
The DLaaS behind the scenes

VRE working group monthly meeting

Alba Vendrell Moya and Elena Gazzarrini

Technologies: GitOps

Containers → Docker
Think about the container as a machine

Container Orchestration → K8s (Flux/Helm, CI/CD)
To organise multiple containers, in a cluster

Networking: HTTP Server → Apache HTTP Server (httpd)

Authorisation/Authentication → X509/OIDC, TLS/SSL

DataBase → Relational DB (Oracle, Postgres)
With ACID (Atomicity, Consistency, Isolation and Durability) characteristics

https://en.wikipedia.org/wiki/ACID

Main infrastructure - ESCAPE Rucio instance

The ESCAPE infrastructure on which the DLaaS sits on is composed of:

● Main Server
○ handles REST requests to the resources (Apache HTTP Server)

● Authorization Server
○ handles REST authentication/authorization requests (Apache HTTP Server)

● WebUI Server
○ Rucio GUI (Apache HTTP Server)

● Daemons
○ Python modules that interact with the DB

Cluster set-up: step by step guide

● Cluster creation on Openstack (magnum)
● Secrets management with Mozilla SOPS
● Network
● RSE (storage) management and configuration
● Monitoring
● Helm installing server, daemons, webui
● Jupyter notebook + rucio jupyterlab extension

The K8s cluster + secrets

● 3 master nodes, 5 worker nodes, cluster creation with openstack magnum (service at CERN which automates many steps)
● Install flux
● Create github public repository
● Bootstrap flux on it
● Rucio expects secrets (certificates, DB passwords, OIDC client ID, etc.) before starting the service

○ .p12 certificates, split into host and key files
○ gridCA certificates
○ TLS certificates
○ client_id and client_secret of the Rucio Admin account created with the Identity Provider (ESCAPE IAM for us) →

needed for JSON web tokens (JWTs) and OAuth2.0 authentication and authorization with Rucio
○ Database credentials (Oracle, PostgreSQL, MySQL/MariaDB are currently supported)

● Follow SOPS tutorial to automatically apply encrypted secrets in cluster once the .yaml file is pushed to repository (without
the need of doing ‘kubectl apply’) as a public key is shared in the repo

https://blog.sldk.de/2021/03/handling-secrets-in-flux-v2-repositories-with-sops/#enabling-sops-in-flux-v2

Network

● 2 nodes of the cluster are set as K8s Ingress controllers
○ They accept traffic from outside, and load balance it to

pods (containers) running inside the platform
● Set NGINX as Ingress controller, as it is most popular and open

source way to have a reverse proxy (to protect the server) +
supports X509

● External traffic
○ LanDB-alias is set for eosc-auth.cern.ch,

eosc-main.cern.ch, eosc-webui.cern.ch (by default, the
CERN outer perimeter firewall blocks incoming access to
systems on the CERN site → need to request to open for
the lanDB-alias property configuration)

● CERN Openstack offers a Load Balancing as a Service that we are
checking out

https://clouddocs.web.cern.ch/networking/load_balancing.html

RSE configuration + CRIC

● RSEs can be configured
○ manually through Rucio commands
○ In CRIC

■ easier RSE management
■ script to sync the service with new RSE creation via

JSON request
● Plan to have one in EULAKE-1 (still testing token functionalities

there)
● Would any other institute provide us with at least two other RSEs?

https://github.com/ESCAPE-WP2/Utilities-and-Operations-Scripts/blob/master/cric-rucio-sync/sync_cric_rucio.py

Monitoring

● Logging producer is requested at
cluster creation

● Logs are injected into Grafana for
monitoring dashboards

● We will add some extra cluster logs
● FTS service is already configured to

push data into CERN Monit

https://gitlab.cern.ch/escape-wp2/flux-rucio/-/tree/master/escape/rucio/releases/logging

Rucio Helm releases

● The rucio helm charts can be found in the rucio repo
● Each Helm Release will start a deployment of each of:

○ Server
○ Webui
○ Daemons - figuring out minimal ones needed to have the service running

● Each pod will spawn a container with the Rucio configuration inside
● Secrets need to be already applied to the cluster

https://github.com/rucio/helm-charts
https://gitlab.cern.ch/escape-wp2/flux-rucio/-/blob/master/escape/rucio/releases/production/server.yaml
https://gitlab.cern.ch/escape-wp2/flux-rucio/-/blob/master/escape/rucio/releases/production/ui.yaml
https://gitlab.cern.ch/escape-wp2/flux-rucio/-/blob/master/escape/rucio/releases/production/daemons.yaml

DLaas
Feature Highlights

● Multiple notebook environment selection
● Rucio data browser (with scope browser and wildcard search)
● “Add to shopping cart” for data catalogue

○ DID is attached as a metadata in the Notebook file
● Injects a variable containing local file path, ready to be used
● Direct file upload to Rucio
● Scratch space for large files (EOS FUSE mount)

The goal of the service is to abstract the complexities
of the Data Lake from the scientists.
This way, scientists can focus their time on doing
science instead of data procurement.

https://gitlab.cern.ch/escape-wp2/flux-rucio/-/blob/master/escape/jupyterhub/configmap/environments.yaml

Deployment

● Deployed in Kubernetes @ CERN Openstack, using
Zero-to-JupyterHub Helm chart.

○ https://escape-notebook.cern.ch

● CI/CD
○ Gitlab CI - Container build
○ Flux2 - Kubernetes manifest

● OAuth authentication using ESCAPE IAM.

● Uses Rucio JupyterLab Extension in Replica mode
○ Connected to ESCAPE Data Lake (escaperucio.cern.ch; rucio_host)
○ Automatically preconfigured to use OIDC authentication

(RUCIO_DEFAULT_AUTH_TYPE)
○ Has a FUSE mount to EULAKE-1 RSE (EOS;

RUCIO_RSE_MOUNT_PATH)
○ Making files available means creating a replication rule to move files

to EULAKE-1 (RUCIO_DESTINATION_RSE)

(*) CONFIGS

https://github.com/jupyterhub/zero-to-jupyterhub-k8s
https://escape-notebook.cern.ch
https://gitlab.cern.ch/escape-wp2/docker-images/-/blob/master/datalake-singleuser/.gitlab-ci.yml
https://github.com/rucio/jupyterlab-extension/blob/master/CONFIGURATION.md
https://gitlab.cern.ch/escape-wp2/flux-rucio/-/blob/master/escape/jupyterhub/releases/jupyterhub.yaml

Deployment

● Deployed in Kubernetes @ CERN Openstack, using
Zero-to-JupyterHub Helm chart.

○ https://escape-notebook.cern.ch

● CI/CD
○ Gitlab CI - Container build
○ Flux2 - Kubernetes manifest

● OAuth authentication using ESCAPE IAM.

● Uses Rucio JupyterLab Extension in Replica mode
○ Connected to ESCAPE Data Lake (escaperucio.cern.ch; rucio_host)
○ Automatically preconfigured to use OIDC authentication

(RUCIO_DEFAULT_AUTH_TYPE)
○ Has a FUSE mount to EULAKE-1 RSE (EOS;

RUCIO_RSE_MOUNT_PATH)
○ Making files available means creating a replication rule to move files

to EULAKE-1 (RUCIO_DESTINATION_RSE)

(*) CONFIGS

Replica Mode

In this mode, the files are transferred by Rucio to a storage mounted to the JupyterLab server. In order
to use the extension in this mode, you need to have the following set up:

● A JupyterLab version 2 installation.
● At least one Rucio instance.
● A storage system that is attached to the JupyterLab installation via FUSE.

○ The storage system should be compatible with Rucio and added as a Rucio Storage
Element.

○ The storage element will be shared among multiple users, so be sure to allow all users
who will be using the extension to have read permission to the path.

○ It's recommended that quotas be disabled, since the extension does not care if the
replication fails because of quota error.

https://github.com/jupyterhub/zero-to-jupyterhub-k8s
https://escape-notebook.cern.ch
https://gitlab.cern.ch/escape-wp2/docker-images/-/blob/master/datalake-singleuser/.gitlab-ci.yml
https://github.com/rucio/jupyterlab-extension/blob/master/CONFIGURATION.md
https://gitlab.cern.ch/escape-wp2/flux-rucio/-/blob/master/escape/jupyterhub/releases/jupyterhub.yaml

ESCAPE IAM

CephFS Cinder

EOS EULAKE-1

Subject Mapping
Cron

Hub API

EULAKE-1 FUSE mount
/eos/eulake_1

homedir FUSE mount

Rucio JupyterLab
extension

OAuth auto renew

● in /scratch, shared
between users, cleaned
every day, 384TB
(* TEMP CHANGE)

● replication mode, to store
requested replicas

in /home/jovyan, shared between
users, never cleaned, 800GB

SCIM API

DLaaS current status

FUSE mount to EOS eulake

● There are two FUSE mounts to the same EOS instance:
○ /eos/eulake_1 → /eos/eulake/tests/rucio_test/eulake_1
○ /scratch → /eos/eulake/tests/jupyter-scratch

● FUSE mount is implemented using k8s DaemonSet, mounting to a folder in
the host, with Bidirectional mount propagation

● Singleuser containers bind to the mount folder, with HostToContainer mount
propagation

● Uses OAuth2 authentication
○ ESCAPE IAM user is mapped to EOS user using crons

https://gitlab.cern.ch/escape-wp2/flux-rucio/-/blob/master/escape/jupyterhub/releases/jupyterhub.yaml
https://gitlab.cern.ch/escape-wp2/flux-rucio/-/blob/master/escape/jupyterhub/daemonset/eosfuse.yaml

OAuth2 in EOS FUSE mount

○ In the singleuser container:
■ JWT is stored in a file in the following format:

● Note: token introspection endpoint doesn’t have the “https://” part
● The token file must have at most 0600 permission

■ An environment variable needs to be set:
● OAUTH2_TOKEN=FILE:/path/to/token/file

■ In the EOSFUSE DaemonSet container:
● EOS FUSEx daemon (eosxd) needs to be configured for SSS authentication
● SSS keytab needs to be present

○ (*) https://eos-docs.web.cern.ch/using/oauth2.html

https://eos-docs.web.cern.ch/using/oauth2.html

Singleuser container setup

○ OAuth token exchange (eos-eulake and Rucio)
■ Modified version of SWAN’s KeyCloakAuthenticator

○ Enable token autorenewal
■ Uses SwanOauthRenew

○ Write token files to /tmp

○ Set OAUTH2_TOKEN env for EOS authentication

○ Write rucio.cfg file

https://pypi.org/project/swanoauthrenew/

Alternative Rucio instances - inspiration
- SKAO: https://gitlab.com/ska-telescope/src/ska-rucio-prototype

- ATLAS: https://gitlab.cern.ch/atlas-adc-ddm/rucio-k8s-setup/-/blob/master/README.md#L48-118

- Our DL:
https://indico.cern.ch/event/1069544/contributions/4497649/attachments/2311244/3933259/Data%20Lake%20as%20a%20Service%2
0for%20Open%20Science.pdf

- ASTRON replicating DLaaS:
https://git.astron.nl/groups/astron-sdc/escape-wp5/-/wikis/Meeting-Notes/Spring-2022-Busy-Week/Replicating-Data-Lake-as-a-Service

Reading list

- The ESCAPE Data Lake: The machinery behind testing, monitoring and supporting a unified federated storage infrastructure of the

exabyte-scale https://www.epj-conferences.org/articles/epjconf/abs/2021/05/epjconf_chep2021_02060/epjconf_chep2021_02060.html

- ESCAPE Data Lake: Next-generation management of cross-discipline Exabyte-scale scientific data

https://www.epj-conferences.org/articles/epjconf/abs/2021/05/epjconf_chep2021_02056/epjconf_chep2021_02056.html

https://gitlab.com/ska-telescope/src/ska-rucio-prototype
https://gitlab.cern.ch/atlas-adc-ddm/rucio-k8s-setup/-/blob/master/README.md#L48-118
https://indico.cern.ch/event/1069544/contributions/4497649/attachments/2311244/3933259/Data%20Lake%20as%20a%20Service%20for%20Open%20Science.pdf
https://indico.cern.ch/event/1069544/contributions/4497649/attachments/2311244/3933259/Data%20Lake%20as%20a%20Service%20for%20Open%20Science.pdf
https://git.astron.nl/groups/astron-sdc/escape-wp5/-/wikis/Meeting-Notes/Spring-2022-Busy-Week/Replicating-Data-Lake-as-a-Service
https://www.epj-conferences.org/articles/epjconf/abs/2021/05/epjconf_chep2021_02060/epjconf_chep2021_02060.html
https://www.epj-conferences.org/articles/epjconf/abs/2021/05/epjconf_chep2021_02056/epjconf_chep2021_02056.html

