

High Field Magnets

HTS REBCO tapes, cables and associated technologies at CERN

A. Ballarino

A. Ballarino, C. Barth, A. Baskys, S. Hopkins, G. Succi

HFM Annual Meeting 2023

30 Oct – 2 Nov 2023 CERN

Outline

- Overview of 2023-2027 CERN HFM program
 - Strategy and activities
- Activities at CERN in 2023

Outline

- Overview of 2023-2027 CERN program
 - Strategy and activities
- Activities at CERN in 2023

Overview of CERN activities REBCO tape

- Procurement and characterization of REBCO conductor for:
 - CERN Program
 - HFM Collaborators
 - First procurement, launched in October 2023, based on target specification. Exploration of performance of state-ofthe-art REBCO conductor produced by manufacturers with different technologies
- Second procurement by mid 2025
- Extensive measurement campaign and definition and implementation of QC
- Upgrade of infrastructure for characterization

CERN

Overview of CERN activities REBCO Cables

- **Development of REBCO cables**
 - Target: 10 kA @ 20 T and up to ~ 10 K
 - Electrically insulated cables
 - Novel cable layouts addressing quench protection, field quality, mechanical robustness and windabilty aspects
 - Having to move away from the Rutherford cable and from multi-filamentary wire - is very challenging

Overview of CERN activities REBCO Coils

- Short Model Coil HTS Program to test novel cables in a coil configuration: windibility, quench protection,
 - Target: 5 T 8 T at up to 10 K in a background field or 12 T-15 T
- Racetracks
 - Full HTS
 - Hybrid (HTS in Nb₃Sn background field). Synergy with RD4 and with the extensive SMC Nb₃Sn program carried out at CERN
- Pancake **solenoids**

Overview of CERN activities Demonstrators

Dipole Common Coil

Racetrack coils measured in a Common Coil configuration. Advantages: **no out of plane bending** during the winding and **simple 2D end configuration** implementing large bending radii Target: **5 T** at up to **10 K** in a **background field of 15 T**

 Solenoid for use in our test stations (building 163) for the measurement of HTS conductor. Target: > 20 T at 4.5 K

Overview of CERN activities

- Close collaboration on HTS conductor activities at the collaborators' sites:
 - **REBCO Tape** development and production at **KIT**;
 - Iron based PIT 122 round wire development and production at SPIN
- Apply developed technology to low-field HTS magnets and HTS sustainable technology for future accelerators

Outline

- Overview of 2023-2027 CERN HFM program
 - Strategy and activities
- Activities at CERN in 2023

Procurement of REBCO Tape

- Launched in 2023 procurement of **28.5 km** of REBCO tape
- All orders will be placed before end 2023
- Technical specification documents incorporating QA requirements
 - HL-LHC and IFAST: project required Jc performance
 - HFM: minimum Jc performance

_	Project	Quantity	Width	Status
£	HL-LHC, Grade 1	11 km	4 mm	Tendering
Ì.	HL-LHC, Grade 2	4 km	4 mm	Order placed
	IFAST	2.5 km	4 mm	1 km delivered*
	HFM CERN	11 km	2, 4 and 12 mm	Tendering

Series REBCO tape for HL-LHC Cold Powering

*Unit lengths of 113-378 m (mean 169 m)

Procurement of REBCO Tape

		Specification – 4 mm wide tape			
		Т (К)	B_{\perp} (T)	Ic (A)	UL (m)
High T. Low P	HL-LHC Grade 1	60	0.7	200	100
	HL-LHC Grade 2	60	0.7	200	100
Med T, Med B	IFAST	20 10	5 5	650 800	50 50
Low T, High B	HFM CERN	4.2 20	20 20	>320* >150**	100 100

* 800 A/cm ** 375 A/cm

Performance of REBCO Tape

Data presented by tape manufacturers at the HiTAT Workshop, CERN, March 2023 HFM Specification (4.2 K and 20 K)

REBCO Specification for HFM

Parameter	Minimum	Maximum	Target
Critical Current, <i>I_c</i> , per width (A/cm)			
at 4.2 K and 20 T	800	-	-
at 20 K and 20 T	375	-	-
Engineering Critical Current Density, J_e (A/mm ²)			
at 4.2 K and 20 T	-	-	≥ 1500
at 20 K and 20 T	-	-	≥ 700
Nominal substrate thickness (µm)	38	60	-
Nominal copper stabiliser thickness, each face (µm)	5	-	20
Minimum out-of-plane bend radius (mm)	-	20	≤ 10
Internal Resistance (nΩ cm²)			
for a test duration of 0 h	-	100	≤ 60
for a test duration of 1 h	-	125	≤ 60
Piece Length (m)	100	-	≥ 200

Procurement of REBCO Tape

 Understand and quantify performance of industrially available REBCO conductor. Manufacturing process, tape layout, way of implementing artificial pinning change are specific to the manufacturer

• Extensive measurement campaign. Data will be made available to the community. Synergy with activities at other laboratories

Procurement of REBCO Tape

- Discuss with tape manufacturers problems encountered and specificity of our requirements
 - Ex: identified, during R&D at CERN, electrical resistance internal the tape (EDMS N: 2366622) – either intrinsic to the tape and/or generated during temperature cycle (impregnation/splicing). Work then treated and confirmed at UNIGE. Now specific requirements implemented in technical specification document
- Discuss with tape manufacturers pinning mechanism at different temperatures – in the range 4.5 K to ~ 30 K (0 D pinning vs 1D and 3 D pinning, hybrid pinning). Possibly optimize in-field performance and treat anisotropy
 - Synergy with RD4 (operating temperature for FCC hh if GHe cooling and conductor temperature margin)
 - Synergy with activities at KIT

Measurements @ CERN

~ 15 mm

B \perp U-Shape and **B**// sample holders Up to ~ 2.6 kA, 15 T @ 4.2 K

Ic @ 77 K Self field

Scaling laws (1/2)

CERN and Univ. Southampton (PhD thesis)

Scaling laws Ic(T,B,θ) in a wide range of B. Needed for modelling

G. Succi et al EUCAS23-3-MP-CC-03S

Magnetic Field and Temperature Scaling of the Critical Current of REBCO tapes G. Succi, A. Ballarino, S. C. Hopkins, C. Barth, Y. Yang

Fitting parame	$I_{c,0}$	α	B_0	
Allowed ranges		≤ 3500 A	0.0 - 1.0	0.0 - 2.0 T
Manufacturer	Tape type			
Shanghai ST *	ST-4-E	3274 A	0.56	0.72 T
Shanghai ST	ST-4-E (older)	2553 A	0.56	$0.72 \mathrm{T}$
S-Innovations	For in-field use	3052 A	0.63	0.57 T
SuperPower	SCS4050-AP	2593 A	0.84	1.5 T
Theva	TPL4421-HP	1500 A	0.44	0.71 T

Magnetic Field and Temperature Scaling of the Critical Current of REBCO tapes

High Field Magnet

CFRN

70 77 82

40

T [K]

T [K]

Superconducting cables

- Designed, built and operated as from mid 2022 a cabling machine for making round, flexible and insulated REBCO cables Work done in the framework of HL-LHC Cold Powering: up to 18 kA
 @ 60 K and 0.7 T. About 1 km needed, in ULs of 2-4 m. No degradation of conductor after cabling
- Studied different cable layouts (core, number of layers, Φ ,...)
- Implementing a reel-to-reel system for cabling long unit lengths
- We will use of these cables in **coils**

Winding machine

Designed and assembled at CERN a winding machine for the production of solenoids and racetrack coils. Implemeted tension control for each tape Stacks of REBCO tapes. Up to 15 tapes per cable + insulation Implemented **Polyimide insulation** in the reel-to-reel process (tested in air, 7 kV between layers and to ground)

Ø int 37 mm

New test stations (1/2)

REBCO TAPE, LONG LENGTHS

- Procurement of set-up for continuous measurement of critical current along the tape length - with millimeter resolution
- Goal: detect faults and nonuniformities
- Measurements in liquid helium in the range 65 K - 77 K. External field ~ 1 T
- Industrially available

CERN

 Installation and operation at CERN in summer 2024

REBCO COILS, HIGHER TEMPERATURE

- New test station for measurement of coils in a variable temperature range in helium gas cooling and in self-field
- Conceptual design relying on equipment developed for HL-LHC, i.e. 18 kA REBCO HTS current leads used in Demo 1 and Demo 2 of HL-LHC Cold Powering
- Detailed design in Q1 2024, availability by end 2024

New test stations (2/2)

REBCO TAPE, SHORT SAMPLES

Being procured for installation and operation in building 163:

- Solenoid 20 T @ 4.2 K
- Bore diameter 100 mm
- Field homogeneity better than 1% in a cylinder volume of 200 mm height and 85 mm diameter, centred around the magnetic centre of the solenoid
- Commissioning at CERN by mid-2026

Synergy with RD5 – See presentation on Infrastructure for superconductors (Th.Boutboul and D. Perini)

Conclusions

- Established the basis for starting next year development of novel REBCO cables and coils. The two technologies have to progress in parallel
- We are launching a challenging R&D. Synergies and support among HFM collaborating institutes will help in addressing challenges and defining the technological roadmap for future HTS accelerator magnets

