

HFM annual meeting 2023 Nb₃Sn single aperture cosΘ bladder & keys 12 T FALCON D dipole model ¶

Authors: Stefania Farinon, Massimo Sorbi, N.Sala, R.Valente on behalf on the INFN collaboration

Date: November 1st, 2023

FalconD 12 T dipole

- This program is being developed in accordance with the CERN/INFN KE 4102 agreement.
- A recent amendment was issued to revise the project's scope and schedule.
- The project involves the development and construction of a short model Nb₃Sn dipole with the following specifications:
 - Single aperture with an inner bore of 50 mm.
 - 2-layer cos-theta coil, providing a bore field of 12 T at 1.9 K.
 - Mechanical assembly using bladder & key technology.
 - The total coil length is 1.5 m.

FalconD 12 T dipole

- The FalconD project includes the following activities:
 - At <u>ASG-Superconductors</u>, the manufacturing of:
 - 1 dummy pole wound with copper cable
 - 2 practice poles wound with Nb₃Sn cable
 - 3 + 2 poles wound with Nb₃Sn cable for the single aperture dipole
 - At <u>INFN-LASA Lab</u>, the assembly and testing @ 4.2 K of the FalconD magnet

CERN supplies the magnet components, including the cable, spacers, and other necessary items)

ASG Superconductors is responsible for manufacturing the **coils**, which include 7 Nb₃Sn coils and 1 dummy copper coil.

INFN is responsible of the magnet design, **assembly**, and preliminary **test** @ 4.2 K at LASA laboratory in Milan.

Istituto Nazionale di Fisica Nucleare

01.11.2023

Winding test @ CERN

• 3 winding test campaigns were conducted at CERN. These tests were instrumental in optimizing the cabling parameters and refining the design of the end spacers.

Test performed at CERN building 927

Stefania Farinon

Mechanical design

- The 2D mechanical structure design has been recently revised to incorporate the most current material properties obtained from CERN measurements, and it has been reoptimized accordingly.
- Efforts are underway to update the 3D mechanical design which will include the integration of the newly optimized 2D cross-section.

Courtesy of N.Sala INFN Genova

FALCOND

Istituto Nazionale di Fisica Nucleare

Mechanical structure

- The mechanical structure is designed to protect coils:
 - soft to assemble @ RT (absorb overstress @ RT)
 - hard to deform @ 1.9 K (lower stress in coils @ 1.9 K)

01.11.2023

Stefania Farinon

Design status

The Technical Design Report (2021) has been reviewed at CERN by a panel of experts in 2022

- Electromagnetic design completed 2D and 3D model
- Quench protection analysis done
 energy extraction system
- Mechanical design concept finalized, ready to be transferred to ASG for engineering 3D model to be finalized with the help of ASG

ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezioni di Genova e Milano

INFN/Code-19/001 14 Ottobre 2021

TECHNICAL DESIGN REPORT OF THE FalconD Nb₃Sn COS-THETA DIPOLE MODEL FOR THE FCC-hh AT CERN

 Sergio Burioli¹, Barbara Caiffi¹, Ernesto De Matteis², Pasquale Fabbricatore¹, Stefania Farinon¹, Friedrich Lackner³, Filippo Levi², Samuele Mariotto²,
 Riccardo Musenich¹, Alessandra Pampaloni¹, Marco Prioli², Massimo Sorbi², Marco Statera², Davide Tommasini³, Riccardo Umberto Valente²
 ¹)INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova, Italy
 ²)INFN LASA, Viale F.lli Cervi 201, I-20054 Segrate (MI), Italy
 ³)CERN, CH-1211 Geneva 23, Switzerland

FalconD deliverables

HFM Programme schedule

Programme Leader: A. Siemko

Progress on : 20.09.2023

Tasks, deliv	erables	TASK/DELIVERABLE DESCRIPTION	Ass ign ed	PLAN START	PLAN END	CERN monetary contribution (kEUR)	Progress	Status	Comment on status
D1.2		Final desing review		01/09/2018	01/04/2023	150			
	D1.3	Confirmation of the schedule		01/09/2018	01/06/2023	o	100%	Completed	
	D1.4	Heat treatment and vacuum pressure impregnation tool ready		01/09/2018	01/09/2023	100	60%	In progress	HT furnace installed and ready, vacuum impregnation tool in procurement (ASG placed the order for the tooling (winding, curing, etc.) in May, the mandrel delivery is planned for November 23)
	D1.5	Approval of manufacturing drawings of cold mass components (CERN, INFN, Industry)		01/09/2018	01/11/2023	100	20%	In progress	Drawings of Cu wedges sent for production, drawings of the end spacers ready
	D2.1	Magnet assembly Production Readiness Review		01/09/2018	01/12/2023	100	0%	Not started	
	D2.2	Acceptance of the 3 magnet poles (one spare)		01/09/2018	01/12/2024	100	0%	Not started	
	D2.3	Magnet assembled keys installed		01/09/2018	01/05/2025	100	0%	Not started	
	D2.4	Magnet acceptance CERN, INFN		01/09/2018	01/06/2025	150	0%	Not started	
	D2.5	Final report		01/09/2018	01/12/2025	100	0%	Not started	

FalconD tooling status

- The HT furnace has been procured by INFN and is now ready to be used.
- ASG has placed the order for the design and construction of all the necessary equipment required for coil production, (with the exception of the oven and winding machine, which are already available) to the Italian company Fantini SpA.
- The mandrel for the first winding trials is expected to be available in late autumn 2023.

01.11.2023

• The fabrication area is ready for use.

HFM

High Field Magnets

FalconD drawing status

- Drawings of Cu wedges sent to CERN for production on June 2023 (order of full production placed)
- Drawings of end spacers sent to CERN for production on Sept. 2023 (order of 1st set ready to be placed)
- It has been decided to wind the 1st (dummy) coil with the end spacers that have been optimized by INFN. The winding trial at ASG could potentially lead to a final refinement, which will then be incorporated into the first Nb₃Sn coil.

ASG schedule

Equipment procurement

 winding 	Dec 23
• curing	Mar 24
HT and impregnation	May 24
Handling	Dec 23
Winding tests	Nov 23 to Jan 24
1 st dummy coil	Feb 23 to June 24

Next future Plans

Winding tests in the industry (December 2023) Following the preliminary winding test at CERN Mockup tests at INFN Genova (early 2024) Mechanical model and material properties validation

30 kA power supply and lines to be completely renewed with fast IGBT switch at LASA laboratory

Stefania Farinon

Conclusions

- Design activities are mostly completed
- The manufacturing phase is going to start in the industry
 - INFN and ASG are currently in the process of procuring the required equipment
- All the fabrication steps are defined
 - To be tested through trials in the industry and mockups at INFN Genova.

