

High Field Magnets

WP3.5

Nb₃Sn ultimate performance dipole models 14T⁺ Dipole

HFM Annual Meeting 2023

Author: J.C. Perez, L. Fiscarelli, E. Gautheron, S. Izquierdo, E. Todesco

Acknowledgements to 927 and SM18 teams for their contribution

https://indico.cern.ch/event/1302031/

Date: November 2023

HFM Annual Meeting 2023

Wednesday November 1st 2023

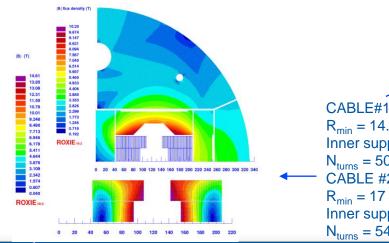
Table of contents

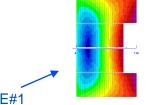
- Scope of the Work Package
- 14 T⁺ Dipole design status
- eRMC/RMM & SMC magnets
- Running and future activities

Scope of the Work Package

WP3.5: Nb₃Sn ultimate performance dipole models

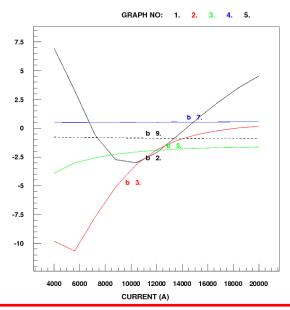
- Pursue the work started in the frame of the FCC Magnet development Program towards 16 T Dipole models
 - Demonstrate Nb₃Sn potential above 14 T and in terms of ultimate performance (16 T target)
 - Design and construction of a 14 T+ accelerator quality dipole model magnet
 - Explore alternatives and develop design and technology for ultimate performance Nb₃Sn magnets


Initial Design Target


- > 14 T bore field with ≈ 20 % load line margin
- Protection time margin > 40 ms
- Aperture = 50 mm

HFM

High Field Magnets


- "Accelerator coil size", i.e, < 60 mm
- Field quality within 10 units at all current levels (excluding PC effects)
- Magnet OD: take EuroCircol dimensions as reference
 - Intra-beam distance: 250 mm
 - Cold mass OD: 800 mm and Magnet OD : 760 mm
 - For the 1 in 1, we will scale down

 $\label{eq:Rmin} \begin{array}{l} \mathsf{R}_{\mathsf{min}} = 14.8 \ \mathsf{mm} \\ \mathsf{Inner \, support} = 4 \ \mathsf{mm} \\ \mathsf{N}_{\mathsf{turns}} = 50 \\ \mathsf{CABLE \, \#2} \\ \mathsf{R}_{\mathsf{min}} = 17 \ \mathsf{mm} \\ \mathsf{Inner \, support} = 5 \ \mathsf{mm} \\ \mathsf{N}_{\mathsf{turns}} = 54 \end{array}$

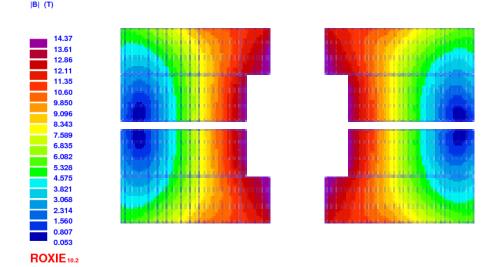
Field errors as a function of the current (geometric + iron saturation)

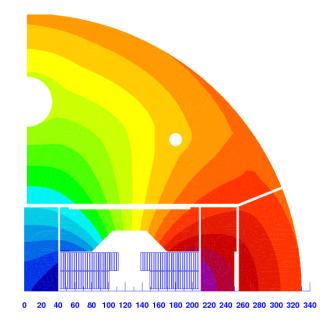
Conceptual design with acceptable field quality (< 10 units at all current levels, excluding PC) for cable 44*1.1 mm (TDF magnet) and cable 48*1 mm completed

Parametric analysis for 14 T+ magnet based on block coils completed by E. Todesco (https://indico.cern.ch/event/1292121/)

Courtesy of S. Izquierdo Bermudez

Change of design target


- > 14 T bore field with 20 % load line margin
- Protection time margin > 40 ms
- Aperture = 50 mm → ≈40 mm (40 strands cable 1 mm diam. to be produced at CERN)
- 'Accelerator coil size', i.e, < 60 mm
- Field quality within 10 units at all current levels (excluding PC effects)
- Magnet OD, take Euro-Circol dimensions as reference (Intra-beam distance: 250 mm; Cold mass OD: 800 mm; Magnet OD : 760 mm
 - For the 1in1, we will scale down

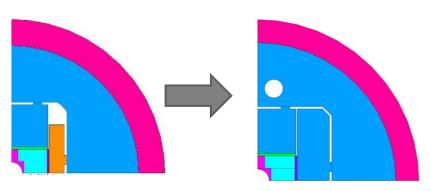


2 in 1 Reference Design

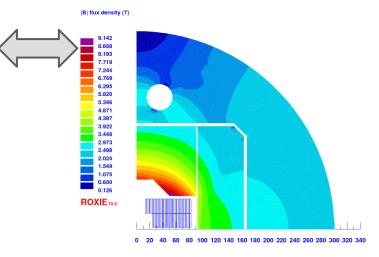
- Electro-magnetic design studies completed. Mechanical design ongoing.
- Final parameters to be adapted based on winding tests (minimum bending radius) and detailed engineering design (inter-layer and mid-plane shim) and mechanical design (structural components) for a Bladder&Keys structure
- Twin-aperture dipole magnet, with Nb₃Sn block coils has never been built.
- It is a very challenging configuration.

 $B_{ap} = 14 T$, I = 15.36 kA

Courtesy of S. Izquierdo Bermudez



HFM Annual Meeting 2023

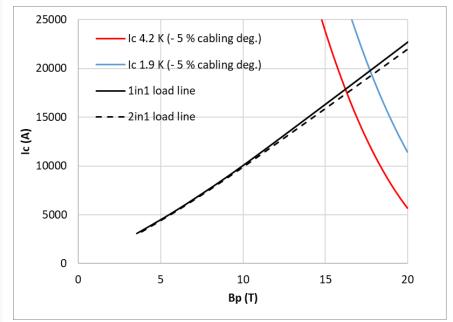

Wednesday November 1st 2023

1 in 1 Reference Design

- Iterative 2D electro-magnetic and mechanical design
 - Final parameters to be adapted based on winding tests (minimum bending radius) and detailed engineering design (inter-layer and mid-plane shim)
- Main features for the reference design:
 - Thick iron horizontal pad
 - Rods for axial loading integrated in the yoke
 - Non-magnetic pole and insert in the vertical pad for field quality (we could gain 0.5-0.7 T, but hundreds of units of b₃, for more details see (<u>https://indico.cern.ch/event/1299122/</u>)
- Mockups will be built to check the cable stability, bending radius, layer-jump geometry, before starting the detailed CAD design
- We expect to start winding coils in Q4-2024 and have the first short single aperture model magnet tested in 2025-2026

Reference design

Courtesy of S. Izquierdo Bermudez



Magnet parameters for reference design

	_	RMM	14 T 2in1	14 T 1in1
strand diameter	mm	1	1	1
Cu/SC		1	0.9	0.9
# of strands/cable		40	40	40
# turns/quadrant		132	59	59
Eq. coil width	mm	86	55	55
Inom	Α	11546	15363	15757
J _{overall}	A/mm ²	248	330	338
J _{cu}	A/mm ²	735	1032	1059
٦	A/mm ²	735	929	953
B ₀ at I _{nom}	т	16.07	14.00	14.00
B _p at I _{nom}	т	16.06	14.54	14.56
B _{ss} at 1.9 K*	т	18.77 ¹	17.83 ²	17.73 ²
B _{ss} at 4.2 K*	т	17.07 ¹	16.31 ²	16.23 ²
F _x /h at I _{nom}	MPa	122	123	123
F _y /w at I _{nom}	MPa	-46	-38	-39
F,/aperture at I _{nom}	MN	2.16	0.85	0.85
Stored energy density (overall)	MJ/m ³	87.95	77.79	77.39

First single aperture demonstrator magnet characteristics

- Double layer pancake coil with layer-jump in the straight part Main Post configuration
 - Main post geometry (experience from HD2 & Fresca2)
 - Interlayer configuration to be carefully study
- Flared-ends configuration
 - Central-post transition to the wedge
 - Impregnated or non-impregnated wedge???
- Heat treatment mold configuration
 - Sliding pieces to compensate thermal expansion
 - Coil bore deformation during heat treatment
- External coil geometry
 - How to get identical coils geometry to easy the assembly
 - Impregnated loading plates allowing machining of the coil to tune the transversal dimension
 - Scalable techniques for longer coils
- Magnet protection
 - If QH are used for magnet protection, they will not be impregnated with the coil
 - Collaboration with MPE for CLIQ redundant protection and efficient at low current
- Mechanical structure
 - Well known Bladders & Key structure
 - We will profit from the experience gained during Race-track coils development and from HL-LHC quadrupoles production

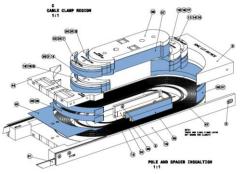
What can be explored at a later stage?

- 2in1 mechanical optimization
- Production of a bigger cable with the new CERN cabling machine (2026/2027?)
- Use of new strand architectures from SCD future R&D program for HFM
- Open to study novel mechanical structures
- Stress management for a block-coil configuration if required
- New magnet cooling system to be investigated and develop in collaboration with TE-CRG
- Magnet protection system (QH, CLIQ, E-CLIQ...) to be studied and qualify with TE-MPE
- New coil and magnet instrumentation

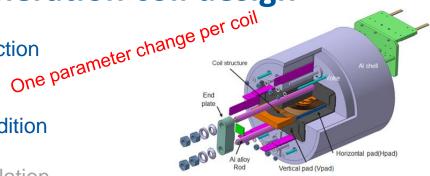
We have been working for several years on Nb₃Sn magnet development for : Fresca2, HL-LHC, FCC via EuroCircol.

The 14T+ program is using this experience and profit of lessons learned from US-LARP.

For technology development, while pushing the field higher, we used the Short Model Coils (SMC) or their bigger brothers : RMC, eRMC, RMM


(all of them using flat coils and B&K technology for the fast and easy tuning capability)

In the next slides I will summarise the activities and results we obtained via these "test bed type magnets"


Impact of the resin on magnet performance

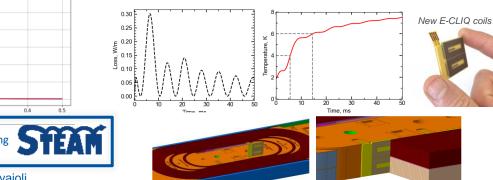
using SMC11T 2nd generation coil design

Objectives

- Training reduction
 Exploration
- resins
- adhesion condition
- conductor
- electrical insulation

Naming	Cable	Pole	Ероху	Cable insulation	Status
SMC2G-101	SMC-11T	Impregnated	CTD 101K	S2 Glass / 150 μm	Tested
SMC2G-102	SMC-11T	Impregnated	Araldite®MY750 + Aradur®HY5922	S2 Glass / 150 μm	Tested
SMC2G-103b	SMC-11T	Impregnated	Mix 61	S2 Glass / 150 μm	Tested
SMC2G-104	SMC-11T	Impregnated	Araldite®MY740 + Aradur®HY609 +DY062 (MSU)	S2 Glass / 150 μm	Tested
SMC2G-105	SMC-11T	Impregnated	CTD 101K	S2 Glass / 150 μm	Ready
SMC2G-106	SMC-11T	Impregnated	Best performing	S2 Glass / 150 μm	Not started
SMC2G-107	SMC-11T	Impregnated	CTD 101K New PoLab. Formulation	S2 Glass / 150 μm	Ready

See resins studies WP 4.3 presentation by R. Piccin

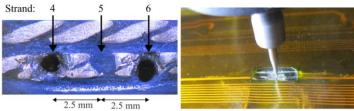

Other Studies using SMC

E-CLIQ

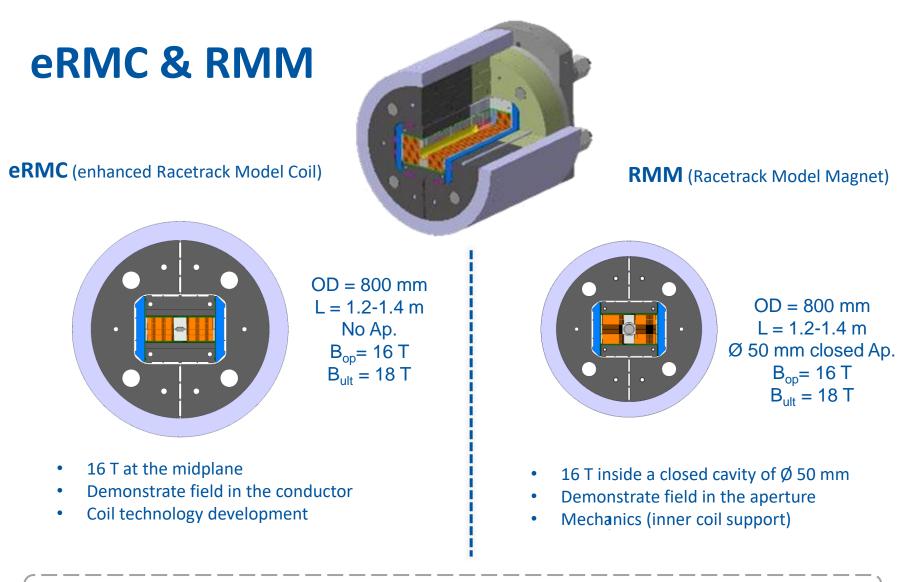
ESC (Energy Shift with Coupling) As fast as CLIQ or faster Extracts part of the magnet energy combination with a SMC. Sudden current drop \rightarrow lower ohmic loss Electrically insulated from coil Easier redundancy \checkmark — magnet 14000 aux 1 Auxiliary coil 1 — aux 2 12000 10000 0.30 Ð 0.25 8000 ₽^{0.20} 6000 0.15 4000 Magnet coils 2000 auxiliary coil 2 0.05 0.00 x [mm] -50 -25 0 140 120 emperature Simulations performed using Courtesv of E. Ravaioli

- E-CLIQ coils are inductive quench heaters: AC current \rightarrow AC magnetic field \rightarrow AC loss in the conductor.
- New E-CLIQ coils designed and produced for testing in
- Two coils on 1 PCB -> 1 for each layer of the SMC.
- Sudden current drop \rightarrow lower ohmic loss
- Each coil has 14 layers and an inductance of 3 mH.

Potential to initiate a quench within some milliseconds.



Courtesv of T. Mulder

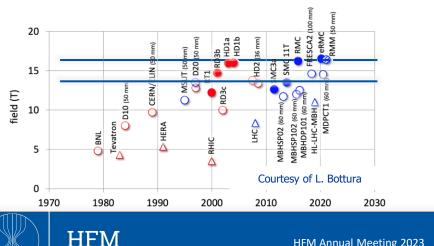

Effect of intentionally introduced strand damage in a Nb₃Sn Rutherford cable on the performance of a short racetrack magnet PhD thesis of R. Keijzer (University of Twente) presented at MT28

Study of a New coil design using a 32 strands

cable with 0.85 mm diameter MQXF type strand started

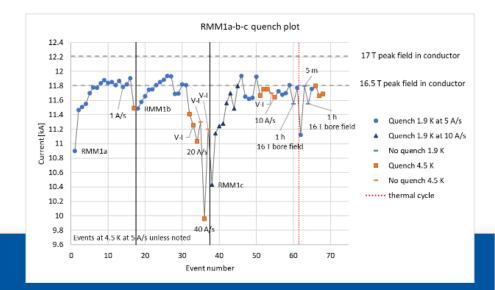
https://indico.cern.ch/event/1321217/

→ Demonstrate the field & Study the mechanics (focus straight section) → Field quality not an objective



HFM Annual Meeting 2023

Wednesday November 1st 2023


eRMC/RMM activities & Results

- Exploration of high field in the straight section of a dipole block configuration ۲
- Field record of 16.5 T (87.5 % of the short sample limit at 1.9 K) in a 50 mm diameter and 431 mm long closed cavity during summer 2022
- No sign of conductor degradation •
- Transverse preload increase for conservative preload study on RMM1c ongoing
- RMM1c with modified eRMC coils shimming tested in SM18 in July 2023 ۲
- 3 eRMC cable UIs produced and being insulated ۲
- Coil fabrication expected second half on 2023 (delays on cable insulation)

High Field Magnets

Running and future activities

- The feasibility study for a 14 T+ dipole block-coil type with flared-end is well advanced
 - We propose a double layer coil block configuration, using a 40 strands cable for a 40 mm aperture.
 - The main magnet parameters are a bit 'less challenging' than HL-LHC magnets (lower current density, lower energy density, similar stress level due to electromagnetic forces)
- Electro-magnetic design study for 2 in 1 configuration expected to be completed by the end of the year. Mechanical design will follow.
- A detailed conceptual and engineering design of the 1 in 1 is ongoing
 - Mechanical design started, feedback will be included in the electromagnetic design
 - Winding test in the coming months will define the baseline cable and the main parameters for the detailed 3D electromagnetic design.
 - The two activities must progress in parallel for a quick and smooth transition to the engineering design of the 1 in 1 configuration.
- SMC program will continue running
- SMC lessons learned will be implemented in the 14 T+ design
- eRMC/RMM program will run in parallel to further explore the straight section of a coil block configuration:
 - RMM conservative preload study running until end of 2023. RMM1c tested in July 2023 reached again 16.5 T in the 50 mm cavity
 - Winding of 3 eRMC coils will start Q4-2023
 - eRMC2 magnet will be assembled and tested in 2024
 - RMM2 powering tests scheduled end of 2024

Thank you for your attention

