INFN program on HTS R&D and 10 T dipole

INFN

Istituto Nazionale di Fisica Nucleare

Marco Statera, INFN LASA

Marco Statera

٠.

11

Narth

High Field Magnets

i con nome és

HFM annual meeting 2023, CERN

Outline

HFM High Field Magn

Marco Statera

HFM

Magnetic configurations

Cosin Theta with tape in h-plane

High current density on mid-plane

Courtesy of S. Hahn - 77 K, 77 A, 100 mT

CCT based on

- Traditional machined former
- Tilted coils

- Machining
- Winding
- Curved

- Winding
- Magnetization
- AC losses
- Field quality

- Splicing
- Assembly

Conductor configurations

- Explore the Controlled-Insulation vs non-insulation solutions
- Multi-tape winding is foreseen, including different materials and technologies to impact the inter-turn resistance
- Both easy to bend cables and Mechanically stable conductors i.e. Roebel, tapestar/CORC and Viper like cable
- The goal of this study is to asses and improve the TRL in magnet-like conditions
- Internal splices
 - Development of technology
 - Configuration optimization for multi tape windings

Examples of target technologies: Metal-Insulated (MI), multi-tape NI, multi-tape resistive layer + stabilizer.

250 µm

Modeling and Simulation

- Field calculations
- In tape critical current and current distribution
- Testing critical current and potential degradation

300

- 3D calculation of margin
- Probing modeling by small coils program
- Quench modeling

Test of small coils

- Synergies with IRIS (NextGenerationEU)
 - 1. Operation at T in the range 10 K 30 K;
 - 2. Induction of flux densities in the tesla range
 - 3. Test in field up to 20+ T
 - 4. Non-round geometries (PNRR-IRIS project)
- The goal is to test magnet-like conditions for NI/controlled insulation coils and further validate models.
- Target time: begin 2024

Coils are tested in

CERN, INFN LASA, PSI, CEA, SOUTHAMPTON

Preliminary winding and test al LASA

Test of small coils at LASA

R&D testing small coils (in self field or up to 8T) NI-partial insulated – impregnated

8 T field by solemi (refurbished and recommisisoned by IRIS)

HFM High Field Magne

LASA test facility upgrade

- Two new cold masses to test HTS magnets
 - Solemi insert
 - Hilumi
- Conduction cooled (cryocooler or closed loop He gas)
- New closed loop G-He cooling
 - Cooling power by cryocooler
 - Gas Helium circulation
 - Easy to move, no liquid helium required

Finanziato

dall'Unione europea

NextGenerationEU

• 20 W at 20 K - 200 W at 55 K

le gas)	
ersità erca Laliadomani cerca Laliadomani D'Alignessa e Resilienza	

Ministero

dell'Unive

e della Ri

infrastructure on

IS

Why dry magnets?

- Target temperature 20 K 50 K
 Depending on performance
- HTS have great performance at high field above 10 K
- Less expensive and complex cryogenics
- Looking at the sustainability of science and societal applications

ESMA by IRIS

Energy Saving HTS Magnet for Sustainable Accelerators (ESMA)

- Scope: superconducting cables test up to 8 T (10 T)
- Deliverale: 8 T 70 mm aperture HTS conduction cooled dipole operating @ 10-20 K
- Goal: increase of the TRL for 15 T 20 K magnets for FCC and Muon Collider

Thermal shield **Racetrack stack** Unit Value Parameter Central field tesla 10 IRIS Procured by LASA **End-plates** Free bore dimensions H80 x V50 mm Installed in INFN Genova S. Sorti and L. Balconi 1000 Magnet length mm Univ. of Milano & INFN-LASA Good field region uniformity N/A 1.5% 1500 **Dimensions** 12 mm × 67 µm 1375 Average, fit Average, data Substrate 40 µm of Hastelloy C276 1250 H50xV30xL400 Tape I $_{\rm c}$ [A] Good field region extension Expected min mm 1125 Acceptance min **Copper stabilizer** 2 × 10 µm, RRR>20 1000 Operating temperature Κ 20 Easy-way minimum bend 10 mm 875 Minimum op. temper. for test 10 Κ 750 -0.4 % to 0.3 % Allower longitudinal strain 625 А <1000 Maximum current <u>Min. 400 A, average 470 A</u> I_c, 77 K, self-field 500 9 10 11 12 13 14 15 6 8 Min 500 A Ic, 20 K, 15 T

Tape procured by LASA: 15 km of 12 mm^{B || c []]} FARADAY tape

Marco Statera

Iron insert

Actual design

HFM

~13.9 km of tape

Central field B_0	tesla	10	
Minimum central field B _{0min}	tesla	8	
Free aperture	mm	Ø70	
Good field region uniformity	N/A	±1.5%	
Good field region extension	mm	H50xV30xL350	
Operating temperature	K	20	
Operating Current	A	810	
Marco Sta	Marco Statera		

a 100% current sharing between the tapes.

13

HFM annual meeting 2023, CERN

Synergies on ongoning studies

- Development of multitape flat coils
- Contact resistance modeling
- Impregnation (YES/NO/WHAT)
- Mechanics optimization for conduction cooled magnets
- Cryogenics optimizations
- Current leads

HF and UHF HTS solenoids will be in an upcoming INFRA-TECH EU call

Energy Saving Magnets - ESABLIM

- Revamp of common resistive magnets for heavy particle beam lines with Cryogen-free superconducting magnets
- Use of MgB₂ or HTS conductors reusing iron yoke
- Current < 300 A

60 K

20 K

Work @ T=8-20 K with conduction cooling by cryocoolers

	Nominal Field	Weight	Air Gap	Max. Current	Max. Power	Cond. Dimensions	Energy Consumed
PSI (Steady State)	1.45 T	50 tons	100 mm	1 kA	95 kW	18.5 x 18.5 mm ²	715 MWh/year
CNAO (Ramped)	1.74 T	75 tons	200 mm	2.28 kA	700 kW	39.8 x 14.3 mm ²	262 MWh/year

 MgB_2 single wire CCT – 0.75 T @ 4.5 K

500 mm length – diam 50 mm

PON REACT EU :..

V 20

PSI Option

Power consumption of 5 kW (vs 190 kW DC resistive design)

- \approx 40 times lower with MgB₂ rope conductor
- HTS Design on-going @ T > 20 K

CNAO Option

 \approx 7 times lower with MgB₂ rope conductor

HFM annual meeting 2023, CERN

Summary

- Ongoing R&D to increase TRL of HTS magnets
- Started a program for small HTS coils production and test
- INFN is building and testing HTS magnets in next two years
- Update the test stations for variable temperature
- Several synergies in developing HTS magnets have yet to be fully exploited
- HF and UHF HTS solenoids will be one of the leading themes in an upcoming INFRA-TECH EU call
- Dedicated R&D for MgB₂ conductor for new magnets, refurbished ones and sustainability (see IRIS by L. Rossi on Thursday)

Marco Statera

THANK YOU

Istituto Nazionale di Fisica Nucleare

Ph. by G. Fornasier

HFM High Field Magnets