KOTO II prospects and plans

Hajime Nanjo (Osaka U.)

2023/9/13 Kaons@CERN 2023

- $\mathscr{B}_{SM}(K_L \to \pi^0 \nu \overline{\nu}) = (3.4 \pm 0.6) \times 10^{-11} (\text{JEHP11}(2015)033)$ $(2.94 \pm 0.15) \times 10^{-11}$ (Eur.Phys.J.C 83 (2023)66)
 - Suppressed SM process
 - Theoretically clean
 - CKM parameter uncertainty
 - theoretical uncertainty $\sim 2\%$
- Sensitive to new physics
 - High energy scale as large as 1000 TeV
 - Correlation to $\mathscr{B}(K^+ \to \pi^+ \nu \overline{\nu})$
 - Grossman-Nir bound

 $\mathscr{B}(K_I \to \pi^0 \nu \overline{\nu}) < 4.3 \mathscr{B}(K^+ \to \pi^+ \nu \overline{\nu})$

 $K_I \rightarrow \pi^0 \nu \overline{\nu}$

Sensitivity — Ultimate Grossman-Nir bound —

- Ultimate Grossman-Nir bound $\mathscr{B}(K^+)_{\text{SM}} = (8.4 \pm 1.0) \times 10^{-11}$ $\rightarrow \times 4.3 : (3.6 \pm 0.4) \times 10^{-10}$ (bench mark of future bound)
- Goal of current KOTO experiment SES: below 10^{-10} \rightarrow Upper limit<3.6 $\times 10^{-10}$

KOTO experiment in Hadron Experimental Facility at J-PARC

30 GeV proton beam Slow extraction 65 kW, 2-s spill / 5.2-s spill (2021)

12×8×66 mm³ Gold target

Concept of signal detection

Where are we? KOTO results of 2021 analysis

	inary	
70	source	Current estimation
	Upstream π^{0}	0.064±0.050(stat)±0.006(sys)
	$K_L \rightarrow 2\pi^0$	$0.060 \pm (0.022)_{stat} (^{+0.051}_{-0.060})_{sys}$
	K+	$0.043 \pm (0.015)_{stat} (^{+0.004}_{-0.030})_{sys}$
	Hadron cluster BG	0.024±0.004(stat)±0.006(sys)
	Scattered $K_L \rightarrow 2\gamma$	0.022±0.005(stat)±0.004(sys)
	Halo K∟→2γ	0.018±0.007(stat)±0.004(sys)
	η production in CV	0.023±0.010(stat)±0.006(sys)
	Sum	0.255±0.058(stat) (^{+0.053} _{-0.068}) _{sys}

KOTO results of 2021 analysis

	inary	
2	source	Current estimation
	Upstream π^0	0.064±0.050(stat)±0.006(sys)
	$K_L \rightarrow 2\pi^0$	$0.060 \pm (0.022)_{stat} (^{+0.051}_{-0.060})_{sys}$
	K+	$0.043 \pm (0.015)_{stat} (^{+0.004}_{-0.030})_{sys}$
	Hadron cluster BG	0.024±0.004(stat)±0.006(sys)
	Scattered $K_{L} \rightarrow 2\gamma$	0.022±0.005(stat)±0.004(sys)
	Halo K∟→2γ	0.018±0.007(stat)±0.004(sys)
	η production in CV	0.023±0.010(stat)±0.006(sys)
	Sum	$0.255\pm0.058(\text{stat}) \left(\begin{smallmatrix} +0.053 \\ -0.068 \end{smallmatrix} \right)_{sys}$

Prospects for future run

K. Shiomi **KEK IPNS** seminar

Beam Power :64kW \rightarrow 80-100kW

KOTO current status and prospects

Upper limit (90% CL)

Single event sensitivity

Upper limit : $2 \times 10^{-9} (90 \% \text{ CL})$ SES : 8.7×10^{-10}

SES : ~ 8×10^{-11}

~2 background events expected

if just extrapolated from the 2021 analysis Upper limit with Feldman Cousins method

Publication Year

Fluctuations from small statics limits the sensitivity We need new experiments with larger statistics

KOTO II with extension of hadron experimental facility

KOTO II with extension of hadron experimental facility

Extension was supported by **KEK Project Implementation Plan 2022** → Top priority to request new budget Released on 2022.6.24 https://www.kek.jp/wp-content/uploads/2022/07/KEK-PIP2022.pdf

KL2 beam line

higher intensity K_L

Small extraction angle $\theta \rightarrow$ High flux, High momentum Extraction angle θ Proton → neutron background → \rightarrow 5° is optimal Target K_L 10^{2} thk thn01 n/K_L 13060⁻ 5.575 4.755 N/ustr/1e6 POT Entries 288244 Entries Mean 5.526 Mean RMS RMS 5.056 N/ustr/1 $N_{KL}/\mathrm{sr}/10^6\mathrm{POT}$ F± 10 E10 En> 1 MeV En>100MeV 10 $\times 5$ En>300MeV 10^{-2} 16 10 12 8 10 12 14 20 2 10 18 20 8 14 Theta (deg) θ θ 16 degrees 5 degrees 16 degrees 5 degrees KOTO II KOTO KOTO II KOTO

More K_I

Key to use long decay volume

Design of beam line

KOTO II with extension of hadron experimental facility

- Narrow beam \rightleftharpoons Signal reconstruction (Beam width at calorimeter : 15 cm)
- Longer decay volume to increase the decay \rightarrow 20-m long detector
- Shorter beam-line length is better 3.

to have larger solid angle

to minimize the decay loss

→ Minimize the distance between the target and the dump \Leftrightarrow Should keep the beam line away from the main body of the dump

Idea of experiment behind the dump

Solid angle :4.8µsr

K_L rate at the detector

- 100 kW beam on T2 target
- 1λ target length (63% loss)
- 2-s spill / 4.2-s reputation cycle

- 8.8×10^{13} POT /spill
 - 24 MHz K_L incident in the dector during spill

Beam core neutron and photon

Harsh condition for in-beam counters

Collimator design to suppress beam halo

Flux of beam halo neutron

XY profile of neutrons at 64 m downstream of T2 = Z@Calorimeter20-cm square region=Calorimeter beam hole

$R(halo/core) = 1.8 \times 10^{-4}$ → halo neutron background

Magnets to suppress charged particles

Momentum kick : 0.9 GeV/c

 $R(K^+/K_L) = 4.1 \times 10^{-6}$ without 2nd magnet $\rightarrow < 1.1 \times 10^{-6}$ with 2nd magnet $R(K^+/K_I) = 0.41 \times 10^{-6}$ is assumed for background study

KOTO-II detector

Detector rate environment

Full simulation

Signal can be vetoed with accidental K_L decay or beam particle hits

Accidental loss

Accidental loss

Radiation environment behind the dump

neutron rate : 25 kHz/whole region

Radiation environment behind the dump

 μ kinetic energy (GeV)

Additional steel is included in the budget request

Measurement of muon flux behind the dump

Muon flux measurement behind the beam dump in Run90

Motivation: to confirm the muon flux coming to KOTO II/KL2 area, which will be built behind the beam dump

Measurements are consistent to MC (detailed dump geometry + Geant4). This MC gives 2.1 MHz for KOTO II detector rate without additional steel $\rightarrow 0.1$ MHz with additional steel \rightarrow contribution to accidental loss : 0.4%

Y.Hirayama,

Signal — modeling of calorimeter —

Smearing energy and position Model based on the performance of the current CsI calorimeter

selection with cluster shape and waveform

Signal – cut acceptance –

Signal acceptance : $0.4 \times (0.9)^4 = 0.26$ in total

Assumed signal efficiency • n/γ discrimination (3 cuts) : 0.9^3 Consistency between the reconstructed γ angle and the shower shape: 0.9

- Accidental loss : evaluated to be 39%
- Shower leakage loss

Signal loss

Single loss — shower leakage loss —

Gammas from π^0 decay in $K_L \to \pi^0 \nu \overline{\nu}$ sometimes cause shower-leakage to veto counters \rightarrow Signal happens to be vetoed.

Single loss — shower leakage to Central Barrel : backsplash —

Background : Should veto

How to discriminate ?

Signal : Should not veto

Signal loss — suppress backsplash loss —

Shower-leakage loss=9% Signal survival probability=91%

/ event Number of entries

of signal events

	KL yield	Decay Probability	Geometrical Acceptance	Cut efficiency
КОТО		3.3%	26%	3%
KOTO II	×2.6	10%	24%	26%
Improvement factor	2.6	3	0.9	8.7

 $S = \frac{\text{(beam power)} \times \text{(running time)}}{\text{(beam energy)}} \times \text{(number of } K_L/\text{POT)}$ $\times P_{\text{decay}} \times A_{\text{geom}} \times A_{\text{cut}} \times (1 \text{-accidental loss}) \times (1 \text{-backsplash loss}) \times \mathcal{B}_{K_L \to \pi^0 \nu \overline{\nu}}$ $=\frac{(100 \text{ kW}) \times (3 \times 10^7 \text{ s})}{(30 \text{ GeV})} \times \frac{(1.1 \times 10^7 K_L)}{(2 \times 10^{13} \text{ POT})}$ $\times 9.9\% \times 24\% \times 26\% \times (1 - 39\%) \times 91\% \times (3 \times 10^{-11})$

> Beam power : 100 kW at T2 target Data taking : 3×10^7 s # of events (SM) : 35 events

Background evaluation

Beam power : 100 kW at T2 target Data taking : 3×10^7 s

90 deg : inefficient ⇔Less photons, low energy

z (mm)

Background $-K_{I} \rightarrow 2\pi^{0}$ -

Calorimeter

Update from KAON2022

10.3 events are expected. layer in radial direction is better

33.2 events are expected. (KAON2022)

2.5 events are expected

z_{vtx}(mm)

0.08 events are expected Two layers with 10^{-3} /layer/charged particle

Z(mm)

Background — halo $K_I \rightarrow 2\gamma$ —

Background $- K^{\pm} \rightarrow \pi^0 e^{\pm} \nu -$

4.0 events are expected. Second magnet is assumed to reduce it to be $\times 1/10$.

Background — hadron cluster background —

KOTO achieved ~ 10^{-7} reduction

 $\times (2.5 \times 10^{-6})$ with 72% signal efficiency

 $\times (2.1 \times 10^{-2})$ with 90% signal efficiency

Halo neutron $\rightarrow \pi^0$

Background – Upstream π^0 –

0.2 events are expected. Fully active upstream collar counter is assumed.

Background — η production at CV —

Halo neutron $\rightarrow \eta$

8.2 events are expected.

3-mm thick plastic scintillator at 30-cm upstream of the calorimeter is assumed. More reduction by using the cluster shape cuts can be expected.

Background summary Update from KAON2022 SES: 8.5×10^{-13} # of signal events (SM) : 35 *#* of background events : 33 $S/N = 1.1 \rightarrow 6.1\sigma$ observation 450 $K_L \to \pi^{\pm} e^{\mp} \nu$ $\frac{1}{2}$ halo $K_I \rightarrow 2\gamma$ 0.078 ± 0.001 4.8 ± 0.2 10⁻¹ 300 **250** 200 **200**E 10⁻² 150⊢ 150 100⊨ 100 15000 20000 20000 5000 10000 5000 15000 10000 z_{vtx}(mm) Z(mm) upstream π^0 η production at CV 8.2 ± 2.3 0.2 ± 0.1 350E **250**E **200** | 200⊨ 10⁻¹ 150⊢ **150** ⊟ 100 100 **50**E

10000

5000

$100 \text{ kW beam}, 3 \times 10' \text{s}$ \rightarrow POT : 6.3 × 10²⁰

Z(mm)

15000

20000

10⁻²

15000

5000

10000

Impact of KOTO II

30

100 kW beam, 3×10^7 s = 6.3×10^{20} POT SES: 8.5×10^{-13} , S/B=1.1

35 SM signal / 33 background events

 $\rightarrow 6.1\sigma$ observation

- $\Delta \mathscr{B}/\mathscr{B} = 23\% \rightarrow \Delta \eta/\eta = 12\%$
- 38% deviation from SM \rightarrow 90%-CL indication of NP

Example 70% deviation from SM

May find NP effect

Preparation of KOTO II — realistic detector —

- Realistic detector geometry → Weight / Cost evaluation
- Geant4 geometry \rightarrow ready for full simulation

Preparation of KOTO II — barrel detector —

- 1 module : 135 layers of scintillator (1-mm thick) and lead (5-mm thick)
- Read out with PMT outside of the vacuum
- 32 modules in $\phi \times 4$ in $z \rightarrow 1$ vacuum tank

Mockup study

1st prototype

Preparation of KOTO II — barrel detector —

550 mm				
	0	1	2	3
# in Z	2	2	4	4
# in \$	20	20	24	32

Preparation of KOTO II – Calorimeter –

- An example configuration to study more.
- Idea of assembly
 - Stacking from the bottom.
 - Fix with pressure from side and top

Outer Veto : 20-cm $\square \sim 50$ -cm long Shashlyc (1-mm lead / 5-mm scinti.)

Preparation of KOTO II — Trial of photon angle measurement with Calorimeter —

Simulation of angular resolution of new electromagnetic sampling calorimeter (NIMA 1052 (2023)168261)

- Considering to use it in front of main calorimeter
- Construction of prototype modules
 - Lead : 0.15-mm-thick, Scintillator: 1-mm-square scintillating fibers
 - Read out with MPPCs
 - 5-layer 14-mm-wide module : Light yield : ~100 p.e./MeV

Lead/Scintilator sandwich

- \rightarrow 15-mm-wide scintillator readout
- → Shower development

Photon incident angle resolution a few degree for E_{γ} 0.2-2 GeV

Determined the minimum thickness of wall and roof \rightarrow Realistic annex design by company

Design of KL annex — **Radiation shielding** —

Determined the position / size of the roof open \rightarrow Realistic annex design by company

Preparation of KL Annex — Determination of roof access —

Hadron hall: Proton target

New target under development

Architectural and Civil Engineering Design

Realistic design by Nikken Sekkei based on site level survey

Time line of Hadron Experimental Facility extension

Time line for the earliest case

budget on KEK PIP2020

idget request (every one year)

		Slipped		
FY2022	FY2023	FY2024	FY2025	FY20
MR accelerator Upgrade		cons	allel to -suspe	
		The Ex	tension	Proj
	wi	Curre th SX Pow	ms ds 10	
	FY2O222	FY20222 FY2023	FY2022 FY2023 FY2024 elerator ade <i>cons The Ex Curre with SX Pow</i>	Slipped by 1 year FY2022 FY2023 FY2024 FY2025 elerator construction par ade construction par beam The Extension Current Prograwith SX Power toward

0	-										-
	KOTO II	Preparat	ion group		KOTO II collaboration						
		F	Proposal ubmission	New de Prototyp	sign / ping / Fun	ding	Construc	tion		Beam su	irve
	FY2022	FY2023	FY2024	FY2025	FY2026	FY2027	FY2028	FY2029	FY2030	FY2031	F
MR acc Upgr	celerator rade		cons	struction pa	BELLI rallel to bea	HK starts E2 LS2 Im operatio	n in the firs	t 4 years,			
Hadron			The Ex	tension	Project	of Hadron	Experimental Fa	cility (7 ye	ars)		
Hall		W	Curre ith SX Pov	ent Programs ver towards 100kW						xpanded P th more b	rog ean

Phasing

Current and future R&D items

Trial production and performance test of shashlyc counter for calorimeter candidate Energy, timing resolutions, neutron/ γ discrimination

Radiation environments \Leftrightarrow Use of MPPCs

lay	ver	ID
Iu		

Г			
- H			
- H		 	
- H			
- μ		 	
L			
L			
L			
Γ			
h			
h			
Γ			
Γ			
Γ			
Γ			
Γ			
Г			
Γ			
h		 	
h			
h	 	 	

read out of fibers from side with MPPCs

Current and future R&D items

Consideration on Barrel Charged Veto

CV: 3-m diameter charged veto without any $gap(<10^{-3})$ Scintillator pad? for < 300 ps resolution Readout with MPPCs, APDs...? ⇔ radiation damage

New scintillator with perovskite quantum dots \rightarrow O(10) ps timing may be expected

Straw-chamber tracker for $K_L \rightarrow \pi^0 l^+ l^-$ → precise vertex reconstruction 5-mm diameter, 12- μ m thick foil

(detection after 70~300 ns)

Current and future R&D items⁷¹

 π^{\pm} hits the detector \rightarrow thermal neutron \rightarrow capture \rightarrow high counting rate B_4C sheet for each lead layer will reduce the detector hit rate \rightarrow Prepare a lead-B₄C-scintillator module \rightarrow Test at J-PARC

Realistic mechanical design of barrel (U of Chicago)

In-beam photon veto Current and future R&D items lead-aerogel module is considered Any other ideas?

In-beam charged veto Low Gain Avalanche Diode?

More study items and more collaboration

- Korea-Japan co-research (2023-2024)
 - Dual readout calorimeter, LGAD, ... for KOTO II
- Mechanical design : will have supports from engineer group in U of Chicago.
- KEK detector R&D platform
 - Development of quantum-dot scintillator with fast timing
- Study with Full-simulation / Fast-simulation packages
 - Reduction of background using cluster shape : halo $K_L \rightarrow 2\gamma$, η production in CV, ...
- Will prepare KOTO-II proposal in JFY2023.
 - Any suggestions, contributions are welcome.
 - More international collaboration is one of the keys.
 - Could you consider to join the KOTO-II preparation group to prepare a proposal?

• Feasibility studies for other decay modes, $K_L \to \pi^0 e^+ e^-, K_L \to \pi^0 \mu^+ \mu^-, K_L \to \pi^0 X \dots$

Conclusion

- KOTO II at extended hadron experimental facility at J-PC will measure $\mathscr{B}(K_I \to \pi^0 \nu \overline{\nu})$ • Extension of Hadron Experimental Facility
- → Supported by KEK PIP 2022
 - 40 events can be observation in SM with S/B=1.1 \rightarrow 6 σ discovery.
 - Deviation of 38% may give 90% indication of NP.
 - Preparation toward KOTO II is on-going.
- Many challenges in the detector / analysis \rightarrow many chances of contributions.
- Will prepare our proposal in JFY2024.
- You are more than welcome to join us.
- Let's make a next generation experiment!

