outlook

- even higher statistics could be useful for better determination of L^r_i and combinations of C^r_i
- better data on s_l-dependence would enable independent determination of L^r₉
- radiative corrections should be included in Monte Carlo
- new form factor and further LECs accessible in K_{µ4}