New results from KOTO

Koji Shiomi (KEK) for the KOTO collaboration Kaon2023@CERN 2023 September 11

Contents

- Introduction of KOTO
- Feature of 2021 data analysis

New Results of 2021 data analysis on the $K_{L} \rightarrow \pi^{0} \nu \nu$ search

- Prospect
- Summary

FO experiment

Tar

KOTO area @J-PARC 30GeV Main Ring.

© collaboration meeting (hybrid) on June 30- July 2, 2023

Experimental principle Signature of $K_{L} \rightarrow \pi^{0} \nu \nu = "2 \gamma + Nothing + Pt"$

Calculate z vertex on the beam axis

$$M^{2}(\pi^{0})=2E_{1}E_{2}(1-\cos\theta)$$

Calculate π^0 transverse momentum

Data accumulation history

Review of 2016-2018 analysis results

- Observed 3 events with 1.22 predicted background(BG)

Measures against dominant BG sources

Installed Upstream Charged Veto(UCV) for K± detection \rightarrow Reduced by a factor of 13 with 97% signal efficiency.

• kinematical variables \rightarrow Reduced by a factor of 8 with 94% signal efficiency.

Developed a likelihood ratio cut based on shower shape and a Multi variable analysis cut based on

Data set in the latest analysis

We focus on the analysis of 2021 data

Executive summary of the 2021 data analysis

- Change from the 2016-2018 analysis
 - Extended signal box
 - Implemented measures to reduce the K[±] and Halo $K_{L} \rightarrow 2\gamma$ BG
 - $\#(K^{\pm}BG),\#(Halo K_{\perp} \rightarrow 2\gamma BG) < O(0.1)$
 - Optimized the selection criteria against hadron cluster backgrounds.
 - Developed a new cut on $K_L \rightarrow 2\pi^0$ BG
 - Developed several analysis methods to estimate BG events more accurately.
 - Developed a new analysis method to investigate the situation inside the signal box

Summary of BG in 2021 data analysis

	inary	
70	source	Current estimation
	Upstream π^0	0.064±0.050(stat)±0.006(sys)
	$K_L \rightarrow 2\pi^0$	$0.060 \pm (0.022)_{stat} (^{+0.051}_{-0.060})_{sys}$
	K+	$0.043 \pm (0.015)_{stat} (^{+0.004}_{-0.030})_{sys}$
	Hadron cluster BG	0.024±0.004(stat)±0.006(sys)
	Scattered $K_L \rightarrow 2\gamma$	0.022±0.005(stat)±0.004(sys)
	Halo K∟→2γ	0.018±0.007(stat)±0.004(sys)
	η production in CV	0.023±0.010(stat)±0.006(sys)
	Sum	$0.255\pm0.058(\text{stat}) \left({}^{+0.053}_{-0.068} \right)_{sys}$

Upstream π⁰ events deu to photonuclear interactions

Neutron

Open the signal box

Open the signal box

Prospect

- Analysis of 2020 and 2019 data
 - Deteriorate performance of a prototype detector for K+ detection due to irradiation of MPPC in 2020 data.
 - Develop a new cut to reduce K+ background without a detector for K+ detection in 2019 data
- Future physics run
 - Collect 10 times more POT in 3-4 years by assuming 60 days data taking per year.
 - Reach a sensitivity below 10⁻¹⁰

Summary

- The KOTO experiment studies the $K_{L} \rightarrow \pi^{0} \nu \nu$ decay.
- No signal candidate was observed in 2021 data prelin BR<2.0x10-9 @90% C.L.
 - Improved the current upper limit by 50% with a 5 times smaller background level.

Continue to take physics data to achieve the sensitivity below 10-10.

were evaluated by identifying $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ decay

Upstream Charged Veto

15

Estimation of N(Halo $K_L \rightarrow 2\gamma BG$) Estimation of Halo K_L flux 10°

Estimation of N(Halo K_L $\rightarrow 2\gamma$ BG) Newly developed cuts

 Shower shape consistency - Likelihood Ratio based on shower shape and reconstructed angle

 Multi variable Analysis with kinematical variables Input variables Blue:signal Red:Halo $KL \rightarrow 2\gamma$

Estimation of N(Halo $K_L \rightarrow 2\gamma BG$) # of Halo $K_L \rightarrow 2\gamma$ BG

Signal acceptance of those cuts -94%

of BG expected in the signal box

-#(Halo K_L $\rightarrow 2\gamma$ BG)

 $0.13 \rightarrow 0.018 \pm 0.007_{(stat)} \pm 0.004_{(sys)}$

-#(Scatter K_L $\rightarrow 2\gamma$ BG) $0.18 \rightarrow 0.022 \pm 0.005(\text{stat}) \pm 0.004(\text{sys})$

Reduction by a factor of 8 was achieved in both case

Summary of further BG reduction we are developing

Covered in the tells

	of beam line and detector			Covered in this talk		
source	Film UCV	D2 Magnet	Analysis*	Total		
$K_L \rightarrow 2\pi^0$	x1	x1	x1	x1		
K+	x0.01	x0.1	x1	x0.001		
Hadron cluster BG	x0.7	x1.1	x1	x0.77		
Halo K _L $\rightarrow 2\gamma$	x1	x1.3	x0.2	x0.26		
Scattered K _L $\rightarrow 2\gamma$	x0.4	x1	x0.2	x0.08		
η production in CV	x1	x1	x0.5	x0.5		
Upstream π^0	x1	x1	x1	x1		
$K_L \rightarrow 3\pi^0$	x1	x1	x1	x1		
Signal acceptance	x1	x1	x0.95**	x0.95**		

Analysis improvement is obtained from the DL HaloKL cut for Halo, Scatter KL->2 γ , and CV eta * ** Signal acceptance is calculated as ε (DL HaloK_L) = 0.95

Z dependence of upstream π^0 BG events

 Based on the results with a simple MC setup to speed up the processing time

Efficiency

