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* Canted-Cosine-Theta Magnet CD1 and Overview of the testing campaign of January 2023
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Courtesy F. Mangiarotti (CERN) and M. Daly (PSI).

G. Montenero et al., Coil Manufacturing Process of the First 1-m-Long Canted-Cosine-Theta (CCT) Model Magnet at PSI, IEEE Trans. on App. SC., Vol 29(5), 2019.

G. Montenero et al., Mechanical Structure for the PSI Canted-Cosine-Theta (CCT) Magnet Program, IEEE Trans. on Appl. SC., Vol 28(3), 2018. Page 2
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= HFM annual meeting

Tuesday, 31 October: Transient effects in tape-stack cable and the PSI roadmap
towards HTS HFMs — PSI, D. Sotnikov

Wednesday, 1 November: Progress in materials and processes at PSI, A. Brem
Wednesday, 1 November: WP4.4 - Determination of deformation via image-based
measurements and design of epoxy systems for Nb,Sn Rutherford cables -
ETHZ/CHART, P. Studer and X. Kong

Thursday, 2 November: HFM infrastructure needs at PSI, B. Auchmann

This presentation focus on the subscale and 14+ T Stress-Managed Common-Coils

Page 4
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* Validating manufacturing process and introducing advanced concepts: coil pre-load free, ~

.. . . - A
at room temperature; stress-management structure and splicing on the low-field region. - :>| ||||

* Fast turn-around platform for testing matrix systems; protection concepts and cooling
options. BERKELEY LAB

Lawronce Serketey Nations Laberasory

* Hybrid magnet with LTS Common-Coils and HTS racetracks
* LTS conductor manufactured by LBNL (cct subscale cable)
Magnet parameters for testing all coils or the common-

coils. The coils straight section is 150 mm. The values
refer to the fitted wire Ic curve at 4.2 K values.

Plate for conduction

Stress-Managed

cooling Former |
option E
Bore = Parameter All coils CCs
22 i -
6 Rods for | Bo inT 5.15 5.1
optimal load .
distribution Bpeak INT 6.45 6.3
4-ldentical Common-coils | in kA 8.25 9.2
A-ldentical Pole-coils op : :
Epmag iN K 15.2 16.4

D. Araujo Page 6
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* Progress on R&D and engineering design (testing in Q2/2024)

Mock-up for axial pre-
load

Winding method validation

Low-temperature
Instrumented mock-up for splicing process trials
assembling validation

Completed engineering
Pre-scaled paper after design
disassembling the Mock-up

T. Michlmayr

D. Araujo, A. Brem, R. Felder, T. Michimayr, C. Muller and H. Rodrigues
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Stress-Managed Asymmetric Common-Coils 1/2

Technology

In respect to a standard common-coils magnet, we would like to explore solutions on how to:
* deal with high Lorentz forces

* simplify the common-coils architecture for accelerator magnets
* allowing a full common coils architecture and eventually reacting & winding

a: racetracks / clover-leaf coils and wide blocks  b: racetracks / clover-leaf coils and thin blocks c: only common-coils and thin blocks
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We can further simply option C, by having only easy-way bend coils

Stress-Managed Asymmetric Common-Coils 2/2

B3 Contrib. of I strand (T)

Ribs and spar thickness were optimized for mechanics
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The asymmetric common-coils magnet was designed with a intra-beam distance of
300 mm, 50 mm bore, yoke diameter of 740 mm and 30 mm thick stainless steel shell.

The magnet has 4 different types of coils (layer 1, layer 2, layer 3,4 and layer 5,6) and
12 coils in total (for a double aperture magnet). The coils are placed in the stress-
management formers. The preload is transferred towards the inner-most layers
through the ribs.

The massive iron pole, combined with the asymmetric concept, helps on the
balance vertical force balance.

The load, due to Lorentz forces, is distributed between and shell,
which limits the thickness of the shell.

The magnet concept is based on bladder & keys technology for room
temperature preload. The structure is loaded, but thanks to the stress-
management formers, the coil stress after loading and after cooling is < 40 MPa.

D. Araujo Page 10
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Layers 1 and 2 with 21 x 1.1 mm RRP® 162/169 strand cu/n_Cu 0.9 and
layers 3 to 6 with 18 x 1.0 mm RRP® 132/169 strand cu/n_Cu 1.3.

Field quality is < 15 units spread between injection and 14 T nominal
field operation and < 15 units at nominal (to be further optimized after

B

decision on LF cable).

S SMACC: Magnet Parameters

lc @4.2 K
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experimental data, fitting and load lines

parameter value

Op. temperature T, 4.2 K

Op. current lop 11.48 kA

Central field B, 13.98 T

Peak field w/sf B, 14.68 T

Eng. margin 10 %

Inductance L 41 mH/m

Magnetic energy  E,,, 2.7 MJ/m
D. Araujo
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Pre-load with 0.5 mm interference on the keys.
Low-stress on coils after loading and
Cooling-down: 37 MPa

Peak of stress on the low-field side of layers

All magnet components respect material limits ’ » w e ® = ROXEw
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Re-use of tooling for several coils  LF Cable Outer Coils:
Optimized Electrical order for CLIQ layers 5, 6, 11, 12
protection

Same side Magnet & CLIQ leads
Study for 15 m long magnet

LF Cable Intermediate Coils:

layers 3, 4,9, 10

HF Cable Inner Coils: layers 1, 7
HF Cable Inner Coils: layers 2, 8

Intra-layer splice: layers 1-2 and 7-8
CLIQ optimization study

* 25 CLIQ configurations studied
¢ 5 CLIQ unit types studied Intra-layer splice: layers 4-5 and 10-11

* Optimized coil electrical order |
" 12 9 7 8 11 10 5 4 1 2 6 3
CLIQ Unit

E. Ravaioli & D. M. Araujo Page 13

Intra-layer splice: layers 3-6 and 9-12
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WV w1 SMACC: Protection 2/2
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One 50 mF, 2 kV CLIQ unit can effectively protect a 15 m long SMACC magnet.
Further optimization of the quench protection system in progress. gm LEDET
All simulations performed with the STEAM-LEDET program.
urrents in the system Sim #356. Coil electrical order: [12,9, 7, 8, 11, 10, 5, 4, 1, 2, 6, 3]
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~5 kA ~300 K ~1250 V

E. Ravaioli Page 14
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Progress on the roadmap:
BOX impregnated with filled-wax -> no training
Compression BOX impregnated with filled-wax -> degradation behaviour similar to epoxy
BigBOX, wax impregnated multi-turn coil under background field -> no training
Subscale Stress-Managed Common-Coils (LTS) -> engineering design finalized, procuring the parts

Introduction of
Stress-Managed Common-Coils Concept
Asymmetric Common-Coils Concept

Interesting SMACC features
Simple geometry (no pole coils) for fully automated coil winding and reduced number of manufacturing steps
Splices on the low-field region -> facilitating grading
Possibly easily implementation of Reaction & Winding technique
Possibly lower-margin operation due to the low stress on high-field regions
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Stainless-steel 316-L components

Von-Mises
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Magnetic yoke and pole

Von-Mises
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Magnetic yoke and pole

S1
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=)= Displacement at nominal field operation

ANSYS 2021 R1
Build 21.1
NODAL SOLUTION
STEP=3

SUB =1

TIME=3

***** UX (AVG)
RSYS=0
PowerGraphics
EFACET=1
AVRES=Mat
DMX =.648E-03
””” SMN =-.261E-03

LJEDIL

-.158E-03
-.107E-03
-.556E-04
-414E-05
473E-04
.988E-04
.150E-03
.202E-03

H0CCREENN

Nominal field

0.2 mm

Page 19



PAUL SCHERRER INSTITUT

= SM-CT vs SM-CC 1/2: Cable Properties

* High-field cable (common coil first layer and pole coils) ¢ Low-field cable (common coil third and fourth

* Low-field cable (common coil second layer)

28 strands layer)

1 mm strand RRP-150/169 — 30 strands

Cooper% = 48% — 0.7 mm strand RRP-108/127

Width 14.7 mm and Thickness of 1.8 mm — Cooper% =53%

Insulation thickness 155 um — Width 11.02 mm and Thickness of 1.27 mm

Insulation thickness 155 um
40 strands

0.7 mm strand RRP-108/127

Cooper% =53%

Width 14.7 mm and Thickness of 1.27 mm

Insulation thickness 155 um

D. Martins Araujo Page 20
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BS SM-CT vs SM-CC 1/2: Geometry Comparison

* Stress-Managed Cosine-Theta * Stress-Managed Common coils

48

SM-CT 28 1355 mm? (+ 13.1%)

SM-CC 19.5 53.5 1198 mm?
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https://chart.ch/chart-projects/
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