The W-boson mass at the SppS LEP Tevatron LHC

- Motivation
- W-boson production and decay
- Precision tags
- Present experimental situation
- Future

Maarten Boonekamp

Motivation

Motivation

Motivation / Goals

The W boson mass in proton collisions

The W boson mass in proton collisions

• Incomplete kinematics (missing neutrino!)

•

- \rightarrow no invariant mass
- $\rightarrow\,$ rely on measured quantities, and exploit momentum conservation in the transverse plane
- Event representation :
- Main signature : single electron or muon $\vec{p}_T^{\ l}$
- Recoil : sum of "everything else" reconstructed

in the calorimeters; a measure of $p_{{\scriptscriptstyle T}}{}^{{\scriptscriptstyle W},z}$

$$\vec{u}_{\mathrm{T}} = \sum_{i} \vec{E}_{\mathrm{T},i}$$

Derived quantities :
$$\vec{p}_{\rm T}^{\rm miss} = -(\vec{p}_{\rm T}^{\,\ell} + \vec{u}_{\rm T})$$
 $m_{\rm T} = \sqrt{2p_{\rm T}^{\,\ell}p_{\rm T}^{\rm miss}(1 - \cos\Delta\phi)}$

 $p_T^{\tilde{l}}$

Kinematic distributions

QCD & QED effects – all with uncertainties, to be quantified

Kinematic distributions

- QCD & QED effects all with uncertainties, to be quantified
- Detector effects, also with uncertainties :
 - Lepton calibration ~10⁻⁴; Recoil resolution ~ 5 15 GeV; acceptance ~15%

Sensitivity to m_w

• Mass measurement : produce models ("templates") of the final state distributions for different mass hypotheses; compare to data

Lepton calibration

• Leptons calibration from "perfectly known" resonances

Recoil calibration

 Recoil response & resolution calibrated using over-constrained kinematics in Z events

Transverse momentum distribution

- Initial state radiation involves large corrections, and is in part non-perturbative. W events are only partly measured (neutrino!)
- Approach : adjust model parameters using Z events, which are close to W's and can be measured precisely; extrapolate to W production

Transverse momentum distribution

- **ATLAS** : Z-based model tuning + $Z \rightarrow W$ extrapolation. Corresponding uncertainties :
 - Treatment of HQ mass and thresholds;
 - HQ PDFs

13

ATLAS measurement : $\sqrt{s}=7$ TeV; ~4.6 fb⁻¹

• Lepton distributions:

 $m_W = 80370 \pm 7 \text{ (stat.)} \pm 18 \text{ (sys.)} \text{ MeV}$

ATLAS measurement : $\sqrt{s}=7$ TeV; ~4.6 fb⁻¹

• Transverse mass :

 $m_W = 80370 \pm 7 \text{ (stat.)} \pm 18 \text{ (sys.)} \text{ MeV}$

A look back..

• Final measurement by UA2 :

Table 3 The size (in MeV) of the systematic uncertainties in measuring m_w and m_z .

	$\delta m_{\rm W}(m_{\rm T})$	$\delta m_{\rm W}(p_{\rm T}^{\rm e})$	$\delta m_{\rm W}(p_{\rm T}^{\rm v})$	$\delta m_{\rm Z}({\rm central})$	$\delta m_{\rm Z}(p_{\rm T}-{\rm con})$
structure function	85	135	105	-	_
electron energy resolution	75	100	75	35	35
neutrino scale	70	-	140	_	_
$p_{\rm T}^{\rm W}$ and $p_{\rm T}^{\rm had}$	60	120	90	-	-
underlying event	30	50	_	50	50
fitting procedure	30	40	40	-	-
radiative decays	30	50	20	50	50
electron efficiency versus p_{T}^{e}	30	40	30	-	-
u _l effect	25	95	350	-	_
p _T constraint	-	_	_	-	100
total systematic uncertainties	160	240	420	80	130

In combination with the m_z measurement from LEP, this gives

$$m_{\rm W} = 80.35 \pm 0.33 (\text{stat.}) \pm 0.17 (\text{syst.}) \text{ GeV}$$
. (9)

Transverse momentum distribution

- LHCb
 - No recoil measurement!
 - Z data : p_T^Z , ϕ^*
 - simultaneous fits to m_w and $p_{\mathsf{T}}{}^w$ in W events
 - repeated for different models:
 - Pythia, Herwig
 - Powheg+Pythia, Herwig
 - Dyturbo

LHCb measurement : $\sqrt{s}=13$ TeV; ~1.7 fb⁻¹

• LHCb

 $m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV}.$

Theory developments

• QCD & p_T resummation

Phys.Lett.B 845 (2023) 138125 + Refs.

SciPost Phys. Proc. 7, 003 (2022) + Refs.

-4.4

3.9

-2.5

-1.0

-0.8

-5.7

NLO EW

OCD-EW

Tuned fiducial

M_w : present experimental situation

• At hadron colliders :

D0 (4.3+1.1 fb⁻¹) [Phys. Rev. **D89** (2014) 012005] $m_W = 80375 \pm 11 \text{ (stat.)} \pm 20 \text{ (sys.) MeV}$

CDF (8.8 fb⁻¹) [Science **376** (2022) 170] $m_W = 80433.5 \pm 6.4 \text{ (stat.)} \pm 6.9 \text{ (sys.) MeV}$

ATLAS (4.6 fb⁻¹) [*Eur. Phys. J.* **C78** (2018) 110] $m_W = 80370 \pm 7$ (stat.) ± 18 (sys.) MeV

LHCb (1.7 fb⁻¹) [JHEP **01** (2022) 036] $m_W = 80354 \pm 23 \text{ (stat.)} \pm 22 \text{ (sys.) MeV}$

• LEP legacy : $m_W = 80376 \pm 33 \text{ MeV}$

Measurement comparisons and combinations

- Measurements performed at different times, using different baseline PDFs and QCD tools : "translate" existing result to common baseline
- Two-step procedure :
 - correct to common PDF & QCD accuracy
 - combination including correlations

PDF dependence of LHC & Tevatron results

LHC-TeV MWWG

- Effects generally significant compared • to quoted PDF uncertainties
- To be accounted for, when comparing measurements
- Partial or even negative correlations ۲ across colliders : combinations may help stabilise such effects

Results

Combinations - summary

- Full world average has a p-value of 0.5% and can not be recommended
- CDF result : $m_W = 80433.5 \pm 6.4$ (stat) ± 6.9 (syst) MeV.
- Average of all measurements except CDF :

 $m_W = 80369.2 \pm 13.3 \text{ MeV}$ $P(\chi^2) = 91\%$

- PDF envelope 5 MeV, reduced to partial or negative correlations good!
- An important positive result : D0, LHCb, ATLAS are all hadron-collider measurement, but experimental conditions are a different as can be
- New, independent measurements required to clarify the picture.

Back to page 1...

Eur. Phys. J. C78, 675 (2018)

Future

- CMS : extensive (p_T^I, η_I) cross section measurement, 36 fb⁻¹ @ 13 TeV
 - first step towards m_w; analysis with O(10⁸) signal events (!)

Future

• ATLAS

Future

• LHCb

(mWdays'23)

Expected sensitivity for the full Run 2 analysis

- We expect to reduce the overall experimental uncertainty to ~14 MeV
- The systematic uncertainties increase their relevance:
 - A more careful treatment of the detector effects must be adopted
 - Improvements in the physics modelling become crucial

$$m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV}$$

28

Conclusions

- Measurements of m_w already have a long history. At hadron colliders, concepts developed in the early 90's still fly!
- Model dependence needs to be kept under control $\breve{\mathfrak{G}}$
 - Theory developments and improvements in the proton structure are crucial
 - Improved analysis techniques allow reducing the impact of such effects
- The experimental situation currently unclear; new measurement are eagerly expected.

 $\delta m_W < 10$ MeV at the LHC : still the goal.

Thank you!