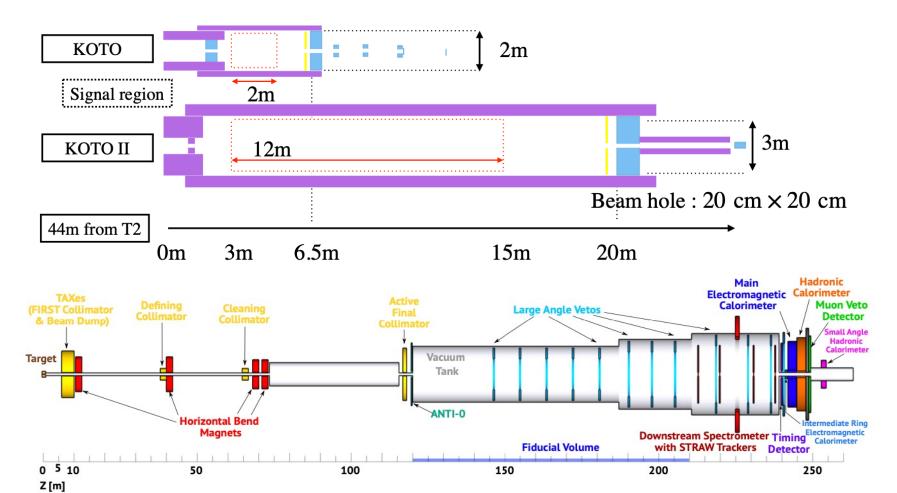

- ★ Is constructive interference in K_L→ π^0 ℓ⁺ℓ⁻ really favoured by theory and why?
- ✤ For K_L→ $\pi^{0}\ell^{+}\ell^{-}$, there is the indirect CPV contribution in addition to the direct one. Experimentally, how can one resolve these two contributions?

$$\mathcal{B}_{\rm SM}(K_L \to \pi^0 e^+ e^-) = \left(15.7 |a_S|^2 \pm 6.2 |a_S| \left(\frac{{\rm Im} \,\lambda_t}{10^{-4}} \right) + 2.4 \left(\frac{{\rm Im} \,\lambda_t}{10^{-4}} \right)^2 \right) \times 10^{-12},$$

$$\mathcal{B}_{\rm SM}(K_L \to \pi^0 \mu^+ \mu^-) = \left(3.7 |a_S|^2 \pm 1.6 |a_S| \left(\frac{{\rm Im} \,\lambda_t}{10^{-4}} \right) + 1.0 \left(\frac{{\rm Im} \,\lambda_t}{10^{-4}} \right)^2 + 5.2 \right) \times 10^{-12}.$$

(CPV+INT+DCPV+CPC)



✤ For K_L→ $\pi^{0}\ell^{+}\ell^{-}$, there is the irreducible Greenlee "radiative Dalitz" background. What is the expected S/B assuming is the Standard Model prediction?

	HIKE Phase 2 proposal			
Number of spills		3	10^{6}	
Protons on target	6×10^{19}			
K_L decays in FV	1.9×10^{14}			
Mode	N_S	N_B	$N_S/\sqrt{N_S + N_B}$	$\delta \mathcal{B}/\mathcal{B}$
$K_L \rightarrow \pi^0 e^+ e^-$	70	83	5.7	18%
$K_L \rightarrow \pi^0 \mu^+ \mu^-$	100	53	8.1	12%

- How does KOTO-II differ experimentally to HIKE? Why are they so different?
- ★ Can KOTO-II measure K_L→ π^0 ℓ⁺ℓ⁻? What else apart from K_L→ π^0 νν can KOTO-II measure?

What will the final results of KOTO in all channels considered be? What can KOTO-II add to it? Precision? Or also more channels? Which channels can KOTO-II observe/measure that KOTO could not?

[2γ +invisible] $K_L \rightarrow \pi^0 \nu \nu$, similarly $K_L \rightarrow \pi^0 X_{inv}$ KOTO: SES~(5-8)e-11, BG level~1-2 (to be improved) KOTO II: SES~8.5e-13; 35 SM signal, 33 BG; dBR/BR~23%

[4γ] K_L →XX, X→2γ KOTO2018: <(1-4)e-7 @40<MX<110MeV, <(1-2)e-6 @210<MX<240MeV, BG~0.6

[4γ +invisible] $K_L \rightarrow \pi^0 \pi^0 X_{inv}$ E391a: <4.7e-5 KOTO: Maybe BG limited

[6 γ] K_L $\rightarrow \pi^0 \pi^0 X$, X $\rightarrow 2\gamma$ (peak search in m₅₆ distribution in the tail of π^0 from $3\pi^0$) E391a: <(0.2-1)e-6 @194<MX<219MeV KOTO: investigating

[3γ**] K**_L→π⁰γ KOTO2016-18: <1.7e-7, BG~0.3

$[4EM] K_L \rightarrow \pi^0 e^+ e^-$

KOTO: will take data for feasibility study for KOTO II KOTO II: under discussion

- Are there common detector elements for HIKE and KOTO-II to develop a feasible R&D programme?
- Why is a 400 GeV proton beam (75 GeV/c kaons) good for K⁺ physics? How does it compare to the J-PARC stopped K⁺ beam?
- ✤ Why is a pp collider (LHCb) is good for kaons?
- How do we push forward neutral kaon programmes?
- ✤ J-PARC: how can we enlarge the international collaboration for KOTO-II?
- ✤ CERN: same question for HIKE.