WP4.5 - Quench detection, protection and diagnostic methods for Nb₃Sn and HTS high-field magnets - CERN

HFM annual meeting 2023

HFM High Field Magnets

30 October 2023 to 2 November 2023 CERN Mariusz Wozniak

1st November 2023

Quench Protection – Goals and increasing complexity

Quench protection: managing the release of the stored magnetic energy in a way that prevents/mitigates any potential damage to the magnet, its circuitry, and surrounding components.

With increasing magnetic field, quench protection becomes more important and more complex:

- Nb-Ti -> voltages and temperature (in most cases)
- Nb₃Sn -> voltages, temperatures, and conductor level stresses
- HTS -> voltages, temperatures, conductor level stress and often superconductor level stress and for NI coils, a potential for a force density redistribution

Quench protection should be an integral part of the design of a superconducting magnet, affecting the design of the conductor (e.g. Cu/SC ratio, insulation) and coil, the choice of operating current, etc.

Proper quench protection analysis of high-field magnets requires advanced computer tools, and is a multidisciplinary team effort!

Outline

	Detection Technology	-{	 Quench Detection Through Electrical Stimuli
	Protection Technology		E-CLIQ (External CLIQ) Development Progress S-CLIQ (Secondary CLIQ) Simulations ESC (Energy Shift with Coupling) Concept CD (Capacitive Discharge) Protection for HTS EE (Energy Extraction) with energy recuperation
STEAT	Transient Simulations		 12T VE Quench Simulation study New tool for 2D FE quench simulations AC loss LTS – 3D AC loss LTS – 2D reduced order 3D FE Simulations of HTS pancakes 3D FE Simulations - High Performance Computing 2D FD Simulations of HTS pancakes stacks 3D CCT Quench Co-simulations Material properties in Simulations

Quench Detection Through Electrical Stimuli

Concept:

 QD and electrical quality assurance based on magnet's response to electrical stimuli signal.

Current Status:

- Successfully measured impedance of powered superconducting magnet circuit.
- Measured 5 Quenching magnet (SMC).
- **Upcoming Tasks**
- Analyze quench data and look for Quench precursors/indicators.
- Upgrade measurement hardware for better low noise performance.
- Perform more quench measurements possibly on different magnets.

01/11/2023

Quench Detection Through Electrical Stimuli

Key Results:

We tested the system on a D2 prototype magnet

- The magnet was measured when unpowered and powered (50 A)
- Impedance estimate based on 1.28 S (2¹⁹ samples) of data acquisition.
- Results show good correspondence between the powered, unpowered, and reference measurements.
- Impedance estimates based on shorter measurement windows need additional work

Enabling Real-Time Impedance Measurements of Operational Superconducting Circuits of Accelerator Magnets

M. B. B. Christensen ^{01, 2}, M. J. Bednarek ⁰¹, R. Denz ⁰¹, P. Koch ⁰², J. Ludwin ^{01, 3}, F. Rodriguez-Mateos¹, T. Podzorny ⁰¹, E. Ravaioli ⁰¹, J. Steckert ⁰¹, A. Verweij ⁰¹, M. Wozniak ⁰¹, and J. Østergaard ⁰²

Publication in proceedings of MT28 under review

01/11/2023

Outline

Detection Technology

Protection Technology

Transient **Simulations**

Quench Detection Through Electrical Stimuli

- E-CLIQ (External CLIQ) Development Progress
- S-CLIQ (Secondary CLIQ) Simulations
- ESC (Energy Shift with Coupling) Concept
- CD (Capacitive Discharge) Protection for HTS
- EE (Energy Extraction) with energy recuperation
- 12T VE Quench Simulation study
- New tool for 2D FE quench simulations
- AC loss LTS 3D
- AC loss LTS 2D reduced order
- 3D FE Simulations of HTS pancakes
- 3D FE Simulations High Performance Computing
- 2D FD Simulations of HTS pancakes stacks
- 3D CCT Quench Co-simulations
- Material properties in Simulations

External CLIQ (E-CLIQ)

New developments:

ligh Field Magnets

- Further matured modeling tools to design and predict the behavior of the E-CLIQ coils and the expected loss in the conductor.
- E-CLIQ demonstration test on a Nb₃Sn cable sample preparation.
- Test will be performed in GHe in cryolab.

WP4.5-T5-D5

• New E-CLIQ coils designed and produced for test in combination with a SMC. Integration discussions in progress.

Secondary CLIQ (S-CLIQ)

- ✓ As fast as CLIQ or faster
- ✓ Extracts part of the magnet energy
- ✓ Electrically insulated from coil
- ✓ Easier redundancy

[1] M. Mentink and E. Ravaioli, SuST, 2020

auxiliary coil 1

01/11/2023

Current [A]

ESC (Energy Shift with Coupling)

- ✓ As fast as CLIQ or faster
- ✓ Extracts part of the magnet energy
- ✓ Sudden current drop → lower ohmic loss
- ✓ Electrically insulated from coil
- ✓ Easier redundancy

https://indico.cern.ch/event/1321217/

auxiliary coil 1

Capacitor Discharge Quench Protection

for Stacks of HTS NI Pancake Coils

Quench Protection Concept:

ligh Field Magnets

- Upon quench detection, a charged capacitor bank is discharged into the NI coils.
- High current pulse generates heat in the turn-to-turn resistive connections.
- Fast, potentially very effective, no additional internal components required.

Cold

R_{conductor}

Duench-back circuit

PSU

HTS

Energy extraction (EE) with energy recuperation

- A new idea from the recent years proposed an implementation of energy recuperation function in energy extraction (EE) systems
- Principle
 - 1st step: In case of quench or trip, the magnetic stored energy from SC circuit is saved in the storage unit (battery/capacitor) instead of being dumped as thermal losses in a resistor
 - 2nd step: The energy from the storage unit is injected in the network grid or used as a DC source
- A study on the following aspects is foreseen in the coming years:
 - Profitability of such functionality
 - Intermediate storage and technology selection
 - Reliability and circuit protection
 - Design and mock-up manufacturing

• In the light of future and bigger accelerators construction involving huge amount of stored energy, such recuperation function becomes a must.

01/11/2023

Courtesy of Bozhidar Panev

Outline

Detection Technology

Protection Technology

Transient **Simulations**

- Quench Detection Through Electrical Stimuli
- E-CLIQ (External CLIQ) Development Progress
- S-CLIQ (Secondary CLIQ) Simulations
- ESC (Energy Shift with Coupling) Concept
- CD (Capacitive Discharge) Protection for HTS
- EE (Energy Extraction) with energy recuperation
- 12T VE Quench Simulation study
- New tool for 2D FE quench simulations
- AC loss LTS 3D
- AC loss LTS 2D reduced order
- 3D FE Simulations of HTS pancakes
- 3D FE Simulations High Performance Computing
- 2D FD Simulations of HTS pancakes stacks
- 3D CCT Quench Co-simulations
- Material properties in Simulations

12T VE Quench Protection studies – initial review

Magnet Length	Heaters application	Glued			Miniswap			Impregnated				
	Magnet design	50mm 5b	50mm 6b	56mm 6b	50mm 5b	50mm 6b	56mm 6b	50mm 5b	50mm 6b	56mm 6b		
	Protection case	Maximum adiabatic hot spot temperature (K)										
Short 1.7 m	outer QH only	354	360	350	327	332	323	304	308	301		
	inner QH only	311	313	307	296	299	293	284	286	281		
	outer & Inner QH	276	278	271	260	262	255	245	247	241		
	CLIQ only	262	264	263	262	264	263	262	264	263		
	inner QH & CLIQ	258	258	255	257	257	254	255	255	252		
	outer QH & CLIQ	245	247	243	240	243	239	235	237	234		
	o. & i. QH & CLIQ	242	242	238	237	237	233	231	230	226		
Long 14.3 m	outer QH only	354	360	350	327	332	323	304	308	301		
	inner QH only	311	313	307	296	299	293	284	286	281		
	outer & inner QH	276	278	271	260	262	255	245	247	241		
	CLIQ only	262	264	263	262	264	263	262	264	263		
	inner QH & CLIQ	258	258	255	257	257	254	255	255	252		
	outer QH & CLIQ	245	247	243	240	243	239	235	237	234		
	o. & i. QH & CLIQ	242	242	238	237	237	233	231	230	226		

We have parametric quench protection software. Looking at many options is relatively low effort for us.

> Thanks for great collaboration to the 12 T VE magnet team.

50 mm, 5 blocks 0.05 0.04 0.02 Ē 0.00

HFM

Jigh Field Magnets

50 mm, 6 blocks

Magnet designs Courtesy of L. Fiscarelli

01/11/2023

FiQuS Multipole magnets magnetic and thermal simulations

A 3D FEM thermo-electro-magnetic model to simulate twisted composite superconductors in transient regimes

HFM

01/11/2023

A 3D FEM thermo-electro-magnetic model to simulate twisted composite superconductors in transient regimes

An example: **Copper Current** distribution (animations on the right) and **Overall** Losses (plots on the left) in a MQXF Nb₃Sn wire exposed to an increasing background field Field (I) at 1.9 K Background

HFM High Field Magnets

WP4.5-T5-D4

01/11/2023

Courtesy of Bernardo Bordini

HFM WP4.5 - Mariusz Wozniak

W/cm³

Reduced Order Modelling of Composite Wires and Cables

- **Objective**: describe the response of composite superconductors in view of their homogenization,
 - AC loss, magnetization, inductance.
- We propose a 2D model:
 - One problem with in-plane currents,
 - One problem with out-of-plane currents,
 - Coupling via circuit equations.

• Example - AC loss w.r.t. field and frequency:

WP4.5-T5-D4

01/11/2023

Courtesy of J. Dular, F. Magnus

HFM WP4.5 – Mariusz Wozniak

3D FE Simulations of HTS No-Insulation Pancake Coils

- Coupled 3D magneto-thermal models resolving all turns
 - Using specialized thin shell approximations

E. Schnaubelt et al., "Magneto-Thermal Thin Shell Approximation for 3D Finite Element Analysis of No-Insulation Coils". In: arXiv:2310.03138

01/11/2023

Courtesy of Sina Atalay

HPC Methods for Parallel FE Simulations

- Parallelization in Time
 - Parallelization in Space in progress

Parallel-in-time integration of central field of no-insulation HTS pancake coil

E. Schnaubelt et al., "Parallel-in-Time Integration of Transients in Superconducting Accelerator Magnets". In: 93rd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2023). Dresden, May 30, 2023.

01/11/2023

Courtesy of Erik Schnaubelt

NICQS : No-Insulation HTS Coil Quench Simulator

2D-Simulation of NI-Pancake coils

Designed for the thermo-electromagnetic simulation of stacks of NI pancake coils.

New developments:

- Accepts multiple pancake geometries using different conductor layouts on different circuits in one simulation.
- Quench back in surround rings is possible.
- Screening currents and its corresponding AC loss are fully included.
- Force density can be exported for analysis in COMSOL / other software.
- Used to test various quench protection strategies for stacks of NI pancake coils.

01/11/2023

Courtesy of Tim Mulder

20

- 20

STEAM-material-library

ligh Field Magnets

WP4.5-T5-D11

- ✓ One single source assures that the material property functions are always the same in all simulation tools.
- ✓ Most common materials for superconducting magnet design are already included.
- ✓ Analytical derivatives of selected material functions available.
- ✓ Properties are available to everybody via the <u>steam git repository</u>.

Supported Materials ropertie https://steam-material-library.docs.cern.ch/ Nb₂Sn BSCCO ¹Pypi steam-material-library Jc: Critical Current density ³STEAM MatPro MatLab class ³CERNGetDP interface Hastelloy More to come... **HFM** WP4.5-T5-D9 **Courtesy of Georgia Zachou** 01/11/2023 HFM WP4.5 - Mariusz Wozniak

Summary

- WP4.5 focuses on quench protection, and should work together with magnet designers, builders and testers.
- We already have several excellent collaborations in place between WP4.5 and other HFM work packages and other projects, like the Muon collider study.
- We are ready and motivated to join up with more magnet teams/groups by:
 - helping you to choose among the various quench protection technologies
 - providing simulations and assessing the results (advantages and disadvantages)
 - (co-)analysing the protection-related test results, to validate and further improve our models.
- Let's try to work together on an integrated conductor-magnet-quench protection design. How hard can it be?

High Field Magnets