

High Field Magnets

WP3.7 - Nb3Sn ultimate performance common coil dipole demonstrator

J. García-Matos, C. Martins, <u>F. Toral</u>, CIEMAT J. C. Pérez, CERN

November 1st 2023

HFM Annual Meeting

Table of contents

- High field magnet program at CIEMAT
- ISAAC Common Coil:
 - Magnetic design
 - Mechanical design
- Conclusions

High field magnet program at CIEMAT

- Initial constraints for the research on high field magnets at CIEMAT:
 - Some delay in starting the activity due to the workload driven by MCBXF magnets.
 - The new laboratory will not be fully operational till Summer 2024: see Carla's talk tomorrow.
- Our strategy is based on the following steps:
 - 1. Model magnet using RMC coils in common coil configuration (ISAAC: Investigating Superconducting Assembly to Address Common coil mechanics).
 - 2. Research on fabrication techniques: detachable poles, react-and-wind coils.
 - 3. Prototype of a high field magnet in common coil configuration.

	HIGH FIELD SC MAGNET MODELS FOR FCC	2022		2023		2024		2025		2026		2027		27					
UM-IO-1.1	Provision of building and services																		
UM-IO-1.2	Set-up and commissioning of laboratory																		
UM-IO-2.1	Production of tooling and structure for ERMC and RMM																		
UM-10-2.2	Production of practice coils																		
UM-IO-3.1	High field demonstrator: detailed design																		
	High field demonstrator: design and procurement of the																		
0101-10-5.2	tooling																		
UM-IO-3.3	High field demonstrator: manufacturing of the coils																		
UM-10-3.4	High field demonstrator: magnets assembly and participation to cold tests & analysis																		

ISAAC magnetic design: goals & constraints

- Main goal: learn for the 14 T model with existing coils, mostly on mechanics
 - Provide 14 T in the aperture (100% load required)
 - Decrease vertical Lorentz force F_y: low vertical preload (free horizontal movement, without friction)
 - Mechanics & assembly as easy as possible

Initial base case

	Design ID	2D_V0_	80 Units
	Aperture	50	mm
Intra	-beam dist.	152	mm
	l_nom	16	kA
Y	/oke inner X	90	mm
٢	Yoke inner Y	130	mm
Yoke	outer diam.	500	mm
	В	10.25	5 Т
	Peak field	11.68	В Т
	Load	80.2	%
St	ored energy	855	kJ/m
Static	Self Induct.	6.68	mH/m
	L*I	106.8	6 HA/m
Stray fi	eld (20 mm)	0.29	Т
	Sum Fx Q1	4.19	MN/m
	Sum Fy Q1	1.54	MN/m
	Total F	4.47	MN/m

ISAAC magnetic design: decreasing F_v

- Vertical Lorentz forces inside the coil need to be balanced: return conductors vs. iron
- Yoke is used to pull the field lines in the desired direction
- Yoke is truncated above the coil to provide good side support to coil
- Middle yoke helps to decrease F_v significantly and enhances bore field

Units	Т	MN/m	MN/m	MN/m	(.)
Design ID	B 💌	Total F 💌	Sum Fx Q1 💌	Sum Fy Q1 💌	Ratio Fy/Fx 💌
2D_V0_80_Apert46_MY20x50: Full iron + Middle Yoke	10.85	4.45	4.25	1.31	0.31
2D_V5_wo_MY: Truncated iron without middle yoke	10.28	4.33	4.28	0.63	0.15
2D_V5_MY20x50: Truncated iron + middle yoke	10.52	4.21	4.18	0.47	0.11

ISAAC magnetic design to provide 14T

- Aperture decreased from 50 to 34 mm
- Yoke very close to the coil (only 1.2 mm distance)
- Intra-beam distance tuned to decrease a2
- Middle yoke has a strong influence despite its assembly could be not straightforward
- Protection is possible using a dump resistor according to first simulations: R_{dump} = 45 mΩ yields a hotspot temperature of 286K and 900V voltage (adiabatic simulation)

0 20.83 41.67 62.5 83.33 104.17 125 145.83166.67 187.5 208.33229.17 250

Design ID	Block	Final RMC_CC	CC	CC*	Units
Aperture	74	34	74	74	mm
Intra-beam dist.	-	150	152	252	mm
I_nom	14486	19083	21353	20460	А
Yoke outer radius	246	250	246	246	mm
В	14	14	11.3	11.96	Т
Peak field	16.16	14.8	14.27	14.51	Т
Peak Field/B	1.154	1.0571	1.263	1.213	-
Load	99.99	99.99	100.2	100.36	%
Stored energy	1752	1038	1701	1733	kJ/m
Static Self Induct.	16.7	5.7	7.46	8.28	mH/m
L*I	242	109	159	169	HA/m
Stray field (20 mm)	1.188	0.44	0.65	1.56	Т
Sum Fx Q1	5.1	6.636	5.79	6.53	MN/m
Sum Fy Q1	-4.3	0.474	3.02	0.73	MN/m

Block vs. common coil

- Same aperture, 100% load line, same yoke outer radius
- Same energy but half inductance in CC: easier to protect.
- Slightly larger horizontal forces but large repulsive vertical forces.
- More current required in CC: less field but two apertures.

Block vs. common coil

 Using the same coils and aperture, common coil field is about half the block coil field

HFM

High Field Magnets

For $I_{CC} = I_{block}$

$$B_{CC} \approx \frac{B_{block}}{2}$$

$$cc \approx \frac{\mu_0 I_{CC}}{\pi \cdot aperture}$$

$$B_{block} \approx -\pi$$

B

Block vs. common coil

- Isolines for the dipole field contribution of a current line depending on its location
- In this particular case, the far cables of the block configuration are not efficient

120

Magnetic design: field quality vs coil position

- ISAAC magnet aperture: 34 mm
- A horizontal displacement of 0.5 mm:
 - decreases field about 1%
 - multipoles variation below 0.5 units unless a2 (1.5 units)

mm	Т	units	%							
Displ. X	Aperture field	b3	b5	b7	b9	a2	a4	а6	a8	% B
0	13.99	297.1	0.7	2.2	-0.5	3.0	-25.7	-1.5	1.4	0
0.5	13.86	297.0	1.1	2.2	-0.5	1.5	-25.9	-1.6	1.5	-0.97
1	13.73	296.8	1.4	2.2	-0.5	-0.0	-26.2	-1.6	1.5	-1.92
1.5	13.60	296.5	1.8	2.2	-0.5	-1.5	-26.5	-1.6	1.5	-2.87

Table of contents

- High field magnet program at CIEMAT
- ISAAC Common Coil:
 - Magnetic design
 - Mechanical design
- Conclusions

Mechanical design: layout

Main features:

- Parts in contact (without prestress) at room temperature
- Stainless steel vertical pad
- Cooling (from 295.15K to 1.9K)
- Electromagnetic Forces

Mechanical design: goals

- Aluminium Shell similar to SMC CERN block configuration
 - Outer yoke radius: 250 mm
 - Shell thickness: 29 mm

Goal: Coil displacement below 1mm (after cooling) in order to:

- Reduce the possibility of sudden coil movements
- Aperture field over 13.7T

First simulation shows a horizontal displacement of coil close to **2 mm**!!

Mechanical design: first iterations

- Aluminium shell inner radius from 250mm to 230mm:
 - Very similar magnetic field (14T => 13.98T)
 - Coil displacement reduced (1,95mm => 1,72mm)

	R230	R250		Dif.
Peak field B	14,553	14,559	Т	-0,04%
B (aperture)	13,980	14,000	Т	-0,14%

HFM

High Field Magnets

0 20.83 41.67 62.5 83.33 104.17 125 145.83166.67 187.5 208.33229.17 25

Increasing the thickness or using a stainless steel shell complicate considerably the magnet fabrication without a significant reduction of coil movement

Mechanical design: stiff support structure

- Let's explore the use of yoke as **support structure**
- Upper part is made in stainless steel: it may help to contain the large Lorentz horizontal force
- Aluminium shell also contributes to hold the forces
- The coil would lose contact with this part during cooling down: it could move horizontally without friction
- Assembly with **bladder and keys** is not modeled yet
- Slight preload just to keep contact between parts

Mechanical design: coil displacement

Horizontal coil displacement below 0.5 mm

X displacement

HFM

High Field Magnets

Y displacement

Typ	e: Directional Deforma	tion(Y Axis)
Glo	bal Coordinate System	
Tim	e: 2 s	
31/	10/2023 15:00	
	-0.028066 Max	
	-0,030900 Max	
	010054	
П	-0,12534	
Н	-0,16583	
H	-0,20812	
	-0,25041	
ш	-0,2927	
	-0.33499	
	-037728	
	0,57720	

Total displacement

Coil X (Cold) Inner Outer -0,021 mm -0,146 mm COOLING Coil X (EM) Inner Outer 0,4054 mm 0,3298 mm

COOLING + EM

Coil X (Cold+EM)					
Inner	Outer				
0,3848 mm	0,1838 mm				

Mechanical design: stress distribution

Coil stress below 95 MPa!!

- No significant problems for the structural parts.
- Detailed design is ongoing.

Conclusions

- The first stage of CIEMAT HFM program is the study of common coil mechanics using **existing RMC coils**
- The strategy is to let the coils **moving horizontally**, due to the low impact on field quality: low coil stresses at any load condition
- A promising design based on the use of yoke as support structure is being analysed in detail
- Next step is the engineering design: drawings and fabrication of parts
- In parallel, the electromagnetic design of a 14 T demonstrator magnet with 50 mm aperture will be done, based on existing strands

