Report from TTC Milano

http://agenda.infn.it/conferenceOtherViews.py?view=standard&confId=3087

W. Weingarten / CERN

SPL cavity working group 7 March 2011

2

Yoshishige Yamazaki TTC Chair J-PARC, KEK & JAEA TESLA Technology Collaboration (TTC):

- In contrast to its formal looking from outside, the collaboration and its meeting are very much scientific and technical rather than political, having very frank, active discussion.
- The most important mission of the collaboration is to provide highly scientific, technological reports, responding to requests from the member institutes.
- I proposed to invite the proton community like SNS and heavy ion one to TTC, since I have been working for the J-PARC proton linac, which will have SC linac in future

The TTC Member Institutes

- Armenia: CANDLE, Yerevan; Yerevan Physics Institute, YerPhl, Yerevan;
- Canada: TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics
- China: Institute for High Energy Physics, IHEP, Academia Sinica, Beijing; Tsinghua University, Beijing; Peking University
- France: CEA/DSM DAPNIA, CE-Saclay, Gif-sur-Yvette; Laboratoire de l'Accélérateur Linéaire, LAL, IN2P3-CNR
- Germany: Berliner Elektronenspeicherring-Gesellschaft f
 ür Synchrotronstrahlung, BESSY, Berlin; Hahn-Meitner Institut, HMI, Berlin; Technische Universit
 ät Darmstadt; Universit
 ät Frankfurt am Main; GKSS-Forschungszentrum Geesthacht; Deutsches Elektronen-Synchrotron DESY in der Helmholtz-Gemeinschaft, Hamburg und Zeuthen; Universit
 ät Hamburg; Forschungszentrum Rossendorf; Universit
 ät Rostock; Bergische Universit
 ät-GH Wuppertal
- UK: CCLRC-Daresbury Laboratory / ASTeC Department; Royal Holloway, University of London, RHUL / JAI: University College London, UCL; University of Oxford / JAI
- India: Raja Ramanna Centre of Advanced Technology RRCAT, Indore; Bhabha Atomic Research Centre BARC, Mumbai; Inter-University Accelerator Centre, IUAC & Delhi University, DU; Variable Energy Cyclotron Center VECC
- Italy: Laboratori Nazionali di Frascati, INFN, Frascati; Istituto Nazionale di Fisica Nucleare, INFN, Legnaro; Istituto Nazionale di Fisica Nucleare, INFN, Milan; Istituto Nazionale di Fisica Nucleare, INFN, Rome II; Sincrotrone Trieste
- Japan: High Energy Accelerator Research Organisation, KEK
- Poland: The Henryk Niewodniczanski Inst. of Nuclear Physics, Polish Academy of Sciences, Krakow; AGH -University of Science and Technology, Facultyof Physics and Applied Computer Science, Krakow ; The Andrzej Soltan Institute for Nuclear Studies –IPJ, Otwock-Swierk; Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw; Warsaw University, Department of Physics;TU Lodz, Department of Microelectronicsand Computer Science; Warsaw University of Technology, WUT, IS
- Russia: Moscow Engineering and Physics Institute, MEPhI, Moscow; Budker Institute for Nuclear Physics BINP, Novosibirsk; Institute for High Energy Physics IHEP, Protvino; Institute for Nuclear Research, INR, Russian Academy of Sciences, Moscow
- Switzerland: European Center for Nuclear Research CERN
- USA: Argonne National Laboratory, ANL, Argonne IL; Brookhaven National Laboratory, BNL; Fermi National Accelerator Laboratory, FNAL, Batavia IL; Cornell University, Ithaca NY; Jefferson Lab, Newport News VA; SLAC, ILC Division; Lawrence Berkeley National Laboratory, LBNL, Berkeley CA; Michigan State University (MSU); Spallation Neutron Source(SNS)
- Others: Joint Institute for Nuclear Research, JINR, Dubna

Two institutes, VECC and CERN, have just joined us.

54 Institutes now from 13 countries

Highlights from TCC Milano: ESS 1

Duperrier: ESS Accelerator Design Update (ADU)

EUROPEAN 8 WPs for the ADU SPALLATION SOURCE

Mats Lindroos

(30 years ago)

Steve Peggs

Roger Ruber UPPSALA

Sebastien Bousson

7 March 2011

SPL CAVITY WG

Highlights from TCC Milano: **ESS** 2

ESS ultimate goal: 15 MW

- The plan is to increase the peak current up to 150 mA.
- This would be performed with a double front end followed by a funnel (2003 design).

Greater power for the coupler and/or more modules.

Highlights from TCC Milano: XFEL

XFEL Civil Construction

TTC Meeting, Milano, February 28 to March 3, 2011 Hans Weise, DESY

The European XFEL - Progress and Status

European **KF Measurement and Field Flatness Tuning XFEL** using DESY-provided Tools

- Both machines ready to be used at the companies (CE certified).
- Machines can be operated basically by Non-RF-Experts.
- Considerably shorter measurement / tuning time.
- Automation and documentation guaranteed.

European The European XFEL - Progress and Status European Cavity Surface Treatment – Based on DESY XFEL Experience

Two schemes for the final surface treatment (*Final EP* and *BCP Flash*) were studied with cavities from two different vendors.

The preparation strategy to go for a final treatment with the cavity already welded into the He-vessel was investigated.

Results are:

- yield curves for the different schemes
- yield curves for the different vendors
- a preparation strategy allowing two different final treatments
- Some **tooling** will come from DESY
- DESY procedures and experience described very much in detail in the CFT
 Specification are now available to the SRF community since end of 1/2011. (please contact DESY)

February 28 - March 3 2011, Milano, Italy

Highlights from TCC Milano: KoRIA

Hong & Park: The KoRIA project

Korea Rare Isotope Accelerator

Multipurpose, heavy-ion accelerator for basic science research

How to produce rare isotopes?

1. Isotope Separator On-Line (ISOL) Method

2. In-Flight Fragmentation (IFF) method

ISOL SC Linac [T. S. Park, SKKU]

SC Cavity for IFF SC Linac [S. K. Ko, KAPRA]

HOM workshop Cornell

http://www.lepp.cornell.edu/Events/HOM10/Agenda.html

From Closeout Discussion: Antenna / Loop Couplers

Parameter	Current status	Improvement needed	Goal
Frequency range	3 x fundamental	Feedthrough, Geometry	6 x fundamental
		Transmission line needs	
Power	100 W	improvement	1 kW
	Monopole: 1e3 (100 for single-cell);		
	Dipole: 1e5 (100 for single-cell);	For Quads: improve cell to cell	
	Quadrupole: 1e9 (quads – limited by	coupling, cell geometry, reduce	
Q-factors	field in end-cells)	number of cells, fluted tube (KEK)	Quads: 1e8 – 1e5
	15 MV/m (KEK); 20 MV/m (mod. TTF); >	Coupler design, Feedthrough	
Eacc (CW)	38 MV/m (CEBAF)	thermal conductivity	
Filling Factor	good		
Cleaning	No problem (demonstrated by TTF)		
	Sensitive to tuning; Sensitive to MP & FE		
Mechanical issue	bombardment; Feedthrough issues	Use high-pass filter for tuning	
Thermal	Low cryogenic load		
Long term			
reliability	good (TTF, HERA); poor (SNS)		
	25 kEUR (5 loop couplers including LHe		
Cost	cooling)		
Coupler kicks	Must symmetrize		
	losses in transmission cable at higher		
	HOM powers -> heating of antenna and		
Other issues	feed through?		

From Closeout Discussion: Waveguide HOM Dampers

Parameter	Current status	Improvement needed	Goal
Frequency range	Potentially > 40 GHz	Gentle curves of WG, no (thin) window	
Power	kW		
		For Quads: improve cell to cell coupling,	
Q-factors	1e3 (mono); 1e5 (dipole); 1e9 (quads)	cell geometry	
Eacc (CW)	No limit?		
Filling Factor	Good		
Cleaning	Easy but more connections		
	Low frequency resonances due to long		
Mechanical issue	WG (microphonics)	Study in test facilities	
	High static heat leak (Order 1 W per WG)	Reduce this, e.g., thin wall, improved	
Thermal issues	High cryogenic load	thermal intercepts	
Long term			
reliability	Good		
	18 kEUR (to WG flange) for 2 BT with 6		
	WG stubs; need to add cost for	Reduce number of WG (can couple to	
	waveguides, thermal intercepts and loads	both polarizations of dipoles!) -> still	
Cost	to this	sufficient damping	
		Stubs opposite to symmetrize if only one	
Coupler kicks	Must symmetrize	WG	
	need to verify efficient coupling at		
Other issues	higher frequencies		

From Closeout Discussion: Beamline HOM Dampers

Beam-tube absorber	Improvement needed	Goal
> 40 GHz	Don't worry about it (EPC)	
200 W at 80 K , >5 kW at room temp		
1e2 (mono) 1e4 (dipole), 100 for single		
cell 1e9 (quads)		
No limit provided the absorber is far		
enough from the cavity		
Poor		
Difficult	Simplified design (e.g. DESY design)	Easy
Good thermal contact, Stresses		
	Consider DESY design to extract	Moderate
	HOMs to higher temp, check IR	cryogenic
High dynamic cryogenic load	radiation load	load.
	New materials, Brazing, compression	
	rings, Quality control connect	
	process parameters with	
Good for RT, Bad for Cryotemps	performance	
10 to 45 kEUR		10 kEUR
None		
Direct interaction with beam	check this for short bunches	< 20%
	Beam-tube absorber > 40 GHz 200 W at 80 K , >5 kW at room temp 1e2 (mono) 1e4 (dipole), 100 for single cell 1e9 (quads) No limit provided the absorber is far enough from the cavity Poor Difficult Good thermal contact, Stresses High dynamic cryogenic load Good for RT, Bad for Cryotemps 10 to 45 kEUR None Direct interaction with beam	Beam-tube absorberImprovement needed> 40 GHzDon't worry about it (EPC)200 W at 80 K , >5 kW at room tempImprovement needed1e2 (mono) 1e4 (dipole), 100 for single cell 1e9 (quads)Improvement neededNo limit provided the absorber is far enough from the cavityImprovement neededPoorImprovement neededDifficultSimplified design (e.g. DESY design)Good thermal contact, StressesConsider DESY design to extract HOMs to higher temp, check IR radiation loadHigh dynamic cryogenic loadNew materials, Brazing, compression rings, Quality control connect process parameters with performanceGood for RT, Bad for Cryotempsperformance10 to 45 kEURImprovement neededNoneDirect interaction with beam

Thin Film Workshop INFN Legnaro University Padova http://surfacetreatments.it/thinfilms/

Ideal diamagnet, corner with angle α :

Near corner of angle α the magnetic field diverges as $H \sim 1/r^{\beta}$, $\beta = (\pi - \alpha)/(2\pi - \alpha)$

Large thin film in tilted mag. field: perpendicular component penetrates in form of a vortex lattice Nonmagnetic impurities are pairbreakers at high fields

 nonmagnetic impurities are pairbreakers at high fields, reducing the superconducting gap

• Increase of R_s as the field increases

 $R_{s} ∝ λ^{3}(H)Δ(H)exp[-Δ(H)/T]$ ∝ exp [C_Δ(H/H_c)²]Δ /T]

The coating system

Diode

Magnetron 1,5 x10-2 mbar

Diode + Magnetron

Magnetron 3x10⁻³ mbar

Thin Films and New Ideas for SRF

Giulia Lanza

Dedicated Nb-HIPIMS chamber under construction @ Berkeley

7.5 GHz Sapphire loaded TE₀₁₁ Nb cavity

- 0.4 GHz
- T=2, 2.5, 2.6, 2.7,
 - 3,3.5...8 K

Large Grain Workshop Jefferson Lab

http://conferences.jlab.org/sstin/program.html

Introductory Remarks on historical data

Stanford ca. 1970	anford ca. 1970 Siemens ca.	
BCP	EP	BCP
Qo ~ 1e11 @ 1.2 K CW	130 mT	109 mT
Hpk ~ 108 mT		

Reactor grade Ep'd Siemens fine grain cavity Hpk ~ 159 mT Qo ~ 1e10 @ 1.45 K

Ingot niobium cavities of different RRR performed equally well - un optimized processes

Ingot niobium has higher figure of merit than fine grain

Highlights from TCC Milano: JLAB 2

12 GeV Upgrade Cavities

- Project specification: 19.2 MV/m average, with 29 W avg. heat
- Operational limit in CEBAF, RF power: 25 MV/m
- Project conservatism for first two CMs:
 - To avoid any potential risk of degradation from "pushing" gradient
 - Limiting vertical cavity acceptance testing to 27 MV/m
 - (rather frustrating to us cavity people who look into the future)
- Vertical rf test only after stainless steel HV attached

HV piping size limits heat load to ~70 watts @ 2.07 K

Highlights from TCC Milano: FNAL

Vertical / Horizontal Test

- Have completed 9 horizontal tests of 1.3 GHz 9-cell cavities
- Some difficulty with field emission being addressed
- Procedurally limit to 35 MV/m in HTS
- Good agreement between vertical and horizontal test performance

Ginsburg (FNAL) TTC Mtg - Milano