

Ba122 at CNR-SPIN: from powder synthesis to practical P.I.T. wires/tapes

Collaboration Agreement CERN – CNR-SPIN

Andrea Malagoli CNR-SPIN

Motivations

Current main limitations and challenges of HTS conductors specific to high-field magnets

- ReBCO:
 - conductor shear stress sensitivity and degradation
 - Magnetic hysteresis, coupling and eddy currents (AC losses) are serious drawbacks of ReBCO tapes and cables. With a substantial modification of the tape architecture (filamentation) ReBCO tapes could comply with losses in Nb₃Sn in high-fields (> 10 T)
 - Quench protection of accelerator size magnets due to low quench propagation velocity and high stored energy density in coils made of ReBCO as well as Bi-2212
 - Uniformity of ReBCO tapes and cables along the length and lot to lot, impacting on magnet protection

-/Bi-2212:

- conductor stress/strain sensitivity and degradation
- Very complex Reaction Heat Treatment if OP is necessary
- Nowadays, most of the efforts are on increasing the performances and over all the technological issues of such well established materials, but we think that developing other superconductors is a clever strategy which might give an alternative way in getting the desired conductor.

Iron Based Superconductor

4.2 K

Ba-122

Why?

- High H_{c2}
- H_{irr} close to H_{c2}
- T_C \simeq 38 K
- Low anisotropy
- Processable by P.I.T
 - Multifilamentary architecture
 - Round wires

- A Gurevich, Ann. Rev. Cond. Matt. Phys 5 (2014) 35
- C Yao and Y Ma, iScience **24** (2021) 102541
- Ba-122 tapes/wires have been developed mainly in China and Japan
- Very few efforts in Europe
- We need a more intense R&D activity to establish its applicability in high field magnets

Critical current density (A/cm²)

10⁵

Andrea Malagoli

Some issues to face

Andrea Malagoli

Memorandum of Cooperation C for the High Field Magnet (HFM) Research and Development Programme

HFM Activities – Other Superconductors Collaboration CERN/CNR-SPIN – Iron Based Superconductors

The programme aims at developing a practical wire produced with a technology that could enable a large-scale production at an affordable cost.

The Objectives are:

- The definition of a scalable process to produce high quality powders in terms of critical temperature and homogeneity;

- The development of PIT wires via the ex-situ method through a mechanical process optimized to reach a high densification and texture in the powder core;
- The fabrication of multifilamentary wires with Jc at least 10^5 A/cm^2 at 16 T at the temperature of interest

The planned path, step by step

Milestone	Deliverable	Description	Required delivery date	CERN's support and date (if required)
M1		Implementation of the laboratory infrustructure		
	D1	Report on laboratory upgrade and visit of the partners on-site	April 30 th 2024	
M2		Production of monofilamentary wire with a Jc \geq 10 ⁴ A/cm ²		
	D2.1	Report on the Ba-122 powder synthesis process	April 30 th 2024	
		Report on Ba-122 monofilamentary wire production including transport		Qualification of base materials.
	D2.2	characterization	October 31 st 2024	Transport characterization – August 31 th
		Prototype monofilamentary wire ~ 10 m		2024
M3		Definition of a process to produce ~10g of Ba-122 powders with the highest		
		purity and homogeneity		
	D3	Report on powder compositional, structural and superconducting properties	April 30 th 2025	TEM analysis - October 31 st 2024
M4		Development of multifilamentary Ba-122 wires		
	D4	Report on deformation process, sheaths and architecture of multifilamentary wires	October 31 st 2025	
	51	Prototype multifilamentary wire ~ 10 m	2023	
M5		Definition of the process to produce optimized multifilamentary wires with $Jc \ge 1$		
		10 ⁵ A/cm ²		
	D5.1	Report on optimized production process including the heat treatment	April 30 th 2026	TEM analysis - April 30 st 2026
	D5.2	Report on superconducting characterization of multifilamentary wires	October 31 st 2026	Transport characterization – August 31 th
		Optimized prototype multifilamentary wire ~ 10 m	0000001 31 2020	2026
M6		Scaling up of the process to produce longer lengths of multifilamentary wires		
	D6.1	Report on the laboratory adaptation for long length wire fabrication	October 31st 2027	
	D6.2	Delivery of a batch of ~200 m long multifilamentary wire from CNR-SPIN to CERN	October 31 st 2027	

Andrea Malagoli

Powder development acitvity

- Pure elements mixed by milling
- Stoichiometric ratio +K addition
- High performance glove-box to control the Oxygen contamination
- Double crucible Nb/SS sealed by TIG
- <u>1 step heat treatment</u>

PWD-I

EDS Layered Image 9

 \sim (Ba_{0.5}K_{0.5})Fe₂As₂

50µm

Andrea Malagoli

Rotating furnace

Scalable method to get homogeneous reaction of all elements

Andrea Malagoli

Andrea Malagoli

SPII

CNR

Heat treatment/rotation parameters optimization

High **Homogeneity**

Electron Image 365

Spectrum label	Ва	К	Fe	As	total
а	13.17	7.63	40.38	38.81	100.00
b	13.26	7.85	39.69	39.20	100.00
С	13.27	7.76	40.19	38.78	100.00
d	13.43	7.92	39.96	38.69	100.00
е	13.11	7.65	39.97	39.27	100.00

PWD – IX

 \sim (Ba_{0.6}K_{0.4})Fe₂As₂

Magnetic Measurements

Confirmation of ameliorated homogeneity and drastic reduction of «magnetic» impurities

Andrea Malagoli

Andrea Malagoli

31st October 2023

HFM

HFM

