LHCb Phase II: experiment design and the Kaon-physics reach

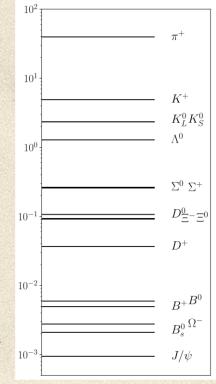
Kaons @ CERN, September 11th– 14th, Geneva, Switzerland Speaker: Radoslav Marchevski *On behalf of the LHCb collaboration*

Content

• Introduction to LHCb and its reach for strange physics

1

- Recent strangeness measurements at LHCb
- Prospects for other strange decays at LHCb
- Summary and conclusions

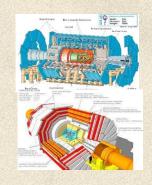

Introduction to LHCb and its reach for strange physics

Introduction

- LHCb experiment at the LHC
 - designed mostly to study **b** and **c** decays
 - trigger efficiency close to zero for **s** decays
- Very large strangeness production at the LHC ($\sigma_K^{prod} \sim 1.2 \text{ barn}$)
- World best results on $K_S \rightarrow \mu^+ \mu^-$ (Run I + II) and $\Sigma^+ \rightarrow p \mu^+ \mu^-$ (Run I)
- Major trigger improvements for **s** decays in Run-II (2016-18) and beyond

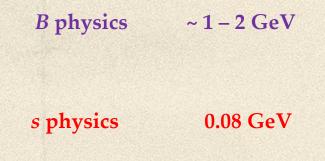
• <u>Two upgrade phases</u>

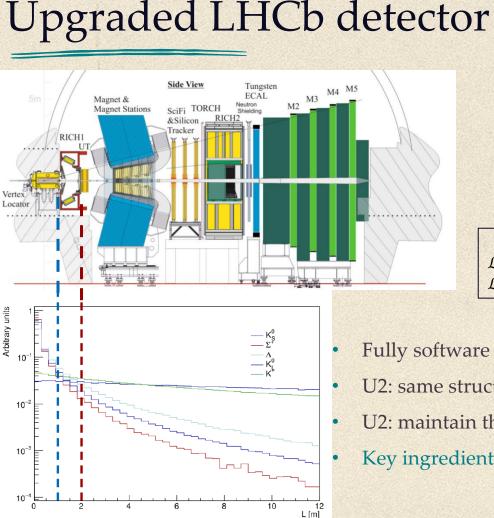
- Upgrade 1 (2022 2030): Data taking has already started
- Upgrade 2 (2031 2035): Framework TDR published (CERN-LHCC-2021-012)

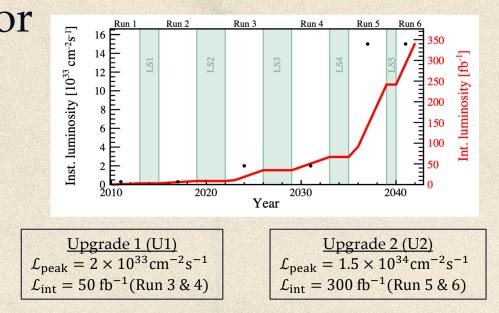

Exciting prospects for s physics at LHCb

Strange physics at the LHC

• Transverse momentum is a standard handle at the LHC to separate signal from generic pp collisions


 Doesn't work for strange decays due to very low pT decay products


• Can be compensated by requiring large separation between the pp collision and the kaon decay point



30 – 40 GeV

- Fully software trigger already available with U1 (Run 3)U2: same structure, major refurbishment of all LHCb subdetectors
- U2: maintain the same performance as in Run 3 at x7 more pileup
- Key ingredients: Granularity, Fast timing, Radiation hardness

Trigger system

	L0 (Hardware)	Main b for K pT > 0 <i>irrev</i>
Run I + II	HLT1 (Software)	Not d for K but f
	HLT2 (Software)	Dedia triş implen Rı

 $\varepsilon_{trig}(\text{Run I}) \sim 1 - 2\%$

 $\varepsilon_{trig}(\text{Run II}) \sim 18\%$ (dimuons)

Main bottleneck for K physics: **pT > O(GeV)** *irreversible*

Not designed for K physics but flexible

Dedicated K triggers implemented in Run II

improved HLT

Maximum allowed by L0 ~30%

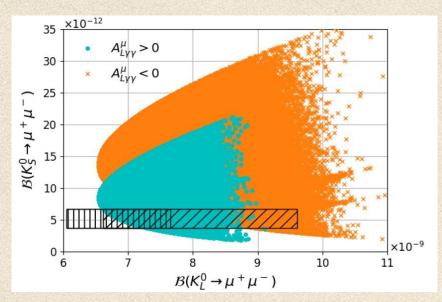
Lнср гнср

Upgrade(s)

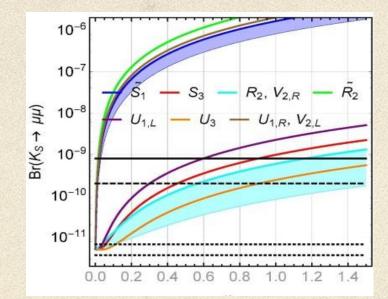
HLT (Software)

LHCb upgrade(s): $\epsilon_{trig}(2022 +) \sim 100\%$

5


Recent strangeness measurements at LHCb

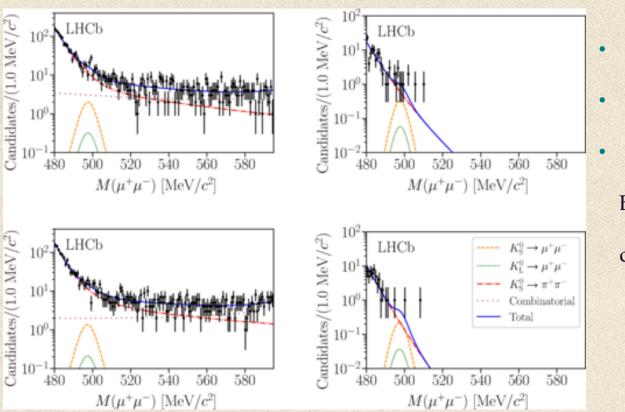
[PRL 125, 231801 (2020)], [PRL 120, 221803 (2018)], [arXiv:2212.04977v4]


$K_S^0 \rightarrow \mu^+ \mu^-$: motivation

JHEP 05 (2018) 024, JHEP 0401 (2004) 009, NPB 366 (1991) 189

- SM prediction: $BR(K_S^0 \to \mu^+ \mu^-)_{SM} = (5.18 \pm 1.50_{LD} \pm 0.02_{SD}) \times 10^{-12}$
- Sensitive to different physics than $K_L^0 \rightarrow \mu^+ \mu^-$: NP contributions can be an order of magnitude higher than the SM value and can even saturate [JHEP03(2022)048] the current limits

Example of a SUSY scenario JHEP 05 (2018) 024



Leptoquark scenarios from JHEP 02 (2018) 101

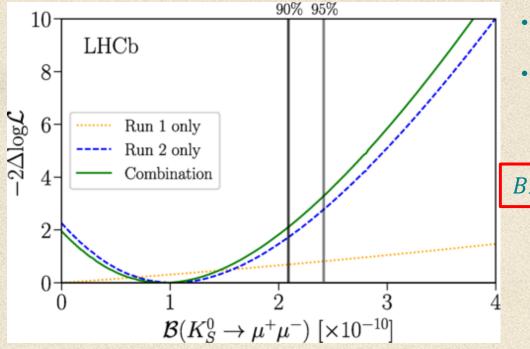
6

 $K_S^0 \rightarrow \mu^+ \mu^-$ latest results

LHCb-PAPER-2019-038 arXiv: 2001.10354 PRL 125, 231801 (2020)

Full Run I + II dataset (9 fb⁻¹)

No evidence of signal (1.4σ)


Search performed in bins of the

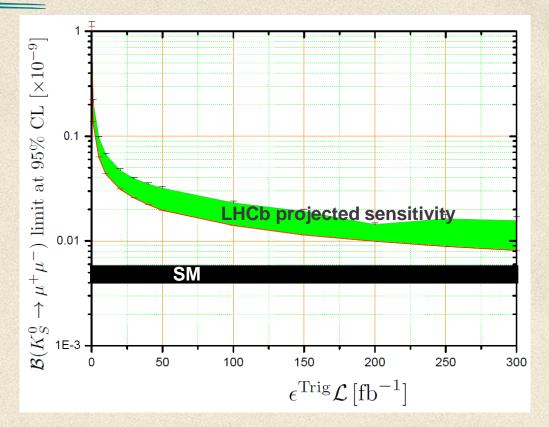
BDT output for different trigger

categories

 $K_S^0 \rightarrow \mu^+ \mu^-$ latest results

LHCb-PAPER-2019-038 arXiv: 2001.10354 PRL 125, 231801 (2020)

Full Run I + II dataset (9 fb⁻¹) analyzed

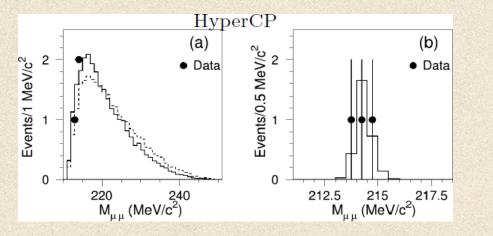

No evidence of signal (1.4 σ)

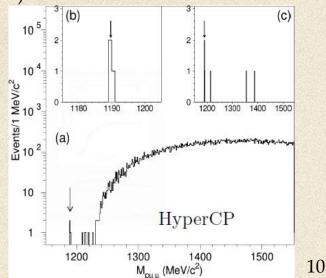
 $BR(K_S^0 \to \mu^+ \mu^-) < 2.1 \times 10^{-10} @ 90\% \text{ CL}$

At $1\sigma: BR(K_S \to \mu^+ \mu^-) = 0.9^{+0.7}_{-0.6} \times 10^{-10}$

$K_S^0 \rightarrow \mu^+ \mu^-$ prospects

arXiv: 1808.03477 JHEP 05 (2019) 048

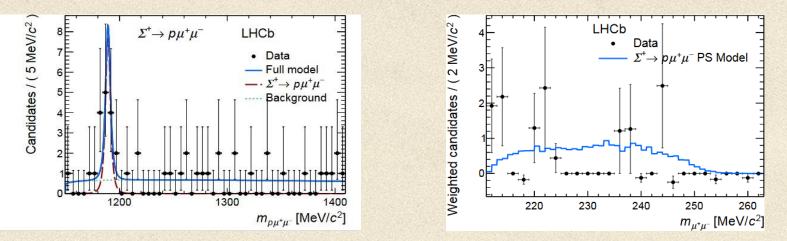



Expected to reach sensitivity close to the SM prediction with the Upgrade II

9

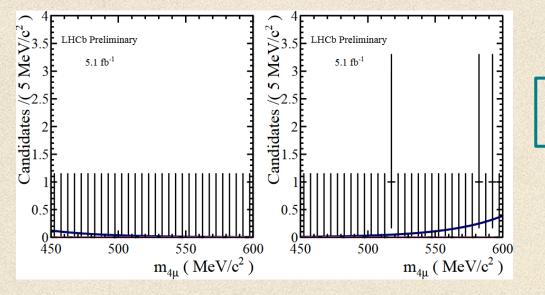
The $\Sigma^+ \rightarrow p \mu^+ \mu^-$ decay: the HyperCP evidence

- The HyperCP collaboration (E871) at Fermilab found evidence for the $\Sigma^+ \rightarrow p\mu^+\mu^-$ decay
 - $BR(\Sigma^+ \to p\mu^+\mu^-) = (8.6^{+6.6}_{-5.4} \pm 5.5) \times 10^{-8}$ PRL 94 021801 (2005)
- Consistent with the SM expectation
 - 1.6 $< BR(\Sigma^+ \to p\mu^+\mu^-)_{SM}[\times 10^{-8}] < 9$ PRD 72 074003 (2005)
- All three observed events had the same dimuon mass (214 MeV)
- Existence of a new neutral particle at that mass suggested



$\Sigma^+ \rightarrow p \mu^+ \mu^-$ at LHCb

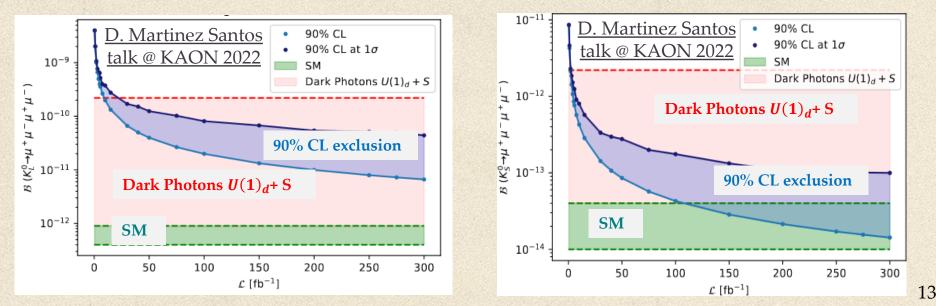
LHCb-PAPER-2017-049 arXiv:1712.08606 PRL 120, 221803 (2018)


- **4**. **1** σ evidence using Run I data (3 fb^{-1}): **B** $R(\Sigma^+ \rightarrow p\mu^+\mu^-) = (2.2^{+1.8}_{-1.3}) \times 10^{-8}$
- No evidence of resonant intermediate dilepton state
- Run II data: ~ 150 events expected allowing us to measure *A_{FB}* (analysis ongoing)
- Upgrade(s): differential decay rate measurement

10 years ago this channel was considered impossible at LHCb. Now we are considering amplitude analysis

$K^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ at LHCb

- Search for $K_{S(L)}^0 \rightarrow \mu \mu \mu \mu$ decays, heavily suppressed in the SM: $10^{-13}(K_L^0)$, $10^{-14}(K_S^0)$
- No events found in signal region (Run I + II): world's best (first) upper limits on these decays



$$BR(K_S^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 5.1 \times 10^{-12}$$
$$BR(K_L^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 2.3 \times 10^{-9}$$

PRD 108 (2023) L031102

$K^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ at LHCb: prospects

- Prospects for the next LHCb Upgrade(s) are excellent
- Scan most of the allowed range in BSM models (e.g. dark photons)
- Get close to the SM sensitivity if no signal is found

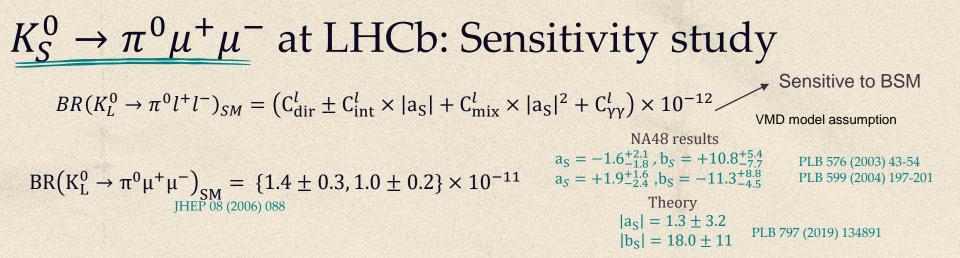
Prospects for other strange decays at LHCb

[JHEP 05 (2019) 048], [LHCb-PUB-2016-017], [LHCb-PUB-2016-016], [PRD 99 (2019) 055017], [arXiv:2201.07805]

LHCb sensitivity to strange processes

				0.	0:
Channel	${\mathcal R}$	ϵ_L	ϵ_D	$\sigma_L(\mathrm{MeV}/c^2)$	$\sigma_D(\text{MeV}/c^2)$
$K_{\rm s}^0 ightarrow \mu^+ \mu^-$	1	1.0(1.0)	1.8(1.8)	~ 3.0	~ 8.0
$K^0_{ m s} ightarrow \pi^+\pi^-$	1	1.1 (0.30)	1.9(0.91)	~ 2.5	~ 7.0
$K_{\rm s}^0 ightarrow \pi^0 \mu^+ \mu^-$	1	$0.93\ (0.93)$	1.5(1.5)	~ 35	~ 45
$K_{\rm s}^0 o \gamma \mu^+ \mu^-$	1	$0.85 \ (0.85)$	1.4(1.4)	~ 60	~ 60
$K_{\rm s}^0 \to \mu^+ \mu^- \mu^+ \mu^-$	1	$0.37\ (0.37)$	1.1(1.1)	~ 1.0	~ 6.0
$K_{\text{\tiny L}}^0 \rightarrow \mu^+ \mu^-$	~ 1	$2.7~(2.7)~{ imes}10^{-3}$	0.014(0.014)	~ 3.0	~ 7.0
$K^+ \to \pi^+ \pi^+ \pi^-$	~ 2	9.0 (0.75) $\times 10^{-3}$	$41~(8.6)~{ imes}10^{-3}$	~ 1.0	~ 4.0
$K^+ \to \pi^+ \mu^+ \mu^-$	~ 2	$6.3~(2.3)~{ imes}10^{-3}$	$0.030\ (0.014)$	~ 1.5	~ 4.5
$\Sigma^+ \to p \mu^+ \mu^-$	~ 0.13	0.28(0.28)	0.64(0.64)	~ 1.0	~ 3.0
$\Lambda \to p\pi^-$	~ 0.45	$0.41 \ (0.075)$	1.3(0.39)	~ 1.5	~ 5.0
$\Lambda \to p \mu^- \bar{\nu_{\mu}}$	~ 0.45	$0.32\ (0.31)$	0.88 (0.86)	_	_
$\Xi^- ightarrow \Lambda \mu^- \bar{\nu_{\mu}}$	~ 0.04	$39~(5.7)~{ imes}10^{-3}$	$0.27 \ (0.09)$	_	_
$\Xi^- ightarrow \Sigma^0 \mu^- \bar{\nu_{\mu}}$	~ 0.03	$24~(4.9) \times 10^{-3}$	0.21 (0.068)	_	_
$\Xi^- ightarrow p \pi^- \pi^-$	~ 0.03	0.41(0.05)	0.94~(0.20)	~ 3.0	~ 9.0
$\Xi^0 \to p \pi^-$	~ 0.03	1.0(0.48)	2.0(1.3)	~ 5.0	~ 10
$\Omega^- \to \Lambda \pi^-$	~ 0.001	95 (6.7) $\times 10^{-3}$	0.32(0.10)	~ 7.0	~ 20

			and the second		
Channel	${\cal R}$	ϵ_L	ϵ_D	$\sigma_L(\mathrm{MeV}/c^2)$	$\sigma_D(\text{MeV}/c^2)$
$K^0_{\rm s} \to \pi^+\pi^-e^+e^-$	1	1.0(0.18)	2.83(1.1)	~ 2.0	~ 10
$K^0_{\rm s} \rightarrow \mu^+ \mu^- e^+ e^-$	1	1.18(0.48)	2.93(1.4)	~ 2.0	~ 11
$K^+ \rightarrow \pi^+ e^+ e^-$	~ 2	$0.04\ (0.01)$	$0.17 \ (0.06)$	~ 3.0	~ 13
$\Sigma^+ \to p e^+ e^-$	~ 0.13	$1.76\ (0.56)$	3.2(1.3)	~ 3.5	~ 11
$\Lambda \to p \pi^- e^+ e^-$	~ 0.45	$<2.2\times10^{-4}$	$\sim 17~(<2.2)~\times 10^{-4}$	_	_
Channel	${\cal R}$	ϵ_L	ϵ_D	$\sigma_L({ m MeV}/c^2)$	$\sigma_D(\text{MeV}/c^2)$
$K_S^0 ightarrow \mu^+ e^-$	1	1.0(0.84)	1.5(1.3)	~ 3.0	~ 8.0
$K_L^0 \to \mu^+ e^-$	1	$3.1~(2.6)~\times 10^{-3}$	$13~(11)~{ imes}10^{-3}$	~ 3.0	~ 7.0
$K^+ \to \pi^+ \mu^+ e^-$	~ 2	$3.1~(1.1)~\times 10^{-3}$	$16~(8.5) \times 10^{-3}$	~ 2.0	~ 8.0

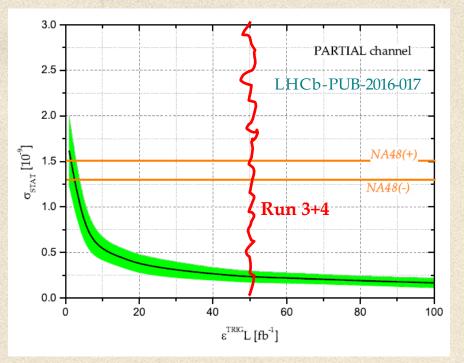

 \mathcal{R} – ratio of production ϵ – ratio of efficiencies

- Approximate simulations (validated with published ones) to get sensitivities
- Many channels to be probed
- In this talk I will focus on some of the more interesting channels where sensitivity studies are available

$$\underbrace{K_{S}^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-}}_{HE} \text{ at LHCb: Sensitivity study}_{VMD model assumption} \\
BR(K_{L}^{0} \rightarrow \pi^{0} l^{+} l^{-})_{SM} = (C_{dir}^{l} \pm C_{int}^{l} \times |a_{S}| + C_{mix}^{l} \times |a_{S}|^{2} + C_{YY}^{l}) \times 10^{-12} \\
BR(K_{L}^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-})_{SM} = \{1.4 \pm 0.3, 1.0 \pm 0.2\} \times 10^{-11} \\
BR(K_{L}^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-})_{HEP^{0}S(2006) 088} \\
BR(K_{L}^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-})_{HEP^{0}S(2006) 088} = \{1.4 \pm 0.3, 1.0 \pm 0.2\} \times 10^{-11} \\
BR(K_{L}^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-})_{HEP^{0}S(2006) 088} \\
C_{dir}^{e} = (4.62 \pm 0.24) \times (w_{7V}^{2} + w_{7A}^{2}) \\
C_{dir}^{e} = (1.09 \pm 0.05) \times (w_{7V}^{2} + 2.32 \times w_{7A}^{2}) \\
C_{mix}^{e} = 14.5 \pm 0.5 \\
C_{mix}^{e} \approx 0 \\
C_{mix}^{e} \approx 5.2 \pm 1.6 \\
C_{mix}^{e} \approx 0 \\
C_{mix}^{e} \approx 160 \\
C_{mix}^{e} \approx 5.2 \pm 1.6$$

• $w_{7A,7V} = \frac{\text{Im}(\lambda_t \times y_{7A,7V})}{\text{Im}\lambda_t}$, $y_{7V}(\mu \approx 1 \text{GeV}) = 0.73 \pm 0.04$, $y_{7A}(M_W) = -0.68 \pm 0.03$

• $\text{Im}\lambda_t = (1.407 \pm 0.098) \times 10^{-4}$



- Significant $|a_S|$ uncertainty that makes BSM interpretations of $K_L^0 \rightarrow \pi^0 \mu^+ \mu^-$ difficult
- Comes from the experimental uncertainty on $BR(K_S^0 \rightarrow \pi^0 l^+ l^-)$
 - $BR(K_S^0 \to \pi^0 \mu^+ \mu^-)_{NA48} = (2.9^{+1.5}_{-1.2}) \times 10^{-9} \text{ PLB 599 (2004) 197-201}$
 - $BR(K_S^0 \to \pi^0 e^+ e^-)_{NA48} = (3.0^{+1.5}_{-1.2}) \times 10^{-9} \text{ PLB 576 (2003) 43-54}$

Improved measurement of $K_S \rightarrow \pi^0 \mu^+ \mu^-$ will translate into improved BSM constraints from $K_L \rightarrow \pi^0 \mu^+ \mu^-$

$K_{\rm S}^0 \rightarrow \pi^0 \mu^+ \mu^-$ at LHCb: Sensitivity study

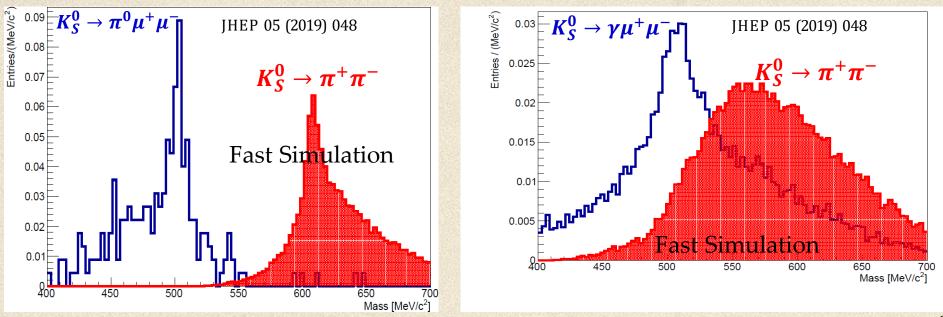
Much more background but ~ 1000 times more signal •

NA48 results $a_{S} = -1.6^{+2.1}_{-1.8}, b_{S} = +10.8^{+5.4}_{-7.7}$ $a_s = +1.9^{+1.6}_{-2.4}, b_s = -11.3^{+8.8}_{-4.5}$ Theory $|a_{\rm S}| = 1.3 \pm 3.2$ $|b_{s}| = 18.0 + 11$

PLB 576 (2003) 43-54 PLB 599 (2004) 197-201

PLB 797 (2019) 134891

Projected statistical uncertainties on a_S under various analysis conditions


Configuration	Phase I	Phase II	
BR & q^2 fit	0.25	0.10	
BR & q^2 fit with NA48 constraint	0.19	0.10	
BR & q^2 fit fixing b_S	0.06	0.024	
a_S measurement from BR alone	0.06	0.024	

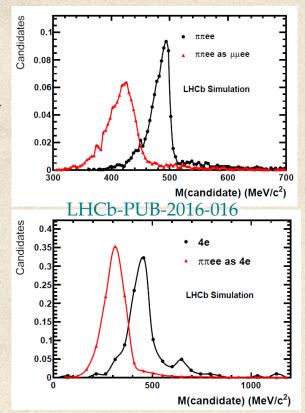
JHEP 05 (2019) 048

Phase II Upgrade \rightarrow 300 fb⁻¹

What about $K_S^0 \rightarrow \gamma \mu^+ \mu^-, K_S^0 \rightarrow X \mu^+ \mu^-, K_S^0 \rightarrow X \pi \mu$?

- $K_S^0 \to \pi^0 \mu^+ \mu^-$ analysis can be extended to other neutrals (e.g. $K_S^0 \to \gamma \mu^+ \mu^-$)
- Harder to separate from $K_S^0 \to \pi^+\pi^-$ ($m_\gamma < m_{\pi^0}$): a cut on the energy could be used

$K^0 \rightarrow l^+ l^+ l^- l^-$

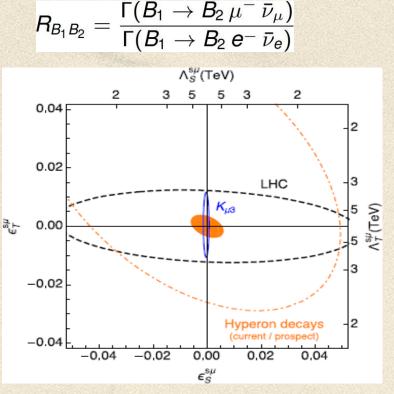

- $K^0 \rightarrow l^+ l^+ l^- l^-$
 - SD component sensitive to New Physics
 - dominated by LD uncertainties
- Interference between $\mathcal{A}(K_S^0 \to l^+ l^+ l^- l^-)$ and $\mathcal{A}(K_L^0 \to l^+ l^+ l^- l^-)$ would give a measurement of the sign of $\mathcal{A}(K_L^0 \to \gamma\gamma)$ [EPJC 73 (2013) 2678, JHEP 0401 (2004) 009]
- $K_L^0 \rightarrow l^+ l^+ l^- l^-$ studied by other experiments but no experimental constraints on the K_S^0 modes (except for the recent LHCb result on $K_S^0 \rightarrow \mu^+ \mu^+ \mu^- \mu^-$)

$$BR(K_{S}^{0} \to e^{+}e^{-}e^{+}e^{-}) \sim 10^{-10}$$
$$BR(K_{S}^{0} \to \mu^{+}\mu^{-}e^{+}e^{-}) \sim 10^{-11}$$
$$BR(K_{S}^{0} \to \mu^{+}\mu^{-}\mu^{+}\mu^{-}) \sim 10^{-14}$$

Sensitive to New Physics at the same order as the SM contribution

 $\rightarrow \pi^+\pi^-e^+e^-$

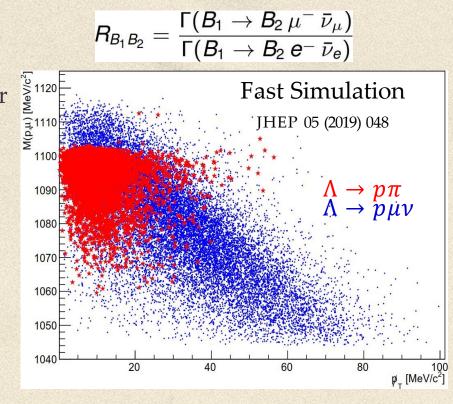
- $K_S^0 \to \pi^+ \pi^+ e^+ e^-$ can be used as a proxy to study the sensitivity to $K_S^0 \to l^+ l^+ l^- l^-$ decays
- Sensitivity study using LHCb simulations
- $BR(K_S^0 \to \pi^+ \pi^+ e^+ e^-) = (4.79 \pm 0.15) \times 10^{-5}$
- $K_S^0 \to \pi^+ \pi^+ e^+ e^-$ sensitivity with Run 1 conditions:
 - 120^{+280}_{-100} expected events per fb⁻¹ of 8 TeV data
 - $\sim 3 \times 10^3$ expected background events (no multivariate selection)
- In Run 3 with ~100 % trigger efficiency: 5×10^4 events per fb⁻¹


- Similar efficiencies expected for the $K_S^0 \rightarrow l^+ l^+ l^- l^-$ rare channels
- Single Event Sensitivities of $\sim 9.6 \times 10^{-10}$ per fb⁻¹ of collected data in Upgrade conditions

Semileptonic Hyperon Decays (SHD)

- Many muonic modes have still poor precision (15%-100%)
 - **Pro:** High BR(~10⁻⁴) huge yields at LHCb

Sensitivity to helicity suppressed contributions $\epsilon_S^{S\mu}$ and $\epsilon_T^{S\mu}$


$$R_{B_1B_2}^{\rm NP} \simeq \frac{\left(\epsilon_S^{s\mu} \frac{f_S(0)}{f_1(0)} + 12 \epsilon_T^{s\mu} \frac{g_1(0)}{f_1(0)} \frac{f_T(0)}{f_1(0)}\right)}{(1 - \frac{3}{2}\delta) \left(1 + 3\frac{g_1(0)^2}{f_1(0)^2}\right)} \Pi(\Delta, m_\mu)$$

(extrapolations from 1412.8484) Rare'N'Strange Workshop, 2017

Semileptonic Hyperon Decays (SHD)

- Many muonic modes have still poor precision (15%-100%)
 - **Pro:** High BR(~10⁻⁴) huge yields at LHCb
 - Con: Challenging peaking backgrounds

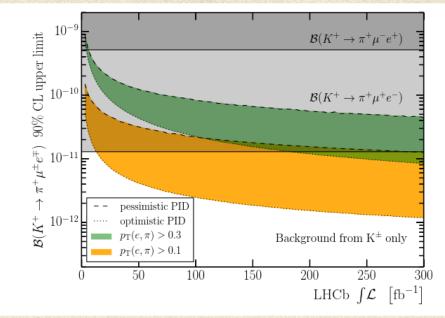

For each B1 \rightarrow B2 µv there is always a B1 \rightarrow B2 π (misid rate O(1%))

Semileptonic Hyperon Decays (SHD)

I DECAY MODES

Mode	Fraction (Γ_i/Γ) Confidence leve
$\Gamma_1 p\pi^-$	(64.1 ±0.5)%
$\Gamma_2 n\pi^0$	(35.9 ± 0.5) %
$\Gamma_3 n\gamma$	(8.3 ± 0.7) $ imes 10^{-4}$
$\Gamma_4 p \pi^- \gamma$	[a] (8.5 ± 1.4) $ imes 10^{-4}$
$\Gamma_5 pe^-\overline{\nu}_e$	$(8.34\pm0.14)\times10^{-4}$
$\Gamma_6 p\mu^-\overline{\nu}_\mu$	(1.51 ± 0.19) $ imes$ 10 ⁻⁴

- Most recent BES III result
 - $\mathcal{B}(\Lambda \to p\mu^- \bar{\nu}_\mu) = (1.48 \pm 0.21) \times 10^{-4}$
- LHCb measurement of $\mathcal{B}(\Lambda \rightarrow p\mu^- \nu_{\mu})$ with Run 2 data ongoing
 - Improvements of at least factor 2 expected
 - Precision limited by systematic uncertainty



Lepton Flavour Violation

- Lepton Flavour Violation is forbidden in the Standard Model
- Allowed in various BSM scenarios predicting non-zero $K \rightarrow e\mu$ rates [PRD 99 (2019) 055017]
 - Measurement of both K_L and K_S modes can be used to discriminate between LFV models
- Present status
 - $K_L \rightarrow e\mu < 4.7 \times 10^{-12}$ at BNL [PRL 81 (1998) 5734-5737]
 - $K_S \rightarrow e\mu$ no limit exist so far
- LHCb can do $K_S \rightarrow e\mu$

Lepton Flavour Violation

- Lepton Flavour Violation is forbidden in the Standard Model
- Allowed in various BSM scenarios predicting non-zero $K^+ \rightarrow \pi \mu e$ rates [PRD 99 (2019) 055017] •
- Present status •
 - $K^+ \to \pi^+ \mu^- e^+ < 6.6 \times 10^{-11}$ $K^+ \to \pi^- \mu^+ e^+ < 4.2 \times 10^{-11}$ PRL 127 (2021) 131802
- LHCb can do $K^+ \rightarrow \pi^+ \mu^- e^+$ •
 - Maybe $K^+ \rightarrow \pi^+ \mu^+ e^-$

Same order of magnitude sensitivity as NA62/HIKE using optimistic PID projections

Others New Physics searches with hyperons

- Searches for NP using hyperons [arXiv:2201.07805]
- $\Xi^0 \to \pi^+ \pi^- X$
 - Reach: few $\times 10^{-6}$ from statistics (systematics from backgrounds may be important)
- $\Xi^- \rightarrow \mu^+ \mu^- \pi^- X$
 - Narrow peak near threshold, high trigger efficiency and low background due to the muons
 - Reach: few $\times 10^{-10} 10^{-11}$ from statistics, systematics from backgrounds expected to be small (peaking backgrounds $\Sigma \rightarrow p\mu\mu$ and $K \rightarrow \pi\mu\mu$ far away in mass)

Summary and conclusions

- There is a **s**trange physics community at LHC**b**
 - constant trigger improvements
 - already with Run III we should reach efficiencies for **s** as high as for **b**'s
- Available measurement for $\Sigma^+ \rightarrow p\mu^+\mu^-$, $BR(K_S \rightarrow \mu^+\mu^-)$, $K_{S(L)} \rightarrow \mu^+\mu^-\mu^+\mu^-$
- Published prospects for $K_S \rightarrow (\gamma/\pi^0)\mu^+\mu^-, K_S \rightarrow \pi^+\pi^-e^+e^-$
- Run II (2016-2018) data analyses ongoing: $\Sigma^+ \rightarrow p\mu^+\mu^-, K_S \rightarrow \pi^+\pi^-\mu^+\mu^-, \Lambda \rightarrow p\mu^-\nu$
- More channels in our TODO list (e.g. $K_S \rightarrow \mu\mu ee, K_S \rightarrow eeee, LFV$, other hyperon decays, etc ...)

LHCb Upgrades offer an unique opportunity to study rare kaon and hyperon decays!