

High Field Magnets

WP3.1 - Nb3Sn robust performance double aperture 12T cosO dipole models

O1.11.2023

Lucie Baudin on behalf of the 12 T project team

01 November 2023

Content

- Requirements
- Guidelines and Objectives
- Conceptual Design
- First results and path forward

Requirements

Scope of the 12 T VE program is the design, manufacture, and qualification of a value-engineered, accelerator-fit, 12-T, Nb3Sn dipole magnet model, by 2026.

Coils made from Nb3Sn Rutherford cables with a cosO layout and two layers

The solutions for a short dipole must be scalable to a long one Magnetic length of ~1.2 m for short models, ~5 m and 15 m for the long versions

Step by Step approach:

Evaluation of possible diverse solutions. Choice of most promising options and final analysis.

Test campaign with mock-ups to understand and control the coil stress distribution during the magnet lifecycle. Confirmation of the FEM computation.

Construction of a coil test device to validate single coils in a 'mirror' configuration and two coils in a single aperture structure.

Only when we obtain satisfactory coils, we can go to a double aperture dipole

12T Design Goals and Guidelines

Minimize coil compression at all stages of magnet lifecycle

Protect the coils against risk of overstress due to accidental loads → work with close cavity A soft component deforms until the rigid cavity closes. Once the cavity is closed, the load is handled by the cavity, the soft component do not further deform

Decrease influence of manufacturing **tolerances** on magnet performances

Limit the number of components to avoid piling-up tolerances

Decrease the degree of redundancy in the structure to enable better control of contact force distribution between parts

Stress at room temperature < 120 MPa **Stress at cold < 130 MPa** Pole – Coil contact closed at cold

Conceptual Design

Robust, intrinsically safe mechanical structures

Presented at the Conceptual Design Review at CERN on 5 July 2023.

Separation of inner and outer layer coils

Inner and outer layers are winded and reacted separately and placed on top of each other with an interlayer

Mechanical kinetics:

less statically indeterminate, the coils can slightly move with respect to each other **peaks of stresses** (possibly leading to cracks, *see Diego's presentation*) **are reduced**

Cooling:

possibility of using the coil interlayer to bring helium closer to the coils

Winding:

simpler winding

no need of primer in the layers

Coil production:

inspection of outer layer of inner layer coil at each manufacturing step

in case of accident, only the concerned layer cable is discarded and not the total length of the pole

Winding/tolerances:

two systems of molds (for the 1st and 2nd layers) <u>Coil production:</u> need of a coil splice

Collared coils

For reasons of **time and resources** we concentrate on the collared coils

Thin stainless-steel collars:

Thin collars will result in important springback

Average coil prestress at the contact with the collar pole during the assembly and energization

We want to keep moderate coil prestress during collaring

We must **recover pre-stress** in the following assembly steps and during cool down

Horizontal iron yoke gap structure

Enable coil pre-compression increase during cool down

Stainless steel shell

Enable longitudinal preload via bullet cage

Horizontal iron yoke gap structure

Enable coil pre-compression increase during cool down

Stainless steel shell

Enable longitudinal preload via bullet cage

Aluminium stoppers

Protect the coils against risk of overstress due to accidental loads during assembly process

Decrease influence of manufacturing tolerances on magnet performances

Horizontal iron yoke gap structure

Enable coil pre-compression increase during cool down

Stainless steel shell

Enable longitudinal preload via bullet cage

Aluminium stoppers

Protect the coils against **risk of overstress** due to **accidental loads during assembly process** Decrease influence of **manufacturing tolerances** on **magnet performances Increase pre-compression** of the coil, at cold

Close horizontal gap at cold

Protect the coils against risk of overstress due to accidental loads during operation

A yoke which is one piece horizontally provides stiffness against the electromagnetic forces

Minimize retaining structure deformations as these can generate extra coil deformations in the horizontal midplane

First results and path forward

Magnetic design

Choice of conductor motivated by the availability of strands and cable

Parameter	Unit	Value			
Strand					
Strand type		MQXF			
Strand layout		RRP 108/127			
Strand diameter	mm	0.85			
Non-Cu Jc	A/mm ²	2087 at 4.4 K and 13.54 T			
	С	able			
Number of strands		40			
Pitch direction		Left			
Cable mid	mm	1 525 + 0 010			
thickness		1.525 ± 0.010			
Cable width	mm	18.15 ± 0.05			
Cable Keystone	0	0.40 ± 0.1			
Pitch	mm	109 ± 3			
Core material		316L			
Core thickness	μm	25			
Core width	mm	12			
Cabling Ic		~ E%			
degradation		< 570			
RRR		150			

Cable characteristics for a 12 T dipole magnet

Aperture	mm	50	56
Cable	#str x mm	40x0.85	40x0.85
Number of blocks		6	6
Number of turns		37	41
Coil outer radius	mm	62.5	65.5
Current	kA	17.750	17.110
Bore field	т	12.01	12.00
Peak field	т	12.42	12.33
Load line	%	83.62	82.48
Temp. margin	К	4.1	4.3
b3	units	-0.4	-0.1
b5	units	0.0	0.0
b7	units	15.8	5.6
b9	units	2.5	0.3
Diff. inductance	mH/m	2.641	3.128
Stored energy	MJ/m	0.451	0.508

Design of the 2D cross section geometry

Protection must be evaluated

Baseline to start working on mock-ups, tooling: 50 mm diameter aperture Winding tests are required

tooling

Extensive winding tests to optimize the geometry of the end spacers, tooling and the winding parameters

First trials with a 50 mm aperture

3D rapid prototyping allows us a quick and low-cost way to compute, manufacture and test end spacers, **fast feedback loop**

Variants characterized by quantifiable parameters: torque, soft bending, hard bending

Benchmarked against Roxie computations

The parameters to be optimized:

- cable tension
- angle and external torque
- tooling
- geometry of the spacer head

Mechanical design and simulations

The FEM shows that, with the baseline design, the structure, is able to:

- Minimize coil compression
- Provide rigidity against the EM forces
- Recover pole prestress after springback

Test campaign with mock-ups

Understand and control the coil stress distribution during magnet lifecycle

inner and outer layers reacted and impregnated separately

As **intermediate step**, mock-up will be done by taking advantage of the **available resources**, non-conforming straight sections of **11T's coils**. Inner and outer layers have been reacted and impregnated separately.

> Courtesy of O. Id Bahmane (CERN/EN-MME)

2 phases **test campaign**: Collaring mock-up

Design

Evaluate the influence of manufacturing tolerances in the pre-compression of the coils

The measurement gather during this sensitivity study will be benchmarked against FEM

Test campaign with mock-ups

Knowledge of coil material properties

Nb3Sn coil characteristics – Non-linear Young Modulus

Tests and measurement done on 11T coil

FEM mechanical simulations are now carried out using this curve (or bi-linear approximation).

Extensive measurement campaign planned for 12T

measurement

VS

FEM

Magnets. A. Bertarelli and all. MT28

Design of suitable production tools

Objectives for a robust design (tooling and process) :

- minimize of coil handling during fabrication (minimize human errors)
- remove of the ceramic binder (see Roland's presentation)
- strong attention to the scaling up in length

Design baseline: CERN contribution on FalconD Project (see Stefania's presentation)

Main idea:

The **winding mandrel** becomes **part of heat treatment mould** no need to move the stand-alone coil from the winding machine to the heat treatment mould

Coil production steps tooling final design for 12 T VE :

- winding & press cycle
- reaction heat treatment
- impregnation

Internal Splice

- Nb₃Sn - Nb₃Sn splice - Nb₃Sn - Nb-Ti splice

Challenges:

- Support the brittle Nb3Sn cable
- Splicing in the **limited space** of the pole region
- Splice in the high field region

Mechanical design for the mould for the internal splice completed

First iteration with 3D printed plastic parts

First soldering tests done. Results under analysis

External Splice

- Nb₃Sn Nb-Ti splice
- Nb-Ti Nb-Ti splice

Challenges:

- Support the brittle Nb3Sn cable
- **Two layer-jumps** to be accommodated into the coil pack

IN PROGRESS OBJECTIVE Q1-Q2 2024

• **Double-layer jump** for the inner layer cable

Modular coil moulds and assembly tooling are designed to realize the two different splices

Control the reproducibility of coil fabrication procedures

Refurbishment of the E-modulus press in 927 Measured data used to define procedure for the **pre-compression** assembly on the coil **during collaring**

Test coil structure under production

Construction of a coil test device to validate single coils in a 'mirror' configuration

Step by step approach:

Validation of coil design and manufacture before going to final dipole configuration and production

Fast feedback loop on the coil fabrication

Part of the technology development program as between a test structure (see Diego's presentation)

Mid-plane pressure sensors

Courtesy of L.Dassa, N.Vejnovic (CERN/EN-MME)

IN PROGRESS **OBJECTIVE Q2 2024**

Conclusions and perspectives

Scope of the 12 T VE program is the design, manufacture, and qualification of a value-engineered, accelerator-fit, 12-T, Nb3Sn dipole magnet model, by 2026.

Robust, intrinsically safe structures Knowledge of coil material properties Rigorous procedures and suitable assembly tools

Thanks for your attention

Thanks to

CERN/TE-MSC-SMT section and

12T project team members

D.Perini, C. Abad Cabrera, L.Baudin, T. Boutboul, L.Fiscarelli, A.Foussat, A.Haziot, S.Hopkins, V.Ilardi, K.Lazaridou, N.Lusa, R.Piccin, P.Wachal, F.Mangiarotti, M.Masci, D.Paudel, S.Russenschuck, M.Wozniak

home.cern

Iron yoke stiffness with the b&k version

01 November 2023

Curtesy of G.Vernassa

Material models

Material	Young's modulus [GPa]	Poisson's ratio [-]	CTE [mm/m/ΔT]	
Copper	100/110	0.3	3.37	
Kapton	1.9/2.7	0.3	4.37	
Stainless Steel	191/210	0.28	2.8	
Kawasaki	186/204	0.28	1.8	
Iron	203/225	0.28	2.0	
Aluminium	72/79	0.3	4.2	

Calculated Stiffness

- Virgin Loading (RT and 77K): 14 ±2 GPa
- RT Loading/unloading phase: 31 ±3 GPa
- 77K Loading/unloading phase: 39 ±3 GPa

Orthotropic CTE

Direction	ΔL/L _o at 1.9 K * 1000 Inner/outer layer	σ(ΔL/L ₀) at 1.9 K * 1000 Inner/outer layer			
Longitudinal	-2.98	0.06			
Radial	-1.61 / -1.75	0.04 / 0.03			
Azimuthal	-2.55 / - 3.77	0.38 / 0.47			

CERN-THESIS-2022-274 (Stefan Höll)

Displacement 12T

Design goals:

Stress at room temperature < 120 MPa

Stress at cold < 130 MPa

Pole – Coil contact closed at cold

01 November 2023

Design goal: Achieved

01 November 2023

HFM annual Meeting 2023 L. Baudin TE-MSC-SMT

(AVG)

Stress – AZ

Pole pressure

01 November 2023

Displacements – closed gap

	1		2		3		4	
	Ux	Uy	Ux	Uy	Ux	Uy	Ux	Uy
9	64	76.4	-6.2	-106.3	30.4	0	0	-104.8
	-392	-29.2	-33.1	-22.8	-689.2	0	0	-636.2
4	127.9	-26.9	-7.6	-73.6	109.6	0	0	-79.6

01 November 2023