

Progress of the High Field Magnet Program For the Next-generation Accelerators

Qingjin XU for the Superconducting Magnet Group, Accelerator Division, IHEP-CAS Oct 27 2023

中國科學院為能物招加完施 Institute of High Energy Physics Chinese Academy of Sciences

HFM annual meeting 2023, CERN, Oct 20- Nov 2 2023

$E[GeV] = 0.3 \times B[T] \times \rho[m]$

High Energy Circular Colliders for next decades		FCC	
Proposed institution	IHEP-CAS, China	CERN, Europe	
Proposed dates	2012	2013	
Site of the project	China	Europe	
Baseline technology	IBS 20~24 T to reach 125-150 TeV, Nb ₃ Sn etc as options	-150 TeV, Nb ₃ Sn 16 T to reach 100 TeV	
Timeline	Construction at 2040s	Construction at 2050-60s	
Cost	*	**	

Roadmap of the High Field Magnet R&D at IHEP

year

3

16 T Model Dipole LPF3: Nb₃Sn 13 T (Common Coil with 55 mm gap) + HTS 3 T inserts (Block & CCT with Ø20 mm)

The Nb₃Sn coils for LPF3

Chengtao Wang et al

Pre-stress applied with commercial hydraulic jack

Excitation

.400E+

.500E4

600E+

2023.8.29 Assembly completed

8

Jinrui Shi et al

- Varistor plus CLIQ to protect the Nb₃Sn coils. The maximum hot spot is ~ 230 K
- NI configuration plus dump resistor to protect the 2 HTS insert coils

Feasibility study of applying the no-insulation coil on accelerator magnets

Rui Kang, Hongjun Zhang et al

Wei Li et al

Preliminary fresh test results just last week!

- The 1st preliminary test carried out in the week Sep 3-8 2003. The 6 Nb₃Sn coils were firstly ramped
- > 5 quenches occurred from 9 to 10 T, all caused by FLUX JUMP, but with an encouraging upward trend
- Test stopped due to the limited size of He recovery gasbag, > 100 m³ He gas was evaporated during the 5th quench
- HTS CCT insert was ramped independently, quenched at 90% of the I_{op} with a linearly increased voltage curve, probably indicating a damage of ReBCO conductor durting the coil fabrication process

Whole Wire Critical Current Density (A/mm², 4.2 K)

IBS Technology: Status and Outlook

IOP Publishing Supercond. Sci. Technol. 32 (2019) 04LT01 (5pp)

Superconductor Science and Technology https://doi.org/10.1088/1361-6668/ab09a4

Letter

First performance test of a 30mm iron-based superconductor single pancake coil under a 24T background field

Dongliang Wang^{1,2,5}, Zhan Zhang^{3,5}, Xianping Zhang^{1,2},

The I_c of the IBS SPC at 24 T reach 40% of that at 0 T

The 1st IBS single pancake coil at 24 T

Leader

Heat treatment

Ноор

IBS coil

12

The 1st IBS racetrack coil with100-m Long IBS Tapes

 \blacksquare Inserted in the dipole magnet and tested at 4.2 K and 10 T

IOP Publishing Supercond. Sci. Technol. 34 (2021) 035021 (8pp)

Superconductor Science and Technology https://doi.org/10.1088/1361-6668/abb11b

First performance test of the iron-based superconducting racetrack coils at 10 T

Zhan Zhang^{1,2,6}, Dongliang Wang^{3,4,6}, Shaoqing Wei^{1,2}, Yingzhe Wang^{1,2,4}, Chengtao Wang^{1,2}, Zhen Zhang^{1,2,4}, Huanli Yao^{1,2}, Xianping Zhang^{3,4}, Fang Liu⁵, Huajun Liu⁵, Yanwei Ma^{3,4,7}, Qingjin Xu^{1,2,4,7} and Yifang Wang^{1,4}

- ¹ Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- ² Key Laboratory of Particle Acceleration Physics & Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- ³ Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- ⁴ University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China ⁵ Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China

E-mail: ywma@mail.iee.ac.cn and xuqj@ihep.ac.cn

Voltage Signals of the 2nd IBS Racetrack Coil Tested @ 10T 75

- Two racetrack coils have been made using the 100 m length IBS tapes.
- The I_c of the coil reached 86.7% of that of the short sample at 4.2 K and 10 T, and 81.25% of the quench current under 0 T.
- \succ with highest compressive stress of 120 MPa.

I_c of IBS tapes with different bending diameters

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 32, NO. 6, SEPTEMBER 2022

Effect of Bending Before Annealing on Current-Carrying Properties of Iron-Based Superconducting Tapes

Chunyan Li[©], Rui Kang, Yanchang Zhu[©], Zhen Zhang, Yingzhe Wang[©], Chengtao Wang[©], Jin Zhou, Huanli Yao, Xianping Zhang[©], Dongliang Wang[©], Cong Liu, Fang Liu[©], Yanwei Ma[©], and Qingjin Xu[©]

 $\label{eq:advacture} Abstract—The iron-based superconductor (IBS) is a good candidate for high field magnet applications. The bending effect and properties of IBS tapes were systematically investigated in this (CL) of S105 Applications. A record critical current density of IBS tapes were systematically investigated in this (CL) of S105 Applications. The systematical current density of the systematical current density of IBS tapes were systematically investigated in this (CL) of S105 Applications. The systematical current density of the systematical current density of IBS tapes were systematically investigated in this (CL) of S105 Applications. The systematical current density of the systematical current density of IBS tapes were systematically investigated in this (CL) of S105 Applications. The systematical current density of the systematical current density of IBS tapes were systematically investigated in this (CL) of S105 Applications. The systematical current density of the systematical current density of IBS tapes were systematically investigated in this (CL) of S105 Applications. The systematical current density of the systematical current density of IBS tapes were systematically investigated in this (CL) of S105 Applications. The systematical current density of the systematical current density of IBS tapes were systematical current density of the systematical current$

- The attenuation curve of I_c performance with decreasing bending diameters for IBS tapes was obtained.
- Cracks appear regularly in part of the superconducting cores under tensile stress.

Preparition of bent IBS tape

Tested at 4.2 K and 10 T

14

The First IBS Solenoid Coil at 32 T background field

Chunyan Li et al

 I_c of Φ 34mm-17 turns-DPC reached **60 A at 4.2 K and 32 T, world's highest record up to now.**

Quench propagation study of the IBS coils

Chunyan Li et al

Experimental data shows significant quench propagation in the IBS coils! More testing will be carried out

J_e of IBS expected to be similar as ReBCO in 5 years with better mechanical properties and lower cost

R&D of the HTS transposed cable: X-cable

Development of a Roebel-like Transposed Cable with the in-plane bending of HTS tapes

R&D of the HTS transposed cable: X-cable

Development of a Roebel-like Transposed Cable with the in-plane bending of HTS tapes Juan Wang et al

China provides 13 units CCT twin-aperture dipole magnets for HL-LHC

- To be installed in the ATLAS & CMS interaction regions, help to raise the luminosity by 5 times
- The 1st time CCT type magnets applied to an operating accelerator.

Training History of the HL-LHC CCT Coils

Successful design upgrade to solve the "long training problem", significantly reduced the times of quench during training, ensured the project progress "on track".

Quench Number

Training of MCBRD02 & MCBRD03

- AP1(CB12, 25 quenches 526A) reached \pm 422A after 11 quenches.
- AP2(CB09, 33 quenches 530A; after thermal cycle >500A) reached \pm 422A without any quenches.

- 4 series CCT magnets have been fabricated; all of them reached the ultimate current and passed the field quality test. Components for 2 magnets being shipped to CERN; The 5th series magnet to be assembled in Nov 2023
- Production rate for the rest of series magnets: every 3 month per magnet

	Coil name	Winding method	Location	Coil stand-alone performance (4.2 K)	Magnet performance at 4.2 K	
MCBRD01	MCBRD_CB01	Wet wind		530 A	Both apertures reached ultimate current 422 A, and passed 4-hour stability test	
	MCBRD_CB03	Direct wind	CERN	410 A (training stopped due to the availability of the test station)		
	MCBRD_CB02	Direct wind	CERN	Failed to reach the design current		
MCBRD02	MCBRD_CB04	Wet wind	CERN	422 A (training stopped due to the availability of the test station)	Both apertures reached ultimate current 422 A, and passed 4*1 hour	
	MCBRD_CB06	Wet wind		530 A	stability test	
MCBRD03	MCBRD_CB09	Direct wind with new channel size	CEDN	530 A	Both apertures reached ultimate current 422 A, and passed stability test	
	MCBRD_CB12	Direct wind with new channel size	CERN	526 A (25 quenches)		
	MCBRD_CB14	Direct wind with new channel size	BAMA	530 A (30+34 quenches), put in quarantine		
MCBRD04 -	MCBRD_CB13	Direct wind with new channel size	IMP	530 A (20+33 quenches)	Both apertures reached ultimate current 422 A, and other tests will be	
	MCBRD_CB17	Direct wind with new channel size	INI	524 A (47 quenches)	implemented in the middle of Oct.	
<u>MCBRD05</u> -	MCBRD_CB18	Direct wind with new channel size	IHEP	530 A (43 quenches)	To be assembled in Nov 2023	
	MCBRD_CB19	Direct wind with new channel size	IHEP	530 A (63 quenches)		
	MCBRD_CB20	Direct wind with new channel size	IHEP	To be stand-alone tested		
MCBRD_CB10, 11, 15, 16		Shipped to CERN for fabrication				

Milestone of the HL-LHC CCT Magnet Project

- Long-term advanced superconducting magnet R&D for future high-energy accelerators is ongoing at IHEP-CAS
- 10+ T model dipoles being developed at IHEP, reached 12.47 T at 4.2 K in mid 2021. 16 T (Nb₃Sn+HTS) model dipole under test in 2023. 20 T accelerator magnets expected to be realized in 2020s
- Strong domestic collaboration for the advanced superconductor R&D (HTS & Nb₃Sn): Stainless-steel-Silver stabilized IBS tape achieved the highest J_e in 2022! Significantly reduced the cost and raised the mechanical properties
- China & CERN Collaboration on accelerator technology: development of HL-LHC CCT magnets going well
- Looking forward to a world wide synergy on the advanced accelerator magnet R&D in future

