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1 Motivation

Leptonic and semileptonic kaon decays

• Kℓ2:
• determination of |Vus/Vud| from ΓKµ2(γ)

/Γπµ2(γ)

together with lattice input
• lepton universality probed by RK

e/µ = ΓKe2(γ)
/ΓKµ2(γ)

• Kℓ3:
• alternative determination of |Vus/Vud| from

ΓKℓ3(γ)
/Γπe3(γ)

• determination of |Vus| with lattice input
• knowledge of form factor allows to predict K → πνν̄

4



1 Motivation

Leptonic and semileptonic kaon decays
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FIG. 1. Summary of constraints on Vud and Vus (assuming the Standard Model hypothesis) from

nuclear, nucleon, meson, and ⌧ lepton decays. For each constraint, the one-sigma uncertainty on

Vus or Vud is given in parenthesis (see text for details). The one-sigma ellipse from a global fit

(with �2/d.o.f. = 2.8), depicted in yellow, corresponds to Vud = 0.97357(27) and Vus = 0.22406(34),

implying �CKM = |Vud|2 + |Vus|2 � 1 = (�19.5 ± 5.3) ⇥ 10�4.

where h = ⇡, K. An alternative method to test ⌧ � µ universality, similar to the µ� e case,

compares the electronic and muonic decay rates and can be expressed as

✓
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◆
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⌧/µ

⌧µ
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m2
µ
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⌧

(1 + �W )(1 + ��) . (24)

In the above equations me,µ,⌧ are the masses of e, µ, and ⌧ , ⌧⌧,h are the lifetimes of the

particles ⌧ and h, and �h,W,� are the weak and electromagnetic radiative corrections (see

Ref. [94] and references therein for details). Experimentally, these tests have been carried

out at B-factories where, at the nominal center-of-mass energy of 10.58 GeV/c2, thanks to

a cross section of 0.919 nb, these machines are ”⌧ -Factories” de facto that produce large

numbers of ⌧ pairs.

Both the BaBar and the CLEO Collaborations performed the LFU tests according to

Eq. (22) [95] and Eq. (23) [96], while only CLEO performed the measurement according

→ Bryman, Cirigliano, Crivellin, Inguglia, ARNPS 72 (2022) 69-91
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1 Motivation

Leptonic and semileptonic kaon decays

• Kℓ4:
• provides information on ππ-scattering lengths a00, a

2
0

• Ke4 very precisely measured ⇒ test of χPT
→ Geneva-Saclay, E865, NA48/2

• best source of information on the χPT low-energy

constants Lr
1, Lr

2 and Lr
3

• happens at very low energy, where χPT is expected

to converge best
• background for K → πνν̄

• form-factor determination allows to predict K → ππνν̄
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1 Motivation

Leptonic and semileptonic kaon decays
Theoretical progress on ππ scattering lengths and phases Gilberto Colangelo

0.16 0.18 0.2 0.22 0.24 0.26

a0
0

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

a2
0

Universal band
tree (66), one loop (83), two loops (96)
Prediction (ChPT + dispersion theory, 2001)
DIRAC (2005)
NA48 K -> 3 π (2005)
E865
NA48

0.16 0.18 0.2 0.22 0.24 0.26

a0
0

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

a2
0

Universal band
tree (66), one loop (83), two loops (96)
Prediction (ChPT + dispersion theory, 2001)
DIRAC (2005)
NA48 K -> 3 π (2005)
E865 isospin corrected
NA48 isospin-corrected

Figure 3: Comparison of the theoretical predictions of the scattering lengths and their measurements. On
the left the blue and orange ellipses are obtained from the uncorrectedKe4 and on the right those after isospin
corrections (cf. Ref. [40])

4. Lattice calculations

Lattice calculations relevant for ππ scattering can be grouped into two classes: those which
determine the quark mass dependence of Mπ and Fπ and thereby determine the constants !̄3 and !̄4;
and those which determine directly the scattering lengths. There are only two calculations of a2

0
available until now with dynamical fermions, one of them is performed on a background containing
only two dynamical quarks [10], while the more recent one by the NPLQCD collaboration is per-
formed on a background of three flavours of staggered quarks [11] (on configurations generated by
the MILC collaboration and made openly accessible). The latter calculation was done with a rather
low pion mass, reaching values just below 300 MeV, such that an extrapolation down to physical
pion masses becomes reliable. Their latest result reads

a2
0 = −0.04330± 0.00042 (4.1)

in excellent agreement with the chiral prediction (3.8), as it is also seen on Fig. 4. The CP-PACS
calculation, on the other hand has been made for a value of the pion mass above 500 MeV, where
contact with chiral perturbation theory, or an extrapolation to the physical value of the pion mass
can hardly be possible. For the earlier literature on the subject, in particular on the quenched
calculations, we refer the reader to Ref. [11].

The determination of the quark mass dependence of the pion mass and decay constant with
dynamical fermions and for low pion masses has been performed by several groups. Published
results are available from the MILC collaboration [41], from Del Debbio et al. [42] and from
the ETM collaboration [43]. Only the first calculation has been done with a background of three
dynamical flavours (of staggered quarks and employing the fourth root trick), whereas the last two
have two light quarks in the sea (with a Wilson and twisted mass formulation, respectively). A
summary of their numerical results is given in Table 2. The agreement with the phenomenological
estimates is remarkable. It is important to stress the improvement in precision that the lattice
approach offers for these constants, in particular for !̄3. In the long run the lattice method is without
competition for this particular constant, and will compete with the phenomenological determination

8

→ Colangelo, PoS KAON (2008) 038
→ Colangelo, Gasser, Rusetsky, EPJC 59 (2009) 777-793
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2 Dispersion relations

Dispersion relations

causality implies analyticity:

s0
Γ

γR

γc

R

Re(s)

Im(s)

Cauchy integral formula:

f(s) =
1

2πi

∮

γ

f(s′)

s′ − s
ds′

deform integration path:

f(s) = f(0) +
s

π

∫ ∞

s0

Imf(s′)

(s′ − s− iϵ)s′
ds′
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2 Dispersion relations

Unitarity

unitarity of S-matrix determines discontinuities

= + . . .

f(s) = |f(s)|eiδ(s)+...

Watson’s final-state theorem for elastic region:
δ = scattering phase shift

10



2 Dispersion relations

Example: Kℓ3 scalar form factor

twice-subtracted Omnès representation:

f̄0(t) = exp

{
t

∆Kπ
ln f̄0(∆Kπ)

+
t(t−∆Kπ)

π

∫ ∞

tKπ

δ(t′)
t′(t′ −∆Kπ)(t′ − t− iϵ)

dt′
}

free parameter: f̄0(∆Kπ) at Callan–Treiman point
∆Kπ = M2

K −M2
π ⇒ use low-energy theorem

→ Bernard, Oertel, Passemar, Stern, PLB 638 (2006) 480, PRD 80 (2009) 034034
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2 Dispersion relations

Advantages of dispersion relations

• based on analyticity and unitarity ⇒ model
independence

• summation of rescattering

• connect different energy regions

12



2 Dispersion relations

Applications to Kℓ4

• as a means to compute isospin breaking at two loops
in χPT:
→ Bernard, Descotes-Genon, Knecht, EPJC 73 (2013) 2478

• numerical solution, Omnès methods:
→ Colangelo, Passemar, Stoffer, EPJC 75 (2015) 172
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3 Decomposition of Kℓ4 form factors

Definition of the Kℓ4 decay

decay of a kaon into two pions and a lepton pair

K+(p) → π+(p1)π
−(p2)ℓ

+(pℓ)νℓ(pν)

with ℓ ∈ {e, µ}

(other modes involving neutral pions related by isospin
symmetry)

15



3 Decomposition of Kℓ4 form factors

Hadronic part of Kℓ4 as 2 → 2 scattering

k

−L

p1

p2

K+

Aµ

π+

π−

Mandelstam variables:

s = (p1 + p2)
2, t = (k − p1)

2, u = (k − p2)
2

16



3 Decomposition of Kℓ4 form factors

Similar to Kπ → Kπ or KK → ππ

k1

k2

p1

p2

K+

K−

π+

π−

but: physical region for Kπ scattering: E > MK +Mπ

17



3 Decomposition of Kℓ4 form factors

Similar to K → 2π

k

q

p1

p2

K0

Heff
∆S=1

π+

π−

→ Büchler, Colangelo, Kambor, Orellana (2001)

with application in rare KS decays

→ Colangelo, Stucki, Tunstall, EPJC 76 (2016) 11, 604
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3 Decomposition of Kℓ4 form factors

Form factors
• Lorentz structure allows four form factors in the

hadronic matrix element (P = p1 + p2, Q = p1 − p2):

〈
π+(p1)π

−(p2)
∣∣Aµ(0)

∣∣K+(k)
〉
= −i

1

MK
(PµF +QµG+ LµR)

〈
π+(p1)π

−(p2)
∣∣Vµ(0)

∣∣K+(k)
〉
= − H

M3
K

ϵµνρσL
νP ρQσ

• contribution of R helicity suppressed: invisible in Ke4

• H related to chiral anomaly: chirally suppressed

• concentrate here on F and G

• form factors are functions of the Mandelstam
variables s, t and u

19



3 Decomposition of Kℓ4 form factors

Analytic properties

• F (s, t, u) and G(s, t, u) have a right-hand branch cut
in the complex s-plane, starting at the ππ-threshold

• left-hand cut present due to crossing

• analogous situation in t- and u-channel

20



3 Decomposition of Kℓ4 form factors

Reconstruction theorem
→ Stern, Sazdjian, Fuchs (1993), Ananthanarayan, Buettiker (2001), . . .

• define function with only right-hand cut of f0, the
first partial wave of F :

M0(s) := P (s) +
s2

π

∫ ∞

4M2
π

Imf0(s
′)

(s′ − s− iϵ)s′2
ds′

• similar functions take care of the right-hand cuts of all
other S- and P -waves (also crossed channels)

• all the discontinuities are split up into functions of a
single variable

• neglect imaginary parts of D- and higher waves
21



3 Decomposition of Kℓ4 form factors

Reconstruction theorem

form factors decomposed into functions of one
Mandelstam variable only:

F (s, t, u) = M0(s) +
u− t

M2
K

M1(s) + (functions of t or u),

G(s, t, u) = M̃1(s) + (functions of t or u).

• generalization of Khuri–Treiman equations

• violated only at O(p8) in χPT

22
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4 Integral equations

Omnès representation

function M0 contains only right-hand cut of the partial
wave f0: difference is the ‘inhomogeneity’ M̂0:

f0(s) = M0(s) + M̂0(s)

inhomogeneous Omnès problem:

ImM0(s) = (M0(s) + M̂0(s))e
−iδ00(s) sin δ00(s)

Watson’s theorem: δ00 is elastic ππ phase shift

24



4 Integral equations

Omnès representation

Omnès function takes care of rescattering:

ΩI
l (s) := exp

{
s

π

∫ ∞

s0

δIl (s
′)

(s′ − s− iϵ)s′
ds′

}

δIl : elastic ππ or Kπ phase shifts

write dispersion relation for
M0(s)

Ω0
0(s)

25



4 Integral equations

Omnès representation

Omnès solution for the functions M0(s), M1(s), M̃1(s),
etc.:

M0(s) = Ω0
0(s)

{
P (s) +

s3

π

∫ Λ2

4M2
π

M̂0(s
′) sin δ00(s

′)

|Ω0
0(s

′)|(s′ − s− iϵ)s′3
ds′

}

P : subtraction polynomial
M̂i: inhomogeneities, angular averages of all the
functions Mi

26



4 Integral equations

Obtained dispersive representation

• problem parametrized by 9 subtraction constants

• input: elastic ππ- and Kπ-scattering phase shifts

• energy dependence fully determined by the
dispersion relation

27



4 Integral equations

Obtained dispersive representation

• set of coupled integral equations:
⇒ M0(s), M1(s), . . . : DR involving M̂0(s), M̂1(s), . . .

⇒ M̂0(s), M̂1(s), . . . : angular integrals over M0(s), M1(s), . . .

• system solved by iteration
(alternatively: direct matrix inversion
→ Gasser, Rusetsky, EPJC 78 (2018) 11, 906)

• problem linear in the subtraction constants
⇒ construct 9 basis solutions

28



4 Integral equations

Determination of the subtraction constants

• fit to data of the high-statistics experiments E865 and
NA48/2

• soft-pion theorems as additional constraints

• chiral input for the subtraction constants that are not
well determined by data

29
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5 Fit to Data and Matching to χPT

Isospin-breaking corrections
→ EPJC 74 (2014) 2749

isospin-breaking effects beyond the ones taken into
account in NA48/2 analysis:

• based on one-loop χPT calculation

• strong-isospin breaking effects ∝ (mu −md)

• meson-mass difference effects ∝ Ze2

• purely photonic effects ∝ e2

• compared to Coulomb factor and PHOTOS MC
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5 Fit to Data and Matching to χPT

Fit results for partial waves
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5 Fit to Data and Matching to χPT

Fit results for partial waves
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5 Fit to Data and Matching to χPT

Matching to χPT

• matching to χPT at the level of subtraction constants
in Omnès form: separate rescattering effects

• fit to 2-dimensional data set of NA48/2

• Lr
9 can be determined from dependence on sℓ

34



5 Fit to Data and Matching to χPT

Matching at NNLO

• many poorly known LECs Cr
i at NNLO

• include additional constraints in the fit: require good
chiral convergence

• input: Cr
i contribution to subtraction constants with

±50% uncertainty

• fit the Cr
i contribution

• not all sets of Cr
i input lead to a good chiral

convergence: prefer BE14
→ Bijnens, Ecker, ARNPS 64 (2014) 149
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5 Fit to Data and Matching to χPT

Low-energy constants

Results for the LECs using χPT at NLO and NNLO.

NLO NNLO Bijnens, Ecker (2014)

103 · Lr
1 0.51(2)(6) 0.69(16)(8) 0.53(6)

103 · Lr
2 0.89(5)(7) 0.63(9)(10) 0.81(4)

103 · Lr
3 −2.82(10)(7) −2.63(39)(24) −3.07(20)

χ2/dof 141/116 = 1.2 124/122 = 1.0

36



5 Fit to Data and Matching to χPT

Error budget: Lr
1
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Figure 15: Contributions to the uncertainty of Lr
1 in the O(p4) and O(p6) matching in units of 10−5.
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Figure 16: Contributions to the uncertainty of Lr
2 in the O(p4) and O(p6) matching in units of 10−5.
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5 Fit to Data and Matching to χPT

Error budget: Lr
3

2.0total statistical

1.9form factor data
0.8isospin corr.

Cr
i

5.5total systematic

2.1ππ phases, low en.
4.4ππ phases, high en.

0.2Kπ phases, low en.
2.1Kπ phases, high en.

1.2Lr
4

0.7Lr
5

Lr
6

Lr
7

Lr
8

0.4Lr
9

NLO

16.4

2.0
0.8

16.3

8.1

2.4
1.7

0.6
7.2

1.2
0.4

0.1
0.1
0.1

1.8

NNLO

Figure 15: Contributions to the uncertainty of Lr
1 in the O(p4) and O(p6) matching in units of 10−5.

4.6total statistical

4.3form factor data
1.7isospin corr.

Cr
i

6.5total systematic

1.8ππ phases, low en.
4.1ππ phases, high en.

0.3Kπ phases, low en.
1.9Kπ phases, high en.

3.7Lr
4

2.1Lr
5

Lr
6

Lr
7

Lr
8

0.3Lr
9

NLO

9.5

3.7
1.4

8.6

9.6

0.5
4.9

0.1
0.5
0.8

4.5
0.1
0.2
0.1

6.9

NNLO

Figure 16: Contributions to the uncertainty of Lr
2 in the O(p4) and O(p6) matching in units of 10−5.

9.5total statistical

9.0form factor data
3.2isospin corr.

Cr
i

7.0total systematic

1.5ππ phases, low en.
1.3ππ phases, high en.

0.4Kπ phases, low en.
5.0Kπ phases, high en.

0.7Lr
4

4.2Lr
5

Lr
6

Lr
7

Lr
8

0.9Lr
9

NLO

39.3

11.0
3.6

37.6

23.7

2.8
5.9

1.2
14.9

2.9
8.7

0.2
0.0
0.3

14.7

NNLO

Figure 17: Contributions to the uncertainty of Lr
3 in the O(p4) and O(p6) matching in units of 10−5.

5139



Overview

1 Motivation

2 Dispersion relations

3 Decomposition of Kℓ4 form factors

4 Integral equations

5 Fit to Data and Matching to χPT

6 Outlook

40



6 Outlook

Electron mode Ke4

What could be done with higher statistics?

• sℓ-dependence of F and G can be used to extract Lr
9

⇒ relation to pion charge radius

• determination of Lr
1, Lr

2, Lr
3 with even higher

precision

• (better) determination of linear combinations of Cr
i

• include 1-loop radiative corrections for Ke4(γ) in
PHOTOS Monte Carlo → EPJC 74 (2014) 2749

41

https://arxiv.org/abs/1312.2066


6 Outlook

Muon mode Kµ4

• larger values of sℓ
• form factor R is accessible

• s-dependence of R contains Lr
4, Lr

5 and Lr
9

• information on Kπ scattering
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6 Outlook

Summary

• parametrization valid up to and including O(p6)

• model independence

• resummation of rescattering effects

• very precise data available

• determination of LECs from matching to χPT
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6 Outlook

Summary

• even higher statistics could be useful for better
determination of Lr

i and combinations of Cr
i

• better data on sℓ-dependence would enable
independent determination of Lr

9

• radiative corrections should be included in
Monte Carlo

• new form factor and further LECs accessible in Kµ4
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