

High Field Magnets

Introduction to RD Line 1 Nb₃Sn Conductor

Carmine SENATORE

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES Department of Quantum Matter Physics and Department of Nuclear and Particle Physics University of Geneva, Switzerland **Thierry BOUTBOUL**

HFM annual meeting 2023, CERN, October 30th-November 2nd 2023

HFM annual meeting 2023, 31st of October 2023

R&D strategy on Nb₃Sn conductor

- The first of the two main objectives, identified by the update of the European strategy for Particle Physics and LDG Accelerator R&D Roadmap for the HFM programme, is to demonstrate Nb₃Sn magnet technology for large-scale deployment
- In terms of **conductor development**, this involves:
 - Overcoming the present limitations linked to stress/strain sensitivity and degradation
 - Pushing the Nb₃Sn performance to its ultimate limits, towards the 16 T target required for the FCC-hh dipoles
 - Driving the industrialization of improved superconductors.

Nb₃Sn wire requirements

- Performance targets for Nb₃Sn conductor development for future accelerator magnets were initially defined in 2015 as:
- 1. non-Cu **J**_c ≥ **1500 A/mm**² (16 T and 4.2 K);
- 2. $\mu_0 \Delta M \le 150 \text{ mT} (1 \text{ T}, 4.2 \text{ K});$
- 3. $d_{\rm eff} \le 20 \ \mu m;$
- 4. RRR ≥ 150.
- **Considering the disparity in manufacturers' capabilities** at the start of the programme, it was decided (circa 2018) to:
- 1. Prioritise J_c increase over *d*_{eff} decrease;
- 2. Set **intermediate** objectives comparable to specification of HL-LHC procurement:
- non-Cu J_c ≥ 1000 A/mm² (16 T and 4.2 K), target: 1200 A/mm²;
- $d_{\rm eff} \leq 60 \ \mu {\rm m}.$

Nb₃Sn conductor: Roadmap for HFM (1)

- Following the gradual approach already mentioned, the HFM program is divided in two sub-programs: the 12 T value-engineered dipole and the 14+ T dipole.
- For 12 T value-engineered sub-program, the baseline is MQXF cable made of 40 108/127 RRP[®] wires (0.85 mm in diameter). The Roadmap is:
- 1. Continue strategic partnership with Bruker OST (in synergy with HL-LHC);
- Procure and characterize strands for HFM needs at CERN and collaborators (~400 km of wire altogether);
- 3. Manufacture and characterize cables for HFM needs at CERN and collaborators (more than **8 km** of cables altogether);
- To continue efforts to qualify additional suppliers on top of Bruker OST for the production at industrial scale of wires starting with MQXF-type requirements (e.g., non-Cu J_c ≥ 1000 A/mm²,16 T and 4.2 K). Technical requirements could be reviewed in due time.

Nb₃Sn conductor: Roadmap for HFM (2)

- The non-copper critical current density target for 14+T is at least 1500 A/mm² at 16 T and 4.2 K, which constitutes a salient technological breakthrough as compared to ~ 1100-1200 A/mm² for current wire designs.
- This target will **not** be **achievable** within **1-2 years**, therefore there is need to select wire and cable designs for **14+T medium** term based on **known designs**.
- The idea is to **review different** strand/cable **designs** and see if one could be more promising as **14+T wire** for **medium term** (see next slides for more details).
- In parallel:
- 1. Continue ongoing **optimization** of Bruker OST strands (e.g., stability);
- Develop/update technical requirements, procure and characterize wires (>200 km) and manufacture and characterize cables (>7 km) for HFM needs at CERN and collaborators;
- Continue ongoing R&D efforts to achieve non-Cu J_c of 1500 A/mm² at 16 T and 4.2 K, e.g. by internal oxidation process (plan to be assessed).

RRP[®] Strand Characteristics

- BOST (NJ, USA) can produce Nb₃Sn wire by RRP[®] (Restacked Rod Process) with different designs.
- Various designs of interest are given, showing the various important parameters, in the following table.

	Comparisons				HFM	
	MQXF	ERMC#101	FRESCA 2	ERMC#102	ERMC-1	DEM-1.1
<i>d</i> (mm)	0.85	1.0	1.0	1.0	1.0	1.1
Layout	108/127	120/127	132/169	150/169	162/169	162/169
<i>d_s</i> (μm)	54	64	58	57	58	64
Cu/non-Cu	1.2 ± 0.1	1.06 ± 0.1	1.25 ± 0.1	1.08 ± 0.1	0.9 ± 0.2	
Nb:Sn	3.6 (red. Sn)	*	3.4 (std. Sn)	*	3.4 (std. Sn)	
Heat treat.	665 °C 50 h	665 °C 50 h	650 °C 50 h	665 °C 50 h	650 °C 50 h	665 °C 50 h

HFM medium working plan for 14+ T conductor

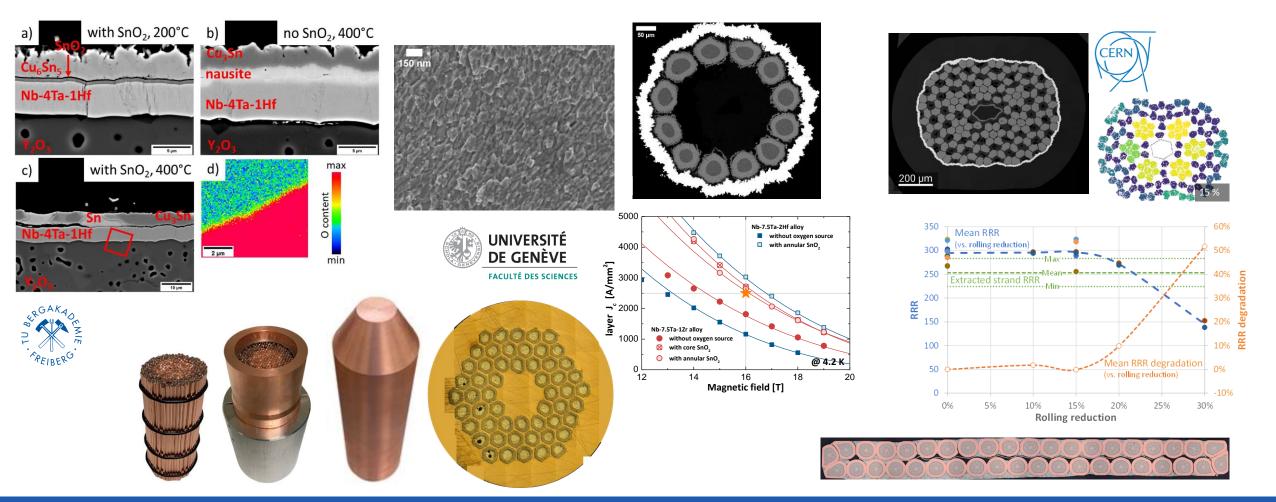
- Wire/strand designs mentioned in previous slides will be tested for:
- > V-I stability measurements made on strands extracted from existing cables,
- Virgin strands measured under compressive stress at UNIGE for a semiquantitative comparison,
- Heat treated and impregnated cable samples will be submitted to various levels of compressive stress and cable cross-sections examined for defects/broken sub-elements.
- This combined study will allow to select an adequate strand/cable design before confirmation at FRESCA/FRESCA 2 station.

Current partners and WPs of RD Line 1

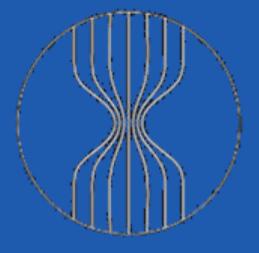
WP1.1 Nb₃Sn conductors for high field magnets (see talk by Simon Hopkins)

WP1.2 R&D on optimization of Nb₃Sn microstructure and pinning (see presentation by Andreas Leineweber)

WP1.3 Nb₃Sn conductor J_c performance and electromechanical properties beyond state of the art (see presentation by Gianmarco Bovone)



FACULTÉ DES SCIENCES


TY WP1.4 R&D on mechanical properties of Nb₃Sn wires and TE. cables

From material studies... ... to wire and cable development/testing

HFM High Field Magnets