ETHzürich **D** MATL.

Determination of deformation via image-based measurements and design of epoxy systems for Nb₃Sn Rutherford cables

Pascal Studer¹, Xiang Kong¹, Theo A. Tervoort¹, Andre Brem², Douglas Martin Araujo², Michael Daly², Bernhard Auchmann^{2,3}

- 1. Department of Materials, ETH Zürich, Switzerland
- 2. Paul Scherrer Institution (PSI), Villigen, Switzerland
- 3. CERN, Geneva, Switzerland

01.11.2023

HFM annual meeting 2023 (30 Oct – 2 Nov)

Swiss Accelerator Research and Technology

Introduction

Future Circular Collider (FCC)

CHART project

Swiss Accelerator Research and Technology

CERN website

xiang.kong@mat.ethz.ch

Ferracin et al. 2015 Transactions on Applied Superconductivity (Volume: 26, Issue: 4, June 2016) Daly et al. 2018 Transactions on Applied Superconductivity (Volume: 28, Issue: 3, April 2018)

Multiscale structure \rightarrow heterogeneous

MagRes: Development of optimized resin system for SC magnet coil production

Introduction

SOFTMAT

The toughness paradox:

→ For non-stress managed magnets, strength
& toughness are needed

→ However, high toughness means more heat dissipation at the crack tip and thus might *also promote quenching, even in the absence of macroscopic cracks*

 \rightarrow Particles can improve toughness even further by localized yielding

Epoxy resin Plastic zone

Ultimate goal:

- Gadolinium nanoparticles with anomalous high c_p at 4 K
- these particles initiate yielding, increasing the fracture toughness, while at the same time absorbing the heat that develops due to the plastic deformation.

Plain epoxy resin systems

• We use our in-house developed system and compare it to a standard epoxy resin

Base resin Just DGEBA+MPD

SOFTMAT

Results

1.5º10

000

SOFTMAT

*: Size of plastic zone gets very large with respect to sample size.

Criterion for valid K_{Ic}

$$b, a, h - a \ge 2.5 \left(\frac{K_I}{\sigma_y}\right)^2$$

Results

SOFTMAT

- Transmission electron microscopy
- 7.5 vol. % SiO₂, Butylamine sample (excluded from study due to bubbles) 60 nm section

Particles are not agglomerated and **well dispersed**

Good dispersion is also observed on samples with decreased toughness

SEM of crack surfaces

Localized yielding! •

5 vol.% particles, Butylamine/DGEBA/MPD matrix

RT

ETH zürich

pascal.studer@ethz.ch

Conclusion

SOFTMAT

- We engineered epoxy systems with tuned Tg and very high toughness
- Particles improved toughness for our systems, evidenced by localized yielding
- The reason for this huge improvement might be lower particle-matrix adhesion

MagComp: Mechanical Modelling and failure identification of impregnated Nb₃Sn Rutherford cable stacks

xiang.kong@mat.ethz.ch

Bibliography

'Strain - stress' identification

Fichera et al. 2019

Scheuerlein et al. 2019 Supercond. Sci. Technol. 32 (2019) 045011 Vallone et al. 2018 Transactions on Applied Superconductivity (Volume: 28, Issue: 4, June 2018) Fichera et al. 2019 Transactions on Applied Superconductivity (Volume: 29, Issue: 7, October 2019)

1-Nov-2023 12

Image analysis: optical extensometer

Digital image correlation (DIC)

Measure local displacement by *undeformed markers* at cubic level (15 mm)

Courtesy of Tancogne-Dejean @MAVT-Mohr's lab

1440x1080 px², 17.1 μ m/px

Image analysis: optical extensometer

Displacement-controlled: $10 \mu m/s \sim 1 kN/s$ Image capture rate: $1 s^{-1}$ (273 images)

Displacement fields at low force (20 MPa)

ETH zürich

xiang.kong@mat.ethz.ch

DIC results up to 150MPa

The strain values depend on 'mesh-equivalent' parameters (subset, step)

ETH zürich

From RT to LN₂

Still developing:➤ Liquid boiling affects image capture

Conclusion & Outlook

- An in situ full-field deformation measurement is performed at the level of cable stacks via imagebased analyses
- Compressive strain localization can be experimentally measured at insulation layer

- The approach will be applied at cryogenic temperature
- The deformation measurement can be compared with the numerical results at multiscale

Strand-like Azulejo (ceramic tilework) in Porto

Any questions?

Thanks to our collaborators

ETH Zurich

- □ Prof. Theo A. Tervoort, Prof. Jan Vermant
- □ Soft Matter group

PSI Villigen, CHART

Bernhard Auchmann, André Brém, Douglas Martin Araujo, Micheal Daly

CERN Meyrin, Polymer Lab

Roland Piccin, Christian Scheuerlein, Bharti
Verma, Mauro Taborelli, Stefano Sgobba, Daria
Ternova, Sebastian Clément

Results

Compressive Yield behaviour •

- Compliance corrected - True stress (assuming constant volume)

pascal.studer@ethz.ch

Particle tracking

Trackpy: python package for particle tracking

Strand core as natural mark (d~10 pixels)

Trajectory of each strand-core

- Most (380/400) strands are tracked during the loading
- There is a horizontal rigid body motion

160 140 120

Fields comparison

Strand-based mesh

There is a good agreement of displacement fields between two approaches.

Strain field

-1.5%

 ε_{yy}

Deformation gradient F

$$\mathbf{F} = \frac{d\mathbf{U}}{d\mathbf{X}} + \mathbf{I} = \left[\frac{dU_x}{dx} + 1, \frac{dU_x}{dy}; \frac{dU_y}{dx}, \frac{dU_y}{dx} + 1\right]$$

Green-Lagrangian strain **E**

$$\mathbf{E} = \frac{1}{2} (\mathbf{F}^{\mathrm{T}} \mathbf{F} - \mathbf{I})$$

- Conclusion
- Strain localization at inter-stack and intra-stack
- □ Local tensile state (red) exists

Machines with different measurements

Zwick050@D496

Global correction

Zwick100@D467

Global correction MacroExtenso LaserExtenso DIC laser

Instron250@MAVT-Mohr

ETH zürich

xiang.kong@mat.ethz.ch

Ongoing work @Z100-D467

Correction

✤ Due to less stiff of Zwick-50 machine, the unloaddisplacement (hysteresis loop?) is not corrected properly.

