FCC Feasibility Study Status HFM annual meeting 2023 CERN, 30 October 2023 Michael Benedikt, Frank Zimmermann, CERN on behalf of FCC collaboration & FCCIS DS team

Work supported by the **European Commission** under the **HORIZON 2020 projects EuroCirCol**, grant agreement 654305; **EASITrain**, grant agreement no. 764879; **iFAST**, grant agreement 101004730, **FCCIS**, grant agreement 951754; **E-JADE**, contract no. 645479; **EAJADE**, contract number 101086276; and by the Swiss **CHART** program

Horizon 2020 European Union funding for Research & Innovatio

FCC integrated program

comprehensive long-term program maximizing physics opportunities

- stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, pp & AA collisions; e-h option
- highly synergetic and complementary programme boosting the physics reach of both colliders (e.g. model-independent measurements of the Higgs couplings at FCC-hh thanks to input from FCC-ee; and FCC-hh as "energy upgrade" of FCC-ee)
- common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC integrated project allows the start of a new, major facility at CERN within a few years of the end of HL-LHC

FCC Feasibility Study Status Michael Benedikt, Frank Zimmermann HFM meeting, 30 October 2023

FUTURE

CIRCULAR COLLIDER

FCC timeline

Technical schedule: FCC integrated project

Schedule takes into account:

- □ CERN Council approval timeline
- past experience in building colliders at CERN
- □ that HL-LHC will run until ~ 2041
- → ANY future collider at CERN cannot start physics operation before 2045-2048 (but construction will proceed in parallel to HL-LHC operation)

F. Gianotti

European Strategy for Particle Physics

2013 Update of European Strategy for Particle Physics:

"CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines."

→ FCC Conceptual Design Reports (2018/19)

2020 Update of European Strategy for Particle Physics:

"Europe, together with its international partners, should investigate technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage."

FUTURE

CIRCULAR COLLIDER

FUTURE CIRCULAR Feasibility Study timeline and main activities/milestones

FCC Feasibility Study Status Michael Benedikt, Frank Zimmermann HFM meeting, 30 October 2023

Mid-term review setup and deliverables are defined in CERN/SPC/1183/Rev.2:

- the scientific and technical results be reviewed by the FCC FS Scientific Advisory Committee, augmented by additional experts as needed;
- the cost and financial feasibility, which will focus on the first-stage project (tunnel, technical infrastructure, FCC-ee machine and injectors), be reviewed by a committee including external experts, as proposed in CERN/3588;

SAC: review of deliverables 1, 2, 3, 4, 5, 6, 8

- D1: Definition of the baseline scenario
- D2: Civil engineering
- D3: Processes and implementation studies with the Host States
- D 4: Technical infrastructure
- D5: FCC-ee accelerator
- D6: FCC-hh accelerator
- D7: Project cost and financial feasibility
- D8: Physics, experiments and detectors

Cost Review Panel Mandate

- Review the methodology and assumptions used in producing the cost estimates
- Identify inaccurate or missing cost information
- Check the consistency of the cost estimates with respect to applicable reference work, e.g., recent large-scale infrastructure and accelerator projects
- Review the uncertainty estimates
- Identify potential areas of savings and cost mitigation for future work
- Advise the FCC study team on matters of cost estimation in view of preparation of the final Feasibility Study Report for end 2025

ORGANISATION F	CUROPEENNE POUR LA RECHE PEAN ORGANIZATION FOR NU	CERN/SPC/1183/Rev. 2 CERN/S64/Rev. 2 Original: English 29 September 2022 RCHE NUCLEAIRE CLEAR RESEARCH	
detion to be taken		Voting Procedure	
For recommendation	SCIENTIFIC POLICY COMMITTEE 330 th Meeting 25-26 September 2022		
For decision	RESTRICTED COUNCIL 209 th Session 29 September 2022	Simple majority of Member States represented and voting	
FUTURE CIRCULAR COLLIDER FEASIBILITY STUDY: Plans and deliverables for the 2023 Mid-Term Review			
This document describes the plane and deliverables for the mid-term service of the Tennes insula Collade Foundation (and the plane in antenna 2013). The scientific Policy Committies is survival to recommend and the Council is survival to approve here plane and deliverables.			

Optimized placement and layout for feasibility study

Layout chosen out of ~ 100 initial variants, based on **geology** and **surface constraints** (land availability, access to roads, etc.), **environment,** (protected zones), **infrastructure** (water, electricity, transport), **machine performance** etc.

"Avoid-reduce -compensate" principle of EU and French regulations

Overall lowest-risk baseline: 90.7 km ring, 8 surface points,

Whole project now adapted to this placement

FUTURE

CIRCULAR COLLIDER

CIRCULAR progress with implementation baseline PA31 90.7 km

- Meetings with municipalities concerned in France (31) and Switzerland (10)
- PA Ferney Voltaire (FR) site experimental
- PB Présinge/Choulex (CH) site technique
- PD Nangy (FR) site experimental
- PF Roche sur Foron/Etaux (FR) site technique
- PG Charvonnex/Groisy (FR) site experimental
- PH Cercier (FR) site technique
- PJ Vulbens/Dingy en Vuache (FR) site experimental
- PL Challex (FR) site technique

Individual meeting planned

Collective meeting

The outstanding support of the host states is greatly appreciated and essential for the study progress!

FCC tunnel implementation

Tunnel implementation summary

- 91 km circumference
- 95% in molasse geology for minimising tunnel construction risks
- 8 surface sites with ~5 ha area each.

FCC Feasibility Study Status Michael Benedikt, Frank Zimmermann HFM meeting, 30 October 2023

Status site investigations

FUTURE

CIRCULAR COLLIDER

- Site investigations in areas with less well known geological conditions:
 - Optimisation of localisation of drilling locations ongoing with site visits since end 2022.
 - Alignment with FR and CH on the process for obtaining autorisation procedures. Ongoing for start of drillings in 03/2024.

Contracts Status:

- Contract for engineering services and role of Engineer during works, active since July 2022
- Site investigations tendering ongoing towards contract placement in December 2023 and mobilization from January 2024.

Drilling works on the lake

Connections to electrical grid infrastructure

Updated FCC-ee energy consumption	Z	W	Н	TT
Beam energy (GeV)	45.6	80	120	182.5
Max. power during beam operation (MW)	222	247	273	357
Average power / year (MW)	122	138	152	202
Total yearly consumption (TWh)	1.07	1.21	1.33	1.77

Powering concept and max power load by sub-stations:

FUTURE

CIRCULAR COLLIDER

The loads could be charged on three sub-stations (optimally connected to existing regional HV grid):

- **Point D with a new sub-station** covering PB PD PF PG
- Point H with a new dedicated sub-station for collider RF
- **Point A with existing CERN station** covering PB PL PJ
- Connection concept was studied and confirmed by RTE (French electrical grid operator)
- Requested loads have no significant impact on grid
- Powering concept and power rating of the three sub-stations compatible with FCC-hh

PDL1, 69MW

Cooling Water

- Potential sources of cooling water Geneva lake (PA), Rhone (PJ) and Arve (PD).
- Existing line with lake water provided by SIG to CERN LHC P8 (LHCb) sufficient for FCC-ee.
- Pipework in the tunnel will connect the remaining points to points PA, PD and PJ.
- Main cooling towers placed at experiment points, and RF points (PL, PH).

FCC-ee injector layout & implementation

FUTURE

CIRCULAR

Transfer line FCC-ee (option with SPS for FCC-hh)

FUTURE

CIRCULAR

FCC-ee: main machine parameters

Parameter	Z	ww	H (ZH)	ttbar	
beam energy [GeV]	45.6	80	120	182.5	
beam current [mA]	1270	137	26.7	4.9	
number bunches/beam	11200	1780	440	60	
bunch intensity [10 ¹¹]	2.14	1.45	1.15	1.55	
SR energy loss / turn [GeV]	0.0394	0.374	1.89	10.4	
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.1/0	2.1/9.4	technic
long. damping time [turns]	1158	215	64	18	of char
horizontal beta* [m]	0.11	0.2	0.24	1.0	
vertical beta* [mm]	0.7	1.0	1.0	1.6	
horizontal geometric emittance [nm]	0.71	2.17	0.71	1.59	(C.y. 30
vertical geom. emittance [pm]	1.9	2.2	1.4	1.6	
horizontal rms IP spot size [μm]	9	21	13	40	
vertical rms IP spot size [nm]	36	47	40	51	
beam-beam parameter ξ _x / ξ _y	0.002/0.0973	0.013/0.128	0.010/0.088	0.073/0.134	
rms bunch length with SR / BS [mm]	5.6 / 15.5	3.5 / <mark>5.4</mark>	3.4 / <mark>4.7</mark>	1.8 / 2.2	
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	140	20	5.0	1.25	
total integrated luminosity / IP / year [ab ⁻¹ /yr]	17	2.4	0.6	0.15	
beam lifetime rad Bhabha + BS [min]	15	12	12	11	
	4 years 5 x 10 ¹² Z	2 years > 10 ⁸ WW	3 years 2 x 10 ⁶ H	5 years 2 x 10 ⁶ tt pairs	_

technical feasibility
of changing operation
sequences was assessed
(e.g. starting at ZH energy)

□ x 10-50 improvements on all EW observables

- □ up to x 10 improvement on Higgs coupling (model-indep.) measurements over HL-LHC
- □ x10 Belle II statistics for b, c, т

FUTURE

CIRCULAR COLLIDER

□ indirect discovery potential up to ~ 70 TeV

□ direct discovery potential for feebly-interacting particles over 5-100 GeV mass range

Up to 4 interaction points \rightarrow robustness, statistics, possibility of specialised detectors to maximise physics output

FCC-ee RF layout

RF for collider and booster in separate • straight sections H and L.

FUTURE

CIRCULAR COLLIDER

- fully separated technical infrastructure systems (cryogenics)
- collider RF (highest power demand) in • point H with optimum connection to existing 400 kV grid line and better suited surface site

Collider ring

0000

500

400 2185

2245

Universität FCC-ee SRF Technology

FUTURE

CIRCULAR

COLLIDER

low R/Q, HOM damping, powered by 1 MW RF coupler and high efficiency klystron

moderate gradient and HOM damping requirements; 500 kW / cavity, allowing reuse of klystrons already installed for Z

ttbar, booster 5-cell 800 MHz, **bulk Nb**

high RF voltage and limited footprint thanks to multicell cavities and higher RF frequency; 200 kW/ cavity

Broad R&D collaborations on SRF

Rostock

First attempt of HiPIMS* niobium coating on a 400 MHz Cu cavity

*High-power impulse magnetron sputtering

F. Peauger, O. Brunner

Operation sequences for FCC-ee

FCC-hh parameters

parameter	FCC-hh	HL-LHC	LHC	
collision energy cms [TeV]	81 - 115	14		
dipole field [T]	14 - 20	8.33		
circumference [km]	90.7	26.7		
arc length [km]	76.9	22.5		
beam current [A]	0.5	1.1	0.58	
bunch intensity [10 ¹¹]	1	2.2	1.15	
bunch spacing [ns]	25	25		
synchr. rad. power / ring [kW]	1020 - 4250	7.3	3.6	
SR power / length [W/m/ap.]	13 - 54	0.33	0.17	
long. emit. damping time [h]	0.77 – 0.26	12.9		
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	~30	5 (lev.)	1	
events/bunch crossing	~1000	132	27	
stored energy/beam [GJ]	6.1 - 8.9	0.7	0.36	

With FCC-hh after FCC-ee: significantly more time for high-field magnet R&D aiming at highest possible energies

Formidable challenges:

- high-field superconducting magnets: 14 20 T
- \Box power load in arcs from synchrotron radiation: 4 MW \rightarrow cryogenics, vacuum
- □ stored beam energy: ~ 9 GJ \rightarrow machine protection
- □ pile-up in the detectors: ~1000 events/xing
- \Box energy consumption: 4 TWh/year \rightarrow R&D on cryo, HTS, beam current, ...

Formidable physics reach, including:

- □ Direct discovery potential up to ~ 40 TeV
- □ Measurement of Higgs self to ~ 5% and ttH to ~ 1%
- □ High-precision and model-indep (with FCC-ee input) measurements of rare Higgs decays ($\gamma\gamma$, $Z\gamma$, $\mu\mu$)
- Final word about WIMP dark matter

FCC-hh layout, optics work, geom. integration

M. Giovannozzi, T. Risselada, G. Perez Segurana, M. Hofer, K. Oide

tunnel and cavern widths.

FUTURE

CIRCULAR COLLIDER

- A power-saving, cost-effective High-Field Magnet technology with minimum cryogen inventory is the ambitious goal for FCC-hh HFM R&D.
- FCC-hh magnet R&D requires a sustained and globally coordinated efforts by international magnet R&D programs (HFM Programme, US-MDP, nat'l programs, etc.).
- Good coordination and communication among the FCC integrated program and magnet R&D programs is indispensable.
- Many technologies and target parameters compete for optimum value:
 - LTS today is seen as a cost-effective, rel. low risk, and potentially fast-tracked option.
 - HTS as path towards FCC-hh aspirational goals (c.o.m energy, societal impact, etc., while remaining affordable).
 - Technical readiness of HTS lags behind that of LTS by many years.
- Need to exploit synergies with other fields and applications to help to sustain the long-term effort.

Status of FCC global collaboration

increasing international collaboration as a prerequisite for success

FUTURE CIRCULAR COLLIDER

Conclusions

The first half of the FCC FS will soon be completed with the mid-term review

- End October 2023: Review committee reports available to Scientific Policy Committee and Finance Committee
- 20 22 November 2023: SPC and FC review meetings on mid-term review
- 2 February 2024: CERN Council meeting on mid-term review

Focus so far: identifying best placement & layout and adapting entire project to new placement

Focus until end 2025: performance-risk-cost optimization considering project/operation phases and preparations for project preparatory phase

- Performance-risk-cost optimization considering construction & operation phases at system and global level
- Site investigation, surface site implementation with host states, environmental initial state, administrative processes
- Setting up for project preparatory phase: structure and resources, agreements with host states
- Setting up and strengthening R&D collaborations to advance towards technical design