

Swiss Accelerator Research and Technology

Nb₃Sn wire development by Internal Oxidation

WP1.3:

Gianmarco BOVONE, Florin BUTA, Francesco LONARDO, and Carmine SENATORE

Department of Quantum Matter Physics, University of Geneva, Switzerland Department of Nuclear and Particle Physics, University of Geneva, Switzerland

Simon C. HOPKINS, Amalia BALLARINO, and Thierry BOUTBOUL

CERN, Switzerland

HFM annual meeting 2023

Outline

- \blacktriangleright Motivation: the importantance of internal oxidation for Nb₃Sn
- > Implementation of the internal oxidation in simplified multifilamentary wires
 - Effect of the internal oxidation on the superconducting properties
 - Critical current density above FCC target
 - High critical field measured at LNCMI
 - What drives the enhancement?
 - Material studies by XAS at PSI
- > Optimisation of heat treatmen:
 - Nb_3Sn layer thickness vs Layer J_c
- > Development of advanced multifilamentary wires with internal oxidation

LHC	FCC-hh
27 km, 8.33 T	100 km, 16 T
14 TeV (c.o.m.)	100 TeV (c.o.m.)
1'300 tons NbTi	~10'000 tons Nb ₃ Sn

В [Т]	16
J _{op} [A/mm²]	300
w [mm]	76
A _{coil} [mm²]	20'000

		and the second
SUIS		FCC
FRANCE	enève	Annecy
LHC	15	
She Charles	CONE	
	ALC: NO	
LHC 27 km 8 33 T	FCC-nn 100 km, 16 T	
14 TeV (c.o.m.)	100 TeV (c.o.m.)	
l'300 tons NbTi	~10'000 tons Nb ₃ Sn	
		-
В [Т]	16	16
J _{op} [A/mm²]	300	600
w [mm]	76	38
Λ Γιτο μα 27	20'000	7'000
A _{coil} [mm ⁻]		

Doubling the operating current density brings a reduction of the superconductor area to one third

 $A_{coil} \propto SC mass \propto$

Doubling the operating current density brings a reduction of the superconductor area to one third

 $A_{coil} \propto SC mass \propto$

Doubling the operating current density brings a reduction of the superconductor area to one third

Internal oxidation in practical round wire

 $A_{coil} \propto SC mass \propto$

- Benz M. G. Trans Met Soc AIME 242.6 (1968).
- Rumaner L. E., Benz M. G., and Hall E. L. *Metallurgical and Materials Transactions A* 25.1 (1994): 213-219.
- Xu X. et al. Applied Physics Letters 104.8 (2014): 082602.
- Xu X. et al. *Superconductor Science and Technology* 36.3 (2023): 035012.

Simplified multifilamentary wires layout and fabrication process

Effects of the internal oxidation on the superconducting properties

- Bovone G. et al. Superconductor Science and Technology (2023)

Effects of the internal oxidation on the superconducting properties

FACULTY OF SCIENCES DEPARTMENT OF QUANTUM MATTER PHYSICS UNIVERSITÉ DE GENÈVE

Effects of the internal oxidation on the superconducting properties

both **Hf and Zr**-based wires

- Bovone G. et al. Superconductor Science and Technology (2023)

What drives the enhancement?

- Bovone G. et al. *Superconductor Science and Technology* (2023)

What drives the enhancement?

 Nb_3Sn grain size reduction induced by internal oxidation leads to J_c enhancement

- Bovone G. et al. *Superconductor Science and Technology* (2023)

What drives the enhancement?

internal oxidation leads to \int_{c} enhancement

Presence of precipitates (presumably HfO₂)

Bovone G. et al. *Superconductor Science and Technology* (2023)

<u>Change of dominant pinning mechanism</u> induced by the presence of <u>oxide precipitates</u> for both <u>Hf</u> <u>and Zr-</u>bases wires (shift induced by Hf is larger)

- Bovone G. et al. Superconductor Science and Technology (2023)

and Zr-bases wires (shift induced by Hf is larger)

- Bovone G. et al. Superconductor Science and Technology (2023)

An X-Ray Absorption Spectroscopy study at the PHOENIX beamline of PSI

Atomic specific technique, sensitive to the <u>chemistry</u> and to <u>crystal environment</u>

An X-Ray Absorption Spectroscopy study at the PHOENIX beamline of PSI

PAUL SCHERRER INSTITU

2240

ZrO₂-like spectrum found <u>only</u> in Nb₃Sn! Different Zr spectrum in residual alloy, despite oxygen diffusion

PAUL SCHERRER INSTITU

FACULTY OF SCIENCES DEPARTMENT OF QUANTUM MATTER PHYSICS SnO₂

Precipitates in Nb₃Sn

Nb₃Sn grain STEM image of Zr-annularOS sample Courtesy of Stephan Pfeiffer, CERN

Precipitates in Nb₃Sn

Nb₃Sn grain STEM image of Zr-annularOS sample Courtesy of Stephan Pfeiffer, CERN

Precipitates in Nb₃Sn

Nb₃Sn grain STEM image of Zr-annularOS sample Courtesy of Stephan Pfeiffer, CERN

Heat treatment optimization: reaction layer thickness

Heat treatment (HT): 550°C × 100 h + 650°C × 200 h

No OS

With OS

Drastic reduction of **Nb₃Sn layer thickness** when OS is added

Heat treatment optimization: reaction layer thickness

Heat treatment (HT): 550°C × 100 h + 650°C × 200 h

No OS

With OS

Drastic reduction of **Nb₃Sn layer thickness** when OS is added

Higher temperature to enlarge Nb₃Sn layer thickness keeping **grain size** low

Heat treatment optimization: reaction layer thickness

Heat treatment (HT): 550°C × 100 h + 650°C × 200 h

No OS

With OS

Drastic reduction of **Nb₃Sn layer thickness** when OS is added

Higher temperature to enlarge Nb₃Sn layer thickness keeping grain size low

With OS 700 °C × 50 h

700 °C × 100 h

Heat treatment optimization: reaction layer thickness

Heat treatment (HT): 550°C × 100 h + 650°C × 200 h

No OS

With OS

Drastic reduction of Nb₃Sn layer thickness when OS is added

Higher temperature to enlarge Nb₃Sn layer thickness keeping grain size low

Significant increase of layer thickness at 700 °C

With OS 700 °C × 50 h

700 °C × 100 h

Heat treatment optimization: layer-J_c

Heat treatment optimization: layer-J_c Why L is lower despite

On the road to multifilamentary wires

Manufacturing of multifilamentary RRP wire, starting from sub-elements made of 192 filaments.

On the road to multifilamentary wires

Manufacturing of multifilamentary RRP wire, starting from sub-elements made of 192 filaments.

NbTa - noOS Cu/Nb-7.5%^{wt}Ta No Oxygen Source

On the road to multifilamentary wires

Manufacturing of multifilamentary RRP wire, starting from sub-elements made of 192 filaments.

Multifilamentary wire

FACULTY OF SCIENCES DEPARTMENT OF QUANTUM MATTER PHYSICS

13

Where should we place the OS in a RRP wire?

Where should we place the OS in a RRP wire?

OS at subelement level

Nb filaments substituted with OS

Where should we place the OS in a RRP wire?

OS at subelement level

Nb filaments substituted with OS

OS at filament level

OS inside each filament of the subelement

Where should we place the OS in a RRP wire?

OS at subelement level

Nb filaments substituted with OS

OS at filament level

OS inside each filament of the subelement

Billets of the filaments extruded for both approaches; ongoing deformation to reach subelement assembly size

Conclusions

- **Enhancement of J**_c above the **FCC specifications**, **record-high B**_{c2} and change of pinning

mechanism (point defect) when Oxygen Source (OS) is present, for wires reacted at 650 °C

- X-Rays Absorption Spectroscopy (XAS) on Nb₃Sn wires with and without OS show the presence

of $\underline{ZrO_2}$ only in the Nb₃Sn layer and not in the unreacted alloy

- Suppression of the point defect pinning mechanism in samples reacted at 700 °C with consequent
 drop of layer-J_C below the FCC target
- The billets **containing OS** in the layout have undergone **extrusion** and are currently being **prepared** for

the **next stages of deformation**

Thank you for

your attention