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Introduction
• Nb3Sn conductor activities include development, procurement, 

production, qualification and characterisation of Nb3Sn wire and 
Rutherford cables
• to meet the needs of the magnet programme (RD3), and

• towards the requirements of future accelerator magnets

• Goals for conductor development:
• Addressing stress/strain sensitivity and degradation

• Increasing Jc performance

• Industrialisation

• …whilst maintaining
• Low and consistent degradation on cabling

• Magnetothermal stability
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Selected Activities
• Wire procurement and acceptance tests

• Cable production and qualification

• Electron microscopy and quantitative image analysis

• Heat treatment optimisation

• Rolling studies and cabling trials

• Magnetothermal stability and magnetisation 
measurements

• Effects of transverse stress: crack analysis, Ic
degradation
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Rutherford Cabling and Rolling
• Strands at the centre of the cable width typically have a 

nominal thickness (diameter) reduction of ~11 %

• For wire qualification and acceptance testing, this is 
approximated by uniaxial rolling studies with 10 % or 
15 % rolling reduction

• The real deformation, especially at the (thin) edge, is 
more severe and not uniaxial
• All strands experience this periodically, at a transposition 

pitch typically shorter than samples used for Ic and RRR

• The stress configuration generates some common 
features, but the deformation of sub-elements depends 
on the wire type and even local orientation [1]

• Sub-element deformation affects performance via 
several mechanisms, e.g.:
• Sub-element shearing and merging

• Changes in local barrier thickness and diffusion distances
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RRP® Wire
• Bruker OST RRP® wire, as used for HL-LHC MQXF, is effectively 

the state-of-the-art reference wire type
• Proven versatility for different wire layouts, Cu/non-Cu, Jc vs. 

RRR optimisation etc.

• For MQXF – very high RRR, good Jc, no stability issues

• Production at scale with very few nonconformities

• Also procured for current HFM magnet activities (RD3)

• Optimisation and understanding has continued to progress in 
recent years (e.g. nausite and Jc vs. deff, strain cliff), but:
• Differences in behaviour between layouts observed but not fully 

understood

• When optimised for large diameter and high Jc, stability 
challenges can arise

• Substantial Jc increases likely to require new processes, e.g. 
novel alloying and internal oxidation

• Continued study needed to select and validate the most 
promising designs for 14+ T:
• Rolling and cabling degradation

• Behaviour under transverse stress

• Stability
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RRP® Wire Types
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HFM Other Candidates

DEM-0.7 MQXF ERMC-1 DEM-1.1 ERMC#101 FRESCA2 ERMC#102

d (mm) 0.7 0.85 1.0 1.1 1.0 1.0 1.0

Layout 60/91 108/127 162/169 162/169 120/127 132/169 150/169

ds (µm) 54 54 58 64 64 58 57

Cu/non-Cu 1.8 (≥ 1.6) 1.2 ± 0.1 0.9 ± 0.2 1.06 ± 0.1 1.25 ± 0.1 1.08 ± 0.1

Nb:Sn 3.6 (reduced Sn) 3.4 (standard Sn) 3.4

Dopant Ti Ti Ti Ti Ti Ti

Heat treat. 665 °C 50 h 665 °C 50 h 650 °C 50 h 665 °C 50 h 665 °C 50 h 650 °C 50 h 665 °C 50 h



Magnet Applications and Cable Layouts
• RRP® 162/169 wires at 1.0 and 1.1 mm diameter were allocated to ERMC, FalconD and R2D2 (high 

field) magnet programmes
• The same cable layouts are also used for trials of R&D conductors

• For the 12 T robust/value-engineered programme, the baseline conductor is the MQXF wire (108/127) 
and cable developed for HL-LHC
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Cable 

Type

Strands ×

diameter 

(mm)

RRP® wire
Mid-thickness 

(mm)

Pitch 

(mm)
Keystone Core

MQXF 40 × 0.85 108/127 (MQXF) 1.525 109 0.4 °
Stainless steel (1.4404, 

14×0.025 mm)
ERMC

40 × 1.0 162/169 (ERMC-1)
1.82 120 None

FalconD 1.800 110-120 0.5 °

R2D2 HF 21 × 1.1 162/169 (DEM-1.1) 1.965 84 None None

R2D2 LF 34 × 0.7 60/91 (DEM-0.7) 1.253 79 None None

20.85 mm

1.8 mm
Example of cable cross-section in FalconD

layout (optical micrograph)



Cable Production
• Cable production for the needs of the Nb3Sn magnet 

programme (RD3) and to qualify R&D wires

• In 2023 to date:
• Production of Nb3Sn cables (and related Nb-Ti busbars) for R2D2:

• 452 m of R2D2 HF cable (C02OC0442A):
• 21 strands of DEM-1.1 wire, 12.577×1.968 mm

• 427 m of R2D2 LF cable (C03OC0448A):
• 34 strands of DEM-0.7 wire, 12.570×1.255 mm

• Trial to assess JASTEC distributed tin wire in the R2D2 HF cable 
layout:
• 20 m of cable (C02KC0444A)

• 21 strands of JASTEC DT wire, 12.566×1.948 mm
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RRP® Rolling: Key Features
• For RRP®, increasing rolling reduction progressively:

• Increases subelement aspect ratios

• Locally reduces diffusion barrier (and Nb filament pack) thickness

• Shears or merges adjacent subelements

• These observations can be quantified by image analysis
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Rolling of Different RRP® Layouts
• For 15 % rolling, acceptance test statistics are available for a significant number of spools

• Relative to 108/127 at 0.85 mm, 162/169 at 1.1 mm shows (on average):

• Higher Ic degradation –1.5 %, cf. -0.6 %

• Lower RRR degradation – 23 %, cf. 36 %
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RRP® Cabling Degradation
• Ic degradation on cabling depends on the cable design

• Statistics available over HL-LHC MQXF production

• For RRP® 108/127, the mean Ic degradation is 2.8 % (cf. 5 % 
acceptance criterion)
• For comparison, the corresponding value for PIT bundle-barrier 

wire is 11 %

• Ic degradation higher than for 15 % rolling:
• For RRP, comparable to a rolling reduction of ~17.5 %

• RRR degradation 16.9 % on average, approximately half that of 
15 % rolled samples
• 15 % rolling reduction is larger than the compaction experienced 

across the majority of the cable width

• Local degradation at cable edges is more severe, but averaged 
out for the usual test configuration
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R&D Wires: Distributed Tin (DT)
• Two manufacturers have developed ‘distributed tin’ wires in the scope of CERN collaborations:

• JASTEC in collaboration with KEK and CERN (ICA-JP-0103 app. 19, 2016-2022)

• KAT under collaboration KE3449 (2017-2022)

• KAT’s designs have also included a copper core protected by an additional diffusion barrier
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Diffusion barrier

Nb filaments

Cu

Cu

Sn(Ti)

JASTEC KAT

Supplier d (mm) Cu/non-Cu Nb/Sn modules Mean piece length (m)

KAT 1.0 0.93 138 + 54 1430

JASTEC 1.1 1.08 138 + 73 150



Wire Cable

Supplier d (mm) Layout Strands
Key-

stone

Width 

(mm)

Mid-thickness 

(mm)
Core

KAT 1.0 FalconD 40 0.5° 20.95 1.8 14×0.025 mm 316L

JASTEC 1.1 R2D2 HF 21 None 12.579 1.969 None

Distributed Tin Cabling Trials

• Short trial cables successfully produced using cable 
designs established for magnet R&D activities

• Optical micrographs show, as expected:
• Uniform strand cross-sections in the middle of the 

cable width

• Significant distortion of module geometry and 
barrier thinning in the most deformed edge location
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KAT (FalconD) JASTEC (R2D2 HF)



JASTEC DT Rolling: Key Features
• Sn regions deform and merge, whilst Nb modules are largely 

displaced intact
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JASTEC DT: Aspect Ratios
• Aspect ratios do not show large increases, or form bands relative to the rolling direction:

• Large variation in Nb modules between longitudinal positions, as broad Sn regions can open up locally
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15 % 20 % 30 %

Aspect ratio distribution of well separated 

Nb3Sn after heat treatmentDistribution of aspect ratios of Nb modules before heat treatment

• After heat treatment, especially in cabled strands near the cable edge, the 
separation of some modules is small locally
• Potential impacts for deff and stability

• Nb3Sn regions in contact excluded from aspect ratio statistics

Reacted extracted 

strand cross-section 

at cable edge, and 

area distribution



DT RRR After Rolling/Cabling
• The RRR of JASTEC and KAT rolled samples and extracted strands is extremely high due to the largely 

intact external diffusion barrier
• RRR degradation reached ~50 % at 30 % rolling reduction for both JASTEC and KAT wire

• RRR degradation appears a little higher at small rolling reductions for JASTEC, but few samples tested
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Stability
• Several causes of instability:

• Self-field instability
• Dominates at high field

• Depends on Jc and strand diameter

• Driven by uneven distribution of transport current in ramping

• Magnetisation instability 
• Significant at low field for high magnetisation strand

• Depends on Jc and deff

• Designing for stability includes:
• Adiabatic stability: deff below threshold value

• For RRP® wire: filaments merged and barrier partially 
reacted → deff almost fixed from geometry (wire diameter 
and geometrical sub-element size)

• For distributed tin wires: depends on distribution of Nb 
filaments

• Rolling or cabling deformation affects both (sub-element 
aspect ratio, displacement of Nb modules)

• Dynamic stability: increasing RRR → increasing copper 
conductivity
• Combination of design, materials and heat treatment 

optimisation
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Stability Testing
• Self-field stability being assessed by V-I transport measurements:

• Starting with an applied field of 15 T, and decreasing in small steps, both at 
4.3 K and 1.9 K

• Multiple V-I measurements performed at each field step
• Average quench current or Ic presented in following plots without self-field or 

temperature corrections

• Maximum current ~2000 A

• To be complemented by:
• V-H measurements – plans under consideration

• Magnetisation data – VSM at CERN; benchmarking and measurement over 
expanded magnetic field range planned with collaborating institutions

• Laser and thermally induced perturbations of controlled energy – PhD 
student (Joanna Kuczynska) project, equipment commissioning in progress
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Stability of RRP® Wire
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650 °C 50 h, 

FalconD cable

• MQXF (108/127 0.85 mm)
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• ERMC-1 (162/169 1.0 mm)

665 °C 50 h, 

MQXF cable

• Comparison of two RRP® wires with differences in stability behaviour after their standard heat treatments
• No premature quenches for MQXF wire and extracted strands

• Stability limitations for ERMC-1: intersection of 1.9 K and 4.3 K curves at ~10 T and ~12.5 T for virgin and extracted strand



HT Optimisation for RRP® Stability
• Constraints on heat treatment optimisation:

• Reducing temperature from an already low 650 °C risks 
decreasing Bc2 and approaching the strain irreversibility cliff

• Compromise for Jc and RRR 

• With the shorter heat treatment cycle (final step 650 °C 
30 h)
• At 1.9 K, dramatic improvement in stability: virgin and 

extracted strand follow the same Ic(B) dependence, with no 
quenches

• Reduction of ~9 % in Ic, with ~50 % increase in RRR: 
further fine-tuning possible and in progress

• Currently obtaining additional statistics for the wire and 
cable types of current interest
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• KAT (1.0 mm)
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• JASTEC (1.1 mm)

• Initial results for the stability of different DT wires show differences in behaviour, but a need for 
optimisation in both cases
• Testing of additional samples and magnetisation measurements in progress
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Prospects for DT
• Distributed tin wires are less fully characterised than established 

RRP® wires for the universal challenges (stress behaviour, cabling 
degradation, heat treatment optimisation), and have some specific 
challenges, notably:
• Magnetothermal stability

• Effect of separation of Nb modules during deformation to be assessed

• Increasing piece length (JASTEC)

• …but initial results are promising:
• Jc achieved interim target (comparable to HL-LHC specification)

• Low geometrical distortion of Nb3Sn sub-elements on rolling/cabling

• Where measured, low cabling degradation of Ic and RRR 

• Further development towards industrialisation under consideration
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Higher Jc: Hf, Internal Oxidation
• A significant increase in Jc (relative to the RRP® baseline) expected to need new approaches:

• Hf alloying was proposed to cause Nb3Sn grain refinement by suppressing Nb alloy 
recrystallisation (NHFML, FSU, US)
• S. Balachandran et al., Supercond. Sci. Technol. 32 044006 (2019)

• Internal oxidation of Zr or Hf in Nb alloys forms oxide precipitates, acting as pinning centres and 
refining Nb3Sn grain sizes
• X. Xu et al., Appl. Phys. Lett. 104 (8) 082602 (2014)

• Internal oxidation has been implemented in both PIT and internal tin wire types
• The hardening behaviour of Hf-alloyed Nb-Ta poses some challenges in wire drawing, and 

potentially also in subsequent cabling

• PIT wires produced at Hyper Tech (in collaboration with Fermilab and OSU) have shown 
excellent Jc, but:
• Limited validation of stability and cabling behaviour

• Optimisation challenges similar to conventional Bruker PIT wires may apply

• Rod-in-tube wires are under development at UNIGE in collaboration with CERN
• A similar Jc enhancement has been observed in model samples, and wire development is in 

progress – see G. Bovone, WP1.3

• Collaborative FIB (EN-MME) and TEM analysis

• Possibilities for wire development towards higher Jc and for reinforcement under 
consideration
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X. Xu et al., Supercond. Sci. Technol.

36 035012 (2023)

S. Balachandran et al., 

https://dx.doi.org/10.2139/ssrn.4303410
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Transverse Stress and RRP® Selection
• Effect of transverse stress applied at room temperature under study in 

CERN:
• FRESCA measurements and analysis of cracking as a function of stress in progress 

for MQXF cable (Kirtana Puthran)

• Comparison of alternative RRP® wire layouts at 1.0 mm diameter (from 
previous procurement/stock) to support wire selection for 14+ T activities
• Stability testing

• Mould design/fabrication is in progress in preparation for crack analysis and FRESCA 
measurement

• Measurements with longitudinal strain and with transverse stress also in 
progress in UNIGE
• R&D distributed tin wires

• 1.0 mm RRP® wires
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• https://indico.cern.ch/event/1218461/#2-design-optimisation-cabling

• Deformation Behaviour and Cabling Degradation of Nb3Sn Wires:
• https://indico.cern.ch/event/1329522/#1-deformation-behaviour-and-ca
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