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gauge invariance — first contribution to the amplitude often starts at NLO
full structure of the amplitude often only seen at NNLO

predictions? —> determination of the low-energy constants



Most strategies implemented in the strong sector cannot easily be
transposed to the weak sector

Need to take a step back
strong sector: ChPT — three-flavour QCD
weak sector: ChPT — three-flavour QCD “augmented” by

four-fermion operators

Locn + XI: CPQ7 — Lacp + ; Cr(v)Qr(v)

SM only required to provide the list of appropriate operators and the values
of their “couplings” at some scale 1y ~ 1 GeV

problem shifted to the evaluation of the matrix elements of the (J;’s

problem simplifies in the 't Hooft limit NV, — o0, N.as, = cst



Ny, — 00?



Large-/V,. limit hasn’'t been very succesful in understanding AS =1
transitions

— fails to provide a quantitative understanding of the Al = 1/2 rule

— fails to explain the amount of direct CPV in K — 7w
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Large-/V,. limit hasn’'t been very succesful in understanding AS =1
transitions

— fails to provide a quantitative understanding of the Al = 1/2 rule

— fails to explain the amount of direct CPV in X — 7

Reasons for these failures understood:
— large-N,. limit does not account for large S-wave 77 FS rescattering

— large cancellations, need to include sub-leading contributions

Why then consider large-/V,. limit for rare kaon decays?
— in many cases, no 77 in final states
— cancellations are not necessarily at work (case-by-case study)

— may help to understand some features of the amplitude
(QCD SD singularities and how to deal with them, non-VMD features,...)

— may provide some guidance for constructing phenomenological models



Which QCD SD singularities?



As a template, consider flavour conserving two-photon transitions of neutral
spin-0 mesons —> described by a transition form factor

i

z'/d%eiq'w(O\T{j“(Q) jV(_g)}yMO(k» = F (g1, q0), 1 = k/2+q, g2 = k/2 — ¢

. _ 2 1
Jp — Z €q47pq €y = 5, €64 = €s = —
q=u,d,s

satisfying
‘7:],(41/((]17(]2) = }—f\}y(%,%) Q1M]:]’(4V(Q1,Q2) =0
.e. [JPC =0t = Cy = 0,7 =0T — Ay = By = 0

v AM q27q2
i (a1, 0) = 122000 22
M

Q" (q1,q2) + 1B (a7, 3) P* (q1,q2) + Cor (43, 33)e" P qraqap

P*(q1,q2) = ¢/q5 — (q1 - @), Quu(q1, ) = G + Gdhas — (1 - @2)dl' a5 — GGaan™



As a template, consider flavour conserving two-photon transitions of neutral
spin-0 mesons —> described by a transition form factor

z'/d%eiq"”(O\T{j“(g) jV(_g)}yMO(k» = F (g1, q0), 1 = k/2+q, g2 = k/2 — ¢

) 9 1
Z €qqVpq Cy = —, 6] = €5 = ——
q=u,d,s

— provides the amplitude for M° — ~~...

(V(q1, M) v(g2, N out| Mo (k) = £ (q1)e0) (02) Fi (a1, 42) 2= q2—0
M2

= 1M (q1) - €72 (q2) Bar (0, 0) + ie" P (1)e]) (g2) 410426 Caa (0, 0)

.. but also for M° — y¢+¢=or MO — (e e5e;

(CF () (p=)7(g2, A); out| Mo (k) oc £ (a2) Fi (a1, 42)lg2=m2, g2=0

00092

and even for M° — ¢*¢~ (involves a convergent loop integral)

TN v —_ZIZ' ~ uvpT i — 2~
lim T{j" (2>] ( 5 ) 227T A-(0)e P A, Z €594

x—0 1‘2
q:u7d78

lim M—QAM((k/Q +q)% (k/2—q)*) = lim By ((k/2+q)% (k/2—q)") iz

q—oo My, q— q

fim Car(k/2 + @)%, (/2 = )%) o

q—00 q



Anatomy of K — v*~v* at N, — oc



What about K — ~*~* ?

One expects a similar description, with the additional zero-momentum
insertion of the weak |AS| = 1 lagrangian of order O(Gr)

Fiana) = i [ d [ dtyer o (3) (5 ) il K ®)

LL%fL:lelpt(x) = —TVJS udZCI )Qr(x;v) + h.c.

However natural, this definition brings W|th it some difficulties

1

lim T{j* (2)[(5"uj)v—a(@“di)v-al(y)} ~ 55 (22)2

x—0 187’(’4 J [

(1 75)di)(0) (540 — 9,0")

This short-distance singularity is no longer integrable
Fr(q1,q2) is not well defined in (three-flavour) QCD!
Does not affect é(Av)#(qy)eP2)¥ (go) FEY (g1, o)

’qf:qSZO

Suitable for K — 4+ but not, as it stands, for e.g. K — /(= K — ¢+t~ ,...
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insertion of the weak |AS| = 1 lagrangian of order O(Gr)

Fiana) = i [ d [ dtyer o (3) (5 ) il K ®)

EL%fL:lelpt(x) = —TVJS udZCI )Qr(x;v) + h.c.

However natural, this definition brings W|th it some difficulties

1

lim T{j* (2)[(5"uj)v—a(@“di)v-al(y)} ~ 55 (22)2

x—0 187’(’4 J [

P(1 = 5)di](0) (650 — 0,0")

This short-distance singularity is no longer integrable
Fr(q1,q2) is not well defined in (three-flavour) QCD!
Does not affect s (g)= 2 (42) FL (a1, 62) 230

Suitable for K — 4+ but not, as it stands, for e.g. K — /(= K — ¢+t~ ,...

Is this singularity really there? If yes, how is it dealt with?



What about K — ~*~* ?

One expects a similar description, with the additional zero-momentum
insertion of the weak |AS| = 1 lagrangian of order O(Gr)

Fiana) = i [ d [ dtyer o (3) 5 (5 ) il K ®)

_ G
LSS () = \/EvusvudZCI V)Qr(z;v) + h.c.
I=1
[z GF (Q1 QQ) 137 . 137 praf
Fri(qr,q2) = \/—Vusvud g Q" (q1,92) +ib(q1, ¢2) P (q1,q2) + c(q1, 02) """ q10928

In the absence of CPV [C;(v) = C;(v)]

Kp ="y «— c(q1,92) Ks = v"y" «— a(q1,92),b(q1,q2)

In the large- V.. limit, the four-quark operators factorize into products of
quark bilinears
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+ finite

Divergence contained in the VP-type function
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c(qi,q3) = +§\/§[Cl — C4) ¢ [HK((ﬁ,q%) +HK(Q%,q§)] x I(q3)
2 -
+5V2(00 = Cil @ [HE (a3, @) + " (a3, )| > TH(a)
+ finite

Divergence contained in the VP-type function
Z./d% e (0| T{[77,.q)(2)77.4)(0)}0) = (auay — 1) TI(¢®) ¢ = u,d.

1 8 1 3 «
= ° 1+ 22N 4| + finit
16723d 4 | T 167 Yet | THnte

II(s) = —

d*z ' (0| T{[57,5] () 57, ()} KO (k) = iepuapaiias H™ (aF, 3)

(K ) (e k) = / 0 €07 O T{ [drypd) (2) (59 l) OV IO (B)) = ieppapa®ddH (62, 2)
(5 ) pula, k) = /

no divergence in ¢(0, 0)!



ot a3) = +5 V20— Cil i [N (ah.ad) + AN (6. d)|  Ti(ad)
+2VE[C: - Cil [HE (6, ) + A ()|  T(a?)
+ finite
Finite part essentially given by

8
5 C1Fr [A+H(at, a3, Mic)]

where
Wi(ar,g2) = / d'z, / Ay /(074052 (0|7 [y, (1) [y, 1) (2) 07 [7,75] (0) 1 0)
= GWQBQ?ng(q%, q%, (g1 + Q2)2)
and N
A=- 27TC2

is the ABJ anomaly
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+SVEIC - il [HE () + A ()|  T(a?)
+ finite
Finite part essentially given by

8
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where
Wolq, @2) = / d*z / d* g (1922 (0| T{ [y, u] (1) [uy, u] (22) 0 [y, 5] (0) }0)
= Euvaﬁq?qgﬂ(ﬁv q%, (g1 + Q2)2)
and N
A=- 27TC2

Is the ABJ anomaly

link with the usual ChPT expression obtained from the WZW lagrangian for
(0, 0), but with i)’ pole included (realistic description requires to go beyond

the large-/V,. limit) J. F. Donoghue, B. R. Holstein, Y. C. R. Lin, Nucl. Phys. B 277, 651 (1986)
D. Gomez Dumm, A. Pich, Phys. Rev. Lett. 80, 4633 (1998)
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Is the ABJ anomaly
What about ¢Z # 0 or even g7 # 0 and g5 # 0?



When the photons are virtual, one needs to deal with the SD singularity

Solution has to be provided by the SM

For K — ~{*{~ this solution comes in the form of

GF

LE5=N ) = fvusvud Crv (v)Qrv ()

lept

Provides the local counterterm that absorbs the divergence in I1(s)

[(s), Cryy — Tggs(s;v), Crv (v)



The amplitude for iK' — VT4~ ME (ke py po) = e (@MY (K, py,po)
receives, in addition to the non-local component

_ ~ 1
leoc(k,mep—; ]/) — _Ze2><u(p_),-ypv(p+)><gxfup(qj k‘—q, I/) S = (k—q)Q — (p+—|—p_)2

an additional, “local” component

M (e, py p_iv) = / d*z (0 (p )0 (p2) | T {5, (0)iLy57 = (@) Y K (k)

(4

For K; this means

¢(0,s) = +§ﬁ[01 — C4]s [HK(O,S) +7—~[K(0,8)] x T (s; 1)
C7v(V)

4o

+%\/§s [HK(O,S) +7-lK(O,s)} X

d 2 . C7v(l/) o
V@ [5(01 - C4)HMS(S, V) + A ] =0



What about X — ¢/~ ?

General structure rather clear
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What about X — ¢/~ ?

General structure rather clear

_)_
- = >» - A -—> -
D S

Problem: loop integrals do not converge

Requires a counterterm of order O(a*G'r)

Cannot be
o GF Oé(Mz>

rlAsI=1 y
SD (z) V2 2w sin? O

VisViaY (z¢) + Vi Vea¥nn] [Qrv (2) — Qra(z)]



What about X — ¢/~ ?

General structure rather clear

_)_
e A
I A

Problem: loop integrals do not converge

Requires a counterterm of order O(a*G'r)

Fors — —o0

Mo (s: 1) ~ o e [—1n(—s/u2) (1 + 2N,

3 . as(v)

472 3 8

Features a logarithmic behaviour
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What about X — ¢/~ ?

General structure rather clear

_)_
e A
I A

Problem: loop integrals do not converge

Requires a counterterm of order O(a*G'r)

Fors — —o0

1 N,

s (s; V) ~ H?c [—ln(—s/u2) (1 + chaiy) + - ) + - ]

Features a logarithmic behaviour

Cannot be achieved with a finite number of resonances



K — my*at N. — o



W (s)

1
A(KT = at07) = ulpe)y"vipes) x o [(k = p)p (Mg — Mz) = s(k +p),] X 1557
K

Ws(s)

B ~ 1
A(Ks = m0707) = eXu(pp-)y"v(pes) X - [(k = p)p(My — M) = s(k+p)p] X 155777 MZ

Wi s =GrMp lays+ by s + Wi (s;aq s, 84,5)

s
2
Mz



W_|_(8) . GF 2 . C7v(V)
W — ‘|—\/§Vusvud X {f+(8) X [?)HMS(S,I/)(Cl 04) + P,
2 1 -
H(C2+ Ca) x | = FicP™ (s, ME) = S FP™ (s, M2) 4 5 FyP(s, M)
3 Mz — M2 T s K s K s
4+ ...
WS—(S) — _@Vusvud X f+<8) X gH—<3 V)(Cl - 04) =+ C7V(V)
16m2 M2 V2 3 M 4o
2 B Fx M3 FE(s)+ FE(s)
O =)\ sy T ;

TP (s, M2) — TP, Mﬁ)] }



CTp)olap) =i [ da et (o) TG v~ dy,di(o)lainsd)(0)}10)

(TVp)ola, k) = / d*z ¢! (0| T{[@y,u](x)[5ivsul (0)HE " (k)

(TVp)pla k) = i/d4$ e' (0| T{[57,5] (@) [5ivsul (0)} KT (k)

M? . M3
Qp(F{/(P)p(q k) = _\/§FK . fm’ qp(F{/(P)p(q, k)= +\/§FK . fm
) 2k — Fr(¢%) -1
(ms + m)(F{/{P)p(q, k) = \/iFKM?( ( 2 2 2 va{(qz) + \/§FKMI2< - (q2) o
(q—k)* — M q
+V2[¢%k, — (¢ k)qo]P* (4%, (¢ — k)?)
- 2k — FE(g*)+1
(s + ) (FE (g k) = VIFeME Do prey Bz e IHT

PRI
+V2[¢%k, — (¢ k)g,|P* (2, (¢ — k)?)

(k) = (K'+ &), Fy (a%), (KT (K)|[57,5](0) K" (k)) = (K +k), " (¢7)



Lowest-meson-dominance approximation to the large-/V,. limit:

one resonance per channel (pseudo-scalar channel is saturated by the kaon
state)

Pr(d* (¢+p)*) =0, PEP (¢—k)?* =0, PE(? (¢g—Fk)?) =0.

Flunl0®) = 52z Fweld?) = 32y Fhlaold?) =



This simple picture with a single resonance does not work in the case of
Iz (s;v)

His(s;v) =

The asymptotic logarithmic behaviour must involve an infinite number of
resonances

His(s;v) =

2f2M? 1 N, [5 s
|2~ n(M? 2-@@———)
M2—s | dx? 3 [3 n(M7/v7) M?

S 1 S
\11(1——):— 1
M?2 VBt +nz>0n—|—25—2M2—nM2

S
1\ (1 — W) ~In(—s/M?) — =—+---  [s = —o9]
In QCD, the Adler function sOll=(s; v)/0s does not have a term o< 1/ in its asymtotic

expansion (in the chiral limit) S. Peris, M. Perrottet, E. de Rafael, JHEP 05, 011 (1998)
1672 3
M? = — 2 M?* ~ 1.1 GeV
3 N, fp p




A few (preliminary) results

= ———Vy,qVus— — h(C! 0
a+ + as \/iV aV 3 ™ ME (Cl 2) >
1 FrF,. M?
be +bg = ——V,4V,:87° T K, —3C) >0
+ 1+ bs NG d U M3 Mp2< 1 2)
4+1.1 [NLO, HV] 4+0.8 [NLO, HV]
as = bs =
+0.7 [NLO, NDR] +0.5 [NLO, NDR]
M2
ISTK 06
bg Mg

CL_|_<O b_|_<0 CLS>O b5’>0

with input from A. J. Buras et al., Nucl. Phys. B 423, 349 (1994)

Work in progress with G. D’Ambrosio and S. Neshatpour



Summary



ChPT provides the natural framework for the theoretical study of kaon physics

Difficult to make predictions for radiative decay modes of kaons without at least some
knowledge of counterterms

Implement large- V.. approach directly in the underlying theory: QCD with three active
flavours extended by an appropriate set of four-fermion operators (SM LEEFT)

Form factors for FCNC-induced transitions exhibit a more complex structure than in the
strong sector

Necessary to address the issue of QCD short-distance singularities

- either work in QCD with four active flavours and in the limit V;; = 0 (GIM)
G. Isidori, G. Martinelli, P. Turchetti, Phys. Lett. B 633, 75 (2006)

- or need to consider an infinite tower of zero-width resonances in order to reproduce
the logarithmic high-energy behaviour of some QCD correlators

Study of K — 7™ is at in an advanced stage, interesting results (ag > 0)

Other radiative decay modes will be studied within this framework: K — ~v*~v*, ...



